
This manuscript has been authored by UT-Battelle,

LLC under Contract No. DE-AC05-00OR22725 with

the U.S. Department of Energy. The United States

Government retains and the publisher, by accepting

the article for publication, acknowledges that the

United States Government retains a non-exclusive,

paid-up, irrevocable, world-wide license to publish or

reproduce the published form of this manuscript, or

allow others to do so, for United States Government

purposes. The Department of Energy will provide

public access to these results of federally sponsored

research in accordance with the DOE Public Access

Plan(http://energy.gov/downloads/doe-public-access-

plan).

THE MODBUS DEFINITION LANGUAGE SPECIFICATION: 1

A FIRST STEP TOWARDS DEVICE INTEROPERABILITY 2

 3

Jibonananda Sanyal, Joshua New, James Nutaro, David Fugate, Teja Kuruganti

4

Building Technologies Research and Integration Center 5

Oak Ridge National Laboratory, Oak Ridge, TN - 37831, USA 6

 7

 8

 9

 10

ABSTRACT

This paper describes the eXtensible Markup

Language (XML) Schema Definition (XSD) for

interoperability of Modbus devices. This system uses

a common set of XML elements to describe Modbus

input and output functions. The goal of the developed

technology is to facilitate the rapid, cost-effective

retrofit integration of building automation systems by

exposing the functions of sensors, actuators, and

other data sources through a uniform software

interface. Such interoperability facilitates close

monitoring of building performance and software-in-

the-loop simulation of building energy consumption.

The XML Schema is discussed in detail. In addition,

two key software utilities, a comma-separated value

(CSV) file parser and a device driver generator, are

discussed. These helper utilities significantly reduce

the barrier to commercial deployment of

interoperable Modbus devices.

INTRODUCTION

A key challenge in retrofitting small and medium

commercial buildings is the integration of legacy

sensors, actuators, and other automation devices with

new, increasingly integrated, whole-building control

solutions. Integrating legacy assets into these modern

architectures can be costly if the legacy system

comprises more than a handful of devices. Well-

integrated sensors play a crucial role in supplying

sensor data to simulation models for calibration

purposes and for testing software in retrofit solutions.

The integration cost has two parts: discovering what

devices and interfaces are available for use, and

building the custom software needed to connect

existing devices within the integration framework.

Advanced control of HVAC units alone has the

potential to reduce whole-building energy

consumption by up to 10% (0.5-1.7 of the 17 quads

of energy consumed by US commercial buildings)

(Bengea 2012, TIAX 2005, Wang et al., 2012). The

potential of energy savings by better simulation

driven control of other building equipment is also

significant. By making retrofits cost-effective for

building owners, the proposed technology will

accelerate the transformation of these potential

energy savings into actual energy savings.

A key challenge in retrofitting small and medium

commercial buildings is the integration of legacy

sensors, actuators, and other automation devices with

new control solutions. The problem of generating

device drivers that bind legacy devices to an

integration architecture is a less often cited but

nonetheless significant driver of cost in retrofitting

buildings with new controls. This cost is due to the

recurring need for new device drivers to bind new

devices to the automation system. Because of the

large variety of devices on the market, their

numerous variations, and their constantly expanding

numbers, a steady stream of new device drivers is

necessary to make any integration solution practical

and cost-effective.

The goal of the developed technology is to facilitate

rapid, cost-effective retrofit integration of building

automation systems by exposing the functions of

sensors, actuators, and other data sources through a

uniform software interface. This will reduce costs by

eliminating custom software for integrating legacy

devices and by enabling more comprehensive testing

of control software by facilitating the creation of

modelled devices for software-in-the-loop

simulations.

We present a Modbus Definition Language (MDL)

specification that defines a standard representation

for Modbus device register maps. This allows

automated generation of device driver software for

Modbus devices, thereby reducing the cost associated

with building software to integrate these devices into

an integration framework. The MDL is defined by an

eXtensible Markup Language (XML) Schema

Definition (XSD) that can replace the human-

oriented documentation presently supplied by device

vendors with a standardized documentation format

suitable for automatic processing. This paper

describes the proposed schema for describing a

device and how device driver code is automatically

generated from an MDL file to enable programmatic

communication with the device.

