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ABSTRACT 

Recent advances in computing and sensor technologies 

have pushed the amount of data we collect or generate 

to limits previously unheard of. This paper focuses on 

the big data challenges that building modeling experts 

may face in data collected from a large array of sensors, 

or generated from running a large number of building 

energy/performance simulations. A case study is 

presented that highlights the technical difficulties that 

were encountered and overcome in order to run 3.5 

million EnergyPlus simulations on supercomputers and 

generating over 200 TBs of simulation output. While 

this is an extreme case, it led to the development of 

technologies and insights that will be beneficial to 

modelers in the immediate future. The paper discusses 

the different data  management technologies and data 

transfer choices in order to contrast the advantages and 

disadvantages of employing each. The paper concludes 

with an example and elaboration of the tipping point 

where it becomes more expensive to store the output 

than re-running a set of simulations for a suficiently 

large prametric ensemble. 

INTRODUCTION 

“Big data” is now a common buzz term. Many 

institutions and corporations are preparing themselves 

for a massive deluge of anticipated data. A survey of 

1,217 companies in nine countries  revealed that 53% of 

the organizations had big data initiatives [Tata 2012] 

and were expecting the data insights to drive growth. 

Another survey  revealed that only 4% of the 

organizations considered themselves good at using the 

data well to derive insights. In fact, there has been a 

recent explosion in the number of database technologies 

simply for storing the data [Aslett 2014]. Few 

organizations are prepared to adapt existing systems to 

integrate advantages of these quickly-evolving 

technologies. Over 2.5 exabytes (2.5 quintillion = 

2.5x10
18

 bytes) are created each day [IBM 2012]. 

Furthermore, the rate is increasing so quickly that 90% 

of the data in the world today has been generated in the 

last 2 years [SINTEF 2013]. In such an environment, 

the capability of predictive analytics on big data is 

considered critical in many application domains. Fields 

such as marketing, finance, security, and social 

networks have been leading the research and developing 

state-of-the-art techniques in addressing the challenges 

that big data poses. The building sciences domain has 

largely been just slightly touched by the data deluge, 

but, with newer technologies being implemented  into 

sensors and controls, building simulation engines, 

automated calibration, demand response, and building-

to-grid integration, the discipline is set to undergo a sea 

change in how data is generated and used. 

As energy-harvesting, peel-and-stick, system-on-a-chip 

sensors continue to decrease in price while increasing in 

the amount of sensing and on-board processing, the 

amount of data available from relatively few sensors 

could increase in the coming years. There are also 

efforts underway by major companies to manufacture 

cheap, building-level Non-Intrusive Load Monitoring 

(NILM) devices which use the current and voltage 

fluctuations from the breaker box to register the 

location and electrical draw from multiple electrical 

devices throughout the building. Advanced signature 

recognition algorithms allow one contactless physical 

device [Patel 2010] infer dozens of channels of data as 

part of the transition to a smarter electrical grid 

[Froehlich 2011]. In addition to the rollout of traditional 

smart meters, advanced system-on-a-chip sensors, 

NILMs, and inferential sensing are three technologies 

recently being deployed in buildings that piggyback on 

one another to allow a non-linear increase in the amount 

of data available on building performance. 

As more data becomes available, it is anticipated that 

there will be a concomittant increase in software-

informed building operation decisions to leverage the 

available data. This trend has been observed in other 

application domains, but faces additional challenges 

since buildings are largely one-off constructions in the 

field rather than built to a specific engineering standard. 

A Navigant Research report projects an increase of 

Building Automation Systems (BAS) from 2014 to 

2021 with data sizes in North America expected to 

increase from 17 to 52 petabytes per year from 2015 to 

2021 [Navigant 2014]. Specific equipment types use 



   

 

control algorithms or Fault Detection and Diagnostics 

(FDD) from sensor data to improve equipment 

performance or maintenance. Unfortunately, 

optimization of any specific piece of equipment can be 

at the expense of building-wide optimization or 

operated in a way that causes the building to expend 

energy in fighting itself (e.g. two HVAC units with one 

cooling and one heating). As data generation, 

communication, and processing decrease in cost, high-

fidelity, simulation-based alternatives could help in 

optimization of operation and grid-interaction for 

commercial as well as residential buildings.  

This paper focuses on a few diverse aspects involved 

with the management of sensor and simulation data to 

motivate the case for big data and its analysis in the 

building sciences community.  