The technology described in this paper is the first

major step toward significantly reducing the cost of

retrofitting small and medium commercial buildings

with advanced controls by allowing equipment

vendors to inexpensively and retroactively provide

information required for rapid device driver

generation for customers. There are also other efforts

on data dictionary and data models in building

systems that can be leveraged in integrated tool

development (BEDES, Haystack).

The rest of the paper is organized as follows: we first

describe work related to interoperability facilitating

software-in-the-loop simulation; Next we describe

the seamless interoperability framework; provide a

full specification of the Modbus Definition

Language; define the helper utilities that convert

current business practices to the new specification;

and conclude with a summary and future

considerations.

SIMULATION FOR TESTING

Software-in-the-loop simulation is a technique for

testing software systems that interact with physical

equipment. This testing technique can significantly

reduce the cost of testing while simultaneously

increasing test coverage (U.S. Congress, 1995). This

happens in two ways.

First, software-in-the-loop simulation enables

comprehensive testing early in the software lifecycle,

before hardware is typically available. Second, by

enabling testing activity to take place against

simulated equipment, which can be duplicated as

needed, it is possible to run more tests than would be

possible using relatively scarce hardware resources.

A central part of software-in-the-loop testing is the

interfaces to simulated equipment, which must be

indistinguishable from the real equipment to the

software under test. If every such interface is unique,

then the creation and maintenance of models for

equipment grows in proportion to the number of

devices that must be considered even when their

logical functionality is identical; for instance, as

would be the case if the control software needed to

interact with two different temperature sensors.

By standardizing interfaces to logically identical

functions, the cost of building simulated

environments for testing is reduced in proportion to

reduction in the number of interfaces. The proposed

MDL addresses this problem by making it feasible

for a standard interface description to be retroactively

applied to legacy equipment.

SEAMLESS INTEROPERABILITY

An automated device interoperability framework

functions by providing a discoverable, common set

of expressive conventions that allow one to

communicate with available devices. An integration

architecture coordinates communication between the

supervisory control and individual device interfaces.

An important, practical piece of the developed

framework is automatic generation of device drivers

from a device description expressed in the MDL

format.

The framework specification facilitates the automatic

generation of device drivers and capability

information that may be retrieved by a device

discovery service and/or device description template.

When information is incomplete regarding the

capabilities of a Modbus device, the skeleton of a

device driver is generated to enable partial

functionality for the device as well as reduce the

labor required to produce a complete device driver.

Figure 1 illustrates the interoperability framework

that allows device-discovery and a common device

interface for seamless communication with multiple

devices. A top-level supervisory control layer allows

execution of whole-building control algorithms that

can use simulation as well as real-time input to

control the building performance. The integration

architecture is middleware that exposes a common

device interface as well the communication

mechanisms for individual device control.

Figure 1: Seamless interoperability framework.

MODBUS XML SCHEMA DEFINITION

The Modbus XML scheme is expressed in the form

of a standard XML Schema Definition (XSD) (Bray

et al, 1998). An XSD is a recommendation of the

World Wide Web Consortium (W3C) and specifies

how to formally describe the elements in an

Extensible Markup Language (XML) document. The

XSD can be used by programmers to encode and

validate XML files to ensure that they adhere to the

XSD specification.

XSD Organization

At a high level, the XML Schema Definition (XSD)

has a single root element representing the Modbus

device. It consists of the device name, description,

and a set of functions organized as an xs:group.

The xs:group consists of XML elements that

represent read, write, or both read-write functionality

of the registers.

Modbus device vendors typically supply register

tables that list device addresses and their

corresponding functionality. The XML schema is

designed based on the functionality supported by the

device. As such, the developed XSD proposes a

functional listing for a device rather than the more

conventional table of registers. Expressing a list of

functions of the Modbus device allows for a higher

level of abstraction than can be used by programs and

tools that focus solely on register-level capabilities.

The register address and other information to “read

from” or “write to” a device are all encapsulated in

the xs:element representing the corresponding

function. The XSD abstracts the data types for each

of the constituent elements of functions. This allows

for flexibility in enforcing proper XML syntax while

enabling greater flexibility in managing changes as

this specification evolves to different market

requirements.

The following sections describe the different parts of

the XML schema in more detail. A TEMCO ModBus

device is used as a candidate example (Temco,

2015).

XML Namespaces

The XSD starts by specifying the XML version and

the supported encoding format. Currently, only US-

ASCII characters are supported. The

targetNamespace and an XML namespace of

xmlns:mdl are defined for the rest of the document.