BIG DATA IN THE BUILDING SCIENCES 

How big is big data in the building sciences? There are 

many ways to address this question. Often, the ovarall 

size of the data is used, but the size that constitutes big 

data is often defined as relative to the capabilities of 

current tools in a given domain. The more important 

question is “what is the purpose of the data?” Given a 

specific use case from such a question, any point where 

the management of the data poses a non-trivial 

challenge is considered a big data scenario. 

Sub-minute resolution data from dozens of channels is 

becoming increasingly common and is expected to 

increase with the prevalence of non-intrusive load 

monitoring. Experts are running larger building 

simulation experiments and are faced with an 

increasingly complex data set to analyze and derive 

meaningful insight. 

Scalability, analysis requirements, and adaptability data 

storage mechanisms is becoming very important. 

Additionally, unique behavior of different tools make it 

non-trivial for larger workflows. Practical experience 

becomes increasingly critical in selecting cost-effective 

strategies for big data management. 

As data becomes large in size, network performance 

issues arise. Practical issues involving lag, bandwidth, 

and methods for transferring and synchronizing logical 

portions of the data become important. 

The cornerstone of big data is its use for analytics; data 

is useless unless actionable information can be 

meaningfully derived from it. In the rest of this paper, 

we discuss challenges and opportunities of applications 

involving big data, sensor data from user facilities, and 

data generated from simulations. 

BIG DATA APPLICATIONS 

Simulation data handling and analysis are important in 

many practical uses in the building community 

including efforts such as DEnCity [Roth 2012] to build 

a national simulation database, effect of proposed 

policy changes on the building stock [Taylor 2013], 

prioritization of energy-saving technologies for 

investment [Farese 2013], optimized retrofits [DOE 

2014], uncertainty quantification for energy savings 

likelihoods [Zhang 2013], and many other ongoing 

uses. Future uses for large-scale simulation studies 

could allow simulation engine approximation for 

dramatic speedup with allowable tradeoffs in accuracy, 

enhanced inverse simulation for any traditional/forward-

simulation tool, surrogate model creation and 

parallelization for computational bottlenecks of existing 

simulation tools,  and enhanced testing of simulation 

tools as development progresses.  

There are many forward-looking applications for big 

data from both sensors and simulations. Automated 

calibration efforts rely on simulation of building 

variants in comparison with measured sensor data. 

There are already emerging examples of 

sensor/simulation hybrid techniques such as sensor-

based Building Energy Modeling (sBEM) [Edwards 

2011] which use direct sensor measurements from 

buildings in combination with machine learning 

techniques to answer questions or make predictions 

about building performance. Provenance is growing as 

an independent field for tracking and exploring the log 

and lineage of how data changes over time; it only 

recently began being used in buildings [Sanyal 2014, 

Castello 2014]. As energy dashboards, augmented 

reality, and other methods for making invisible energy 

use visible to building operators become more popular, 

there will likely be an increased demand on data 

handling, analysis, and intuitive/actionable 

visualization.  

DATA FROM SENSORS 

The Flexible Research Platformss at the Oak Ridge 

National Laboratory are currently collecting over 1,000 

channels of data, most of which are sampled at 30-

second resolution. These channels include temperature, 

relative humidity, and heat flux for the building 

envelope, flowmeters and wattnodes for energy 

consumption throughout appliances, and weather data. 

With these channels stored as 8-byte double-precision 

floating points, this amounts to over 1 billion data 

points per year, or 8 gigabytes/year. While this is 

significantly less than the 10s of terabytes to petabytes 



   

 

considered “big data” in supercomputing or similar 

fields, it is still more than enough to break most 

building-related applications. The “big” in “big data” is 

often defined relative to the maturity of the technology 

currently available to process the data such as database 

management tools and traditional data applications. As 

such, we propose that gigabytes constitutes big data for 

a single building’s measured properties since most 

simulation, building model, model calibration, or M&V 

applications cannot currently use this amount of data. 

A major aspect of sensor data collection is effectively 

managing faults. Sensors will drift and will require 

periodic calibration. Sensors will fail and require 

replacement. Fault tolerance and mechanisms to 

automaticaly detect and correct such errors is an 

important requirement. In the facility described 

previously, a software system has been built that 

periodically calculates the standard-deviations for each 

channel in the collected sensor data. These values are  

used to generate a statistical range that is between 1 to 6 

standard-deviations from the mean. By the three-sigma 

rule of statistics, a range of 3 standard deviations about 

the mean covers 99.7% of the range of data values 

possible, assuming a normal distribution. A script runs 

periodically checking the latest data values against the 

range detecting potential outliers which may indicate a 

fault, and sends out an email alert. Until a full year of 

data is collected, the ranges must be periodically 

recalculated to account for changing seasons.  