Figure 2: Namespace elements used for XML

validation

Device Definition

The namespace elements are followed by the root

element, which is the anchor point for the entire

schema and corresponds to the Modbus device being

described. The root element consists of a name
element, a description element, and refers to an

xs:group named modbus_functions. Both the

name and description elements have custom data

types which are described later and both are required

elements. The modbus_functions group may

occur at most once in the body of the device element.

Figure 3: The highest-level XML element

representing a Modbus device.

Modbus Function Group

The modbus_function group is an xs:group which

encapsulates a sequence of Modbus function

elements. Each element in the sequence is an instance

of the data type mdl:function_type which
describes a function of the Modbus device.

Figure 4: A group of functions allows Modbus

devices to support communications for sensing and

control.

Data Types

All elements use a derived data type which allows

one to enforce explicit rules on acceptable element

values. This design also allows flexibility with

respect to future schema changes. The following are

the various xs:element data types in the schema.

Function Type Definition:

The function_type encapsulates a read, write, or

a read-write element of the schema and is a

fundamental XML element which encapsulates a

specific capability of the Modbus device. An

xs:sequence of function_type instances are used

to define the modbus_functions entry for a

device. The function_type is an

<!-- definition of Modbus function group -->

<xs:group name="modbus_functions">
 <xs:sequence>
 <xs:element name="function"

 type="mdl:function_type"
 minOccurs="0"
 maxOccurs="unbounded"
/>

 </xs:sequence>
</xs:group>

<!-- definition of device -->
<xs:element name="device">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name"

type="mdl:name_type"
minOccurs="1"
maxOccurs="1" />

 <xs:element name="description"
 type="mdl:description_type"

minOccurs="1"
maxOccurs="1" />

 <xs:group
ref="mdl:modbus_functions"
minOccurs="0"
maxOccurs="1" />

 </xs:sequence>
 </xs:complexType>
</xs:element>

<?xml version="1.0" encoding="US-ASCII"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://www.ornl.gov/
 ModbusXMLSchema"
 xmlns:mdl="http://www.ornl.gov/
 ModbusXMLSchema"
>

xs:complexType and constitutes of a sequence of

the following elements:

i. Required name element of mdl:name_type

ii. Required description element of

mdl:description_type

iii. Required list of register addresses of

mdl:address_list_type. It is an optional

element and multiple values must be separated

by spaces.

iv. Length element of mdl:length_enum_type

describing the word length of the register. This is

an optional entry and defaults to Full word.

Other possible values are Lower byte or

Upper byte.

v. Count element of mdl:count_type describing

the number of length elements for the register.

It is an optional element and defaults to 1.

vi. Format element of mdl:format_enum_type
describing the type of native data type of the

register. It is an optional element and defaults to

INT8. Other possible values are INT16,
FLOAT16, and FLOAT32.

vii. Block label of mdl:block_label_type
describing register groups. Some vendors

commonly group registers into named

categories. It is an optional element that may

occur any number of times.

viii. Multiplier element of mdl:multiplier_type
which is used by the code generator as a scaling

factor in the absence of a verbose read or write

function description. It is optional and defaults to

a value of 1.0.

ix. Units element of mdl:units_type describing

the unit of measure, if applicable. It is an

optional element.

x. Read capability of

mdl::read_function_typedescribing the

read functionality used by the code generator to

create the device driver. It is an optional

element.

xi. Write capability of

mdl::write_function_typedescribing the

write functionality used by the code generator to

create the device driver. It is an optional

element.

The optional read and write function types are

xs:simpleType elements which allows only a

string value. Ideally, this is the C code that must be

embodied and used in the driver generation. This

fragment must be syntactically complete except for

the definition of the register variables and the return

argument variable. Those are defined by the format

elements occuring previously.

Figures 6 and 7 illustrate an example of the

mdl::read_function_type. In this example, a

fragment of C code converts the register values into a

data item that is useful to an application. The register

variables are of type uint16_t and are named r1,
r2, r3, etc. The return argument variable has the

name arg. The code divides the register number

1value by 10 and returns the result as a floating point

number.

Figure 5: The primary descriptors required for

generating drive code for a Modbus device.

SUPPORTING UTILITIES

A device can be described by manually creating an

MDL instance