Upon detection of a fault, it is possible to correct for the 

values. The team has developed tools that check and 

detect missing or bad values and provides the user with 

a battery of filtering [Castello 2012], statistical 

[Castello 2013], and machine learning [Smith 2013] 

algorithms that attempts to intelligently infer the 

missing or corrupt values. The accuracy of these 

algorithms depend on a variety of factors including the 

time range of the missing data. 

DATA FROM SIMULATIONS 

Simulation is a powerful tool to determine possible 

outcomes from a mathematical model for various input 

conditions. Even though simulation can be a very 

powerful tool, as with all computer models, it is still 

necessarily an approximation of reality. Various 

uncertainties also exist in the description of the input 

and in the analysis of output. Modelers use an ensemble 

of simulations with different combinations of input 

parameters to capture some of the uncertainties inherent 

in the modeling process. The mass availability of cheap 

computing power allows building modelers to run 

increasingly larger ensembles in relatively shorter time 

periods. The recent ease for utilization of cloud 

computing adds significant capabilities but complicates 

the simulation workflow  and data communication 

methods, strengthening the case for pro-active big data 

readiness. 

Simulation Input 

The generation of inputs for an ensemble of simulations 

can become a daunting task if the number of simulations 

is large. There is a wide body of literature on the 

generation of an adequate number of samples that 

sufficiently sample and are representative of the range 

of inputs [Winer 1962]. The design of experiments is a 

well established field in statistcs. A full exploration of 

the field is beyond the scope of this paper, however, we 

present a few design paradigms that were relevant for 

the case study presented later in the paper: 

a. Random sampling: Random samples are selected 

from each input’s range. This strategy does not 

assume any underlying distributions in the inputs 

and in theory, retains an equal probability of 

picking an point anywhere in the range. This 

method is scalable since it requires minimal 

computation to pick a sampling point. 

b. Uniform sampling: Using a uniform sampling 

strategy asures equally spaced input samples. 

c. Markov Order Sampling: Often used when the 

input space is large, this sampling varies a subset of 

k inputs (from a set of n inputs) between their 

minimum and maximum values at a time while 

holding all other variables at their default value. 

This sampling creates a maximal sensitivity 

analysis for combinations of k inputs, but a 

computationally prohibitive larger O(n choose k) 

number of samples as k increases. 

d. Latin square and higher orders [Stein 1987]: This 

design provides a customizable sample size while 

attempting to evenly sample the multidimensional 

space. This method retains desirable statistical 

features but can be a challenge to compute for very 

large numbers of variables. 

It is very important to choose the parameters, ranges, 

distributions, and sampling strategy appropriately for a 

given problem that needs to be answered. The statistical 

analysis of outputs is always dependant on the 

experimental design and relative independence of 

parameters. Non-independent parameters lead to 

interaction effects which canbecome complicated for 

higher order interactions.  



   

 

A toolkit named DAKOTA [Giunta 2003] alleviates 

many of these challenges by providing algorithms for 

design, estimating uncertainty, and performing system 

analysis, and powers the Parametric Analysis Tool in 

OpenStudio with capabilities to run simulations on 

Amazon’s cloud computing platform.  

Simulation Output 

Simulation output is almost always much larger in size 

than the input and consists of various output variables. 

It is usually not necessary to save the output from 

simulations for an extended period of time, however, 

the output must be stored for the time that is required to 

perform the analysis. Some data analysis algorithms 

parallelize well and can work on chunks of the output 

while others may require the entire ensemble in memory 

to derive meaningful conclusions.  

For example, in EnergyPlus, the output is an *.eso file 

which can be processed with another program 

(readvars) to output various summaries of the data. As 

an ensemble becomes larger, the post-processing 

overhead can become a significant fraction. 

Conventional wisdom is to save the raw output for a 

period of time so that any type of summary can be 

generated if required in the future. 

Post-processing is used to transform or draw summaries 

from raw simulation output. With a large ensemble, the 

raw output may take less disk, however, the 

computational requirement to regenerate all the 

summaries can be expensive. Instead, there may be a 

benefit in saving just the processed output. The key is to 

evaluate the trade-off of between recomputing and the 

storage and retreival overhead for pre-computed values. 

BIG DATA MANAGEMENT  

In this section, we cover many aspects of big data 

management that include existing or new techniques to 

handle obvious challenges as well as some that are not 

so apparent. 

Generic Considerations 

Perhaps the biggest motivator of big data strategies is 

the analysis requirement and the challenges posed in 

time-efficiency and resource-efficiency. The most 

effective strategy is almost always driven by the 

analysis requirement, however, some key approaches 

have helped the authors immensely. 

First, one must get away from the notion of working 

with a single unit of data, be it a small collection of files 

or a single database. Large data tends to not be highly 

structured and tends to entropy, partly because of 

having to work in chunks. Big data storage could span 

multiple machines. 

Second, a key strategy is  balancing storage to 

computational requirements. This may be particularly 

challenging because one must access all non-obvious 

overheads. This may include number of files expected 

to be generated and how they will be physically 

arranged in storage  to optimize for data access patterns. 

Another overhead is the determination of the physical 

location on disk from the logical schema. If this 

mapping involves repeatedly accessing a small 

subsystem or a single module, it could easilty become 

the bottle neck in the system. 

When using multiple-cores, determining the exploitable 

level of parallelism is important. All parallelly 

decomposed problems have a serial component. The 

overall speedup and efficiency is determined by the 

serial fraction given by Ahmdal’s law. 

Third, it helps to determine the typical types of analysis 

performed and design the system with a moderate 

amount of extra capacity. There is likely to be a few  

analysis scenarios that will run very slowly and 

designing the system for such cases will drive up the 

cost significantly. 

Fourth, always design for errors to happen and use 

bottom-up scalability techniques to recover from an 

error when possible. Sometimes, an error can propagate 

across the system and the means of catching such 

occurences in a meaningful way can greatly improve the 

resiliency of the data-store. 

Practical Data Transfer Methods 

Big data movement is very expensive. The authors have 

experience where it took just 68 minutes to generate and 

write 45 TB of data to disk but took 10 days to move to 

a more permanent storage location! It is highly desirable 

to keep big data where it needs to be and move it 

minimally. Since big data tends to be in pieces, logical 

partions of the data can almost always be treated as 

smaller units of information and can be moved or 

rearranged when required. It is very helpful to have an 

overall schema that is flexible and allows such changes. 

There are several tools that allow efficient movement of 

large data across networks. These include the standard 

File Transfer Protocol (ftp)  or Secure Shell (ssh) based 

protocols (such as scp and rsync [Tridgell 1996]) some 

of which open multiple network connections to exploit 

parallelism in the transfer as well as data compression 

on the fly. More efficient tools such as bbcp 

[Hanushevsky 2001] or GridFTP [Allcock 2005] are 



   

 

particularly designed for very large data transfers. Other 

considerations in data movement include the available 

bandwidth and network lag in movement. 

Database Storage Solutions 

Sensor data as well as building simulation output have 

been traditionally stored in comma separated value files 

with data retreival and subsequent analysis speeds 

slower than database engines or binary data formats. 

Database technologies are often discussed in terms of 

Atomicity, Consistency, Isolation, and Durability 

(ACID) compliance [Gray 1981]. Atomicity means a 

transaction is all or nothing. Consistency means any 

transaction leaves the database in a valid state. Isolation 

ensures that concurrent transactions give the same 

results as if the transactions were executed serially. 

Durability requires that a committed transaction remains 

so regardless of crashes or other errors. While all these 

properties are desirable, the scale of big data presents 

significant logistical challenges and costs to retain these 

properties. As a result, it is common for many big data 

storage solutions to bend or break compliance with 

some or all of these properties. 

Traditional databases store data as rows of logical 

records. To save space, most database engines allow 

row compression, which adds a decompression 

overhead in retrieval. Several columnar databases, such 

as the Infobright database engine, use a column based 

storage format instead of storing rows of data. These 

engines promise better compression since each column 

is of the same the data type and good compression can 

be achieved. This is usually true for most data types 

except floats/doubles. Building data are typically 

floating point numbers which the authors have found to 

compress comparably to the row based engines. 

The authors used 15-minute EnergyPlus output 

consisting 35,040 records and comprised of 96 

variables in comma separated value files for testing 

compression. These files are about 35 MB in size which 

compress to about 7-8 MB indicating a 20-22% 

compression rate. Two hundred output CSV files were 

inserted into a row-compression enabled MySQL 

database resulting in 7 million records. The observed 

average compression was 10.27 MB. The database was 

further compacted to a read-only version which brought 

down the avaerage down to 6.8 MB. 

Traditional databases offers some advantages in storing 

channels of time series data. It is easier to calculate 

summaries of channels but the data insertion itself can 

become an expensive process. For example, in MySQL, 

using the default InnoDB engine, inserts take 

increasingly longer as the data size grows. Part of the 

reason is the increased overhead in maintaining indices 

and foreign keys. In contrast, the MyISAM engine is 

always much faster than InnoDB and achieves the 

performance by not enforcing foreign keys and 

therefore, not being fully ACID compliant. Table 1 

provides an illustrative comparison of the two engines. 

In addition to ACID compliance, structured query 

language (SQL) ALTER TABLE commands make a 

copy of the entire table first before making any changes 

to the table structure which can be quite expensive for 

large tables. Using table partitioning in the schema 

design helps to speed up the ALTER TABLE command 

as well as the overall performance. The authors 

experienced a runtime of 8 hours and 10 minutes on a 

386 GB table consisiting of 1,041,893,313 records 

stored in 12 partitions on a typical quad-core desktop 

computer with 4GB RAM. The same billion row table 

takes about a week on the ALTER TABLE command 

when unpartitioned. Although logical partitioning helps, 

it is still better to minimize any schema changes to large 

tables. 

Table 1: Comparison of MyISAM and InnoDB engines. 

MyISAM InnoDB 

No ACID ACID compliant 

No foreign keys Allows foreign keys 

Fast bulk insert 

  – 0.71 s average  

Slower 

  – 2.3 s average 

Better compression 

  – 10.27 MB average 

  – 6.003 MB read-only  

Poorer compression 

  – 15.4 MB 

 

232  maximum rows    

Error recovery from logs Rebuilds unflushed indexes  

Table-level locks Row-level locks 

Hadoop data storage removes the ACID compliance 

and leaves the schema description up to the user, which 

is why these are often called the schema-less engines. 

Hadoop emerged from Hadoop Distributed File System 

(HDFS) as a resilient form of data store where key-

value pair associations are used to create meaningful 

representation of the data. Although Hadoop is being 

used increasingly for various numerical applications, its 

most versatile use is still in text and information mining 

purposes. Hadoop also offers an eco-system of tools  for 

various analysis tasks. Mahaout is one such application 

that exposes machine learning algorithms for use.  

In the context of EnergyPlus output, an additional 

translation layer is necessary that converts the date-time 

expressions to either separate fields or forces to the 

date-time fields of the data store. In particular, 



   

 

EnergyPlus outputs the 24
th

 hour in the 24:00:00 format 

which must be rolled over to 00:00:00 on the next day 

to insert into a database. This requires line by line 

processing of the output file and thus the efficiency of 

bulk import functionality of databases is lost. 

Access control and security  

The sensor data collected is often sensitive and access 

restrictions must be placed on its use. Gatekeeping for 

large data, especially across multiple machines, is 

challenging. Multiple machines occupy more physical 

space with implications on physical security. 

Backups 

A less obvious challenge with big data are backups. It 

may becomes cost prohibitive to backup all the data. 

Unlike small units of data which can be copied or 

synchronized to another machine, big data across 

multiple machines requires elaborate backup plans. 

Tape is still a cost-effective, long-term backup 

mechanism for both full and incremental backups. 

Table 2: Runtime and disk write time of EnergyPlus 

simulations for variations of DOE’s commercial 

reference buildings on the Titan supercomputer. 

Num of 

Processors 

Time 

(mm:ss) 

Data 

Size 

Number of E+ 

simulations 

16 18:14 5GB 64 

32 18:19 11GB 128 

64 18:34 22GB 256 

128 18:22 44GB 512 

256 20:30 88GB 1,024 

512 20:43 176GB 2,048 

1,024 21:03 351GB 4,096 

2,048 21:11 703GB 8,192 

4,096 20:00 1.4TB 16,384 

8,192 26:14 2.8TB 32,768 

16,384 26:11 5.6TB 65,536 

65,536 44:52 23TB 262,144 

131,072 68:08 45TB 524,288 

 Provenance 

Sensor data and simulation data are manipulated during 

user experiments/analysis. Data undergoes creation, 

trnasformation, modification, and even deletion. It 

participates with various other units of information to 

create more information. Often, it is highly desirable to 

know the lineage, or provenance, of the data.  

Mechanisms to track and trace the provenance of data 

become essential as data size grows. The team have 

created a software sytem that transparently allows the 

tracking of the use of sensor data in various user 

experiments [Zachary 2014, Castello 2014].  

Workflow tools 

Working with big data is almost always a multi-step 

process and involves the management of shifting 

bottlenecks. It is critical to design automated workflow 

tools to help in working with big data. Often these are 

scripts that automate large batch processes. Knowledge 

of parsing and scripting helps in these automation tasks. 

CASE STUDY: RUNNING A LARGE 

PARAMETRIC ENSEMBLE 

A large parametric experiment was conducted for 

calibration purposes that ran about 3.5 million 

EnergyPlus simulations generating over 200 TB of data 

on different computing resources. A total of four types 

of residential and commercial buildings were simulated: 

a. Residential: Two heavily instrumented residential 

building having more than 150 sensor channels each 

were sampled using Uniform sampling, Markov 

Orders 1 and 2, and Latin Hypercube strategies and 

totaled about 500,000 individual simulations. 

b. Commercial: ~1 million simulations each of medium 

office, warehouse, and stand-alone retail reference 

buildings of three vintages across 16 ASHRAE 

climate zones. A single job for a subset of these 3 

million simulations is shown in Table 2.   

Several supercomputers were used to run such a large 

number of simulations. Systems include Nautilus, a 

1024 core shared memory supercomputer, Frost, a 2048 

core cluster, and Titan, which is a 299,008 core 

distributed memory supercomputer.  

In this case study, 96 EnergyPlus outputs were chosen 

in the residential and commercial buildings which 

closely corresponded either to sensor data from the real 

residential building or to sensor data we believe to be 

most likely available in commercial buildings. This data 

was collected at 15-minute timesteps for each 

simulation and typically resulted in 10-

90MB/simulation. 

A central challenge in running EnergyPlus on 

supercomputers was to optimize the input and output so 

that the overall system performance would not degrade. 

This was achieved through four strategies: grouping and 

packing up (via tar) the input *.idf files to minimize 

number of concurrent reads, streamlining and 

customizing the EnergyPlus workflow, running the 

simulations from a memory mounted file system local to 

each supercomputer node (via tmpfs [Snyder 1990] and 



   

 

RAMDisk [Flouris 1999]), and packing up all output 

(via gzip) on each node to one compressed file [Sanyal 

2014]. Use of  memory mounted file systems was a 

critical breakthrough in alleviating the performance 

limitations. In such a system, a path is used for file 

reading and writing, but is actually operating from 

random access memory (RAM) rather than disk; this 

alone lead to a performance improvement of over 20x 

for file I/O. 

The conventional approach in scaling up code to run in 

parallel on supercomputers is to double the number of 

processors and either observe improvement in runtime 

(strong scaling), or to double the problem size also and 

observe any change in execution time (weak scaling).  

Table 2 illustrates the runtimes and the number of 

simulations executed in our weak scaling scenario. 

The last row in the table illustrates that it took 68 

minutes to run 524,288 simulations and write 45 TB to 

disk. Each processor in the ensemble ran 4 EnergyPlus 

simulations back to back which executes in under 20 

minutes. With all processors running in tandem, all 64 

simulations on each node complete in 20 minutes. This 

means that 48 minutes was spent in reading and writing 

to storage! It may be argued that any further analysis on 

the output will require a comparable read time. Since a 

bulk of the time spent is in writing to disk, we could 

potentially re-run the simulation and analyze the data 

while still in main memory (in-situ) and would require 

only a small fraction of the 48 extra minutes to write 

just the relevant analysis results to disk. 

This tipping point is different for different simulation 

I/O and the computer system employed, but it has been 

demonstrated that it can be cheaper to re-run the 

analysis than store the data. This was demonstrated on a 

supercomputer, but may be equally applicable when 

running simulation data on a laptop and outputting large 

amounts of high-fidelity data to disk. 

Re-running the simulation, however, does bring us back 

to the consideration of optimizing for what we want to 

analyze and the computational requirements for the 

analysis. Running large simulations with in-situ 

processing might be less expensive than storing and re-

reading all the output, but can quickly add up if we have 

to repeat the simulations a few times. Carefully 

designing the analysis can mitigate such scenarios. 

CONCLUSION 

The paper presented various big data management 

challenges that the authors faced when running large 

EnergyPlus ensemble simulations and storing the 

output. Practical considerations for effectively 

managing large amounts of sensor data and simulation 

output, such as considerations of data compression, 

database technologies, data movement, and analysis 

driven hardware considerations were presented along 

with observed quantitative metrics for comparison 

between systems.  

It is hoped that the practical experience presented in the 

paper will be beneficial to the building sciences 

community as cheap computing power and the 

availability of fine-resolution multi-channel sensor data 

becomes commonplace.  
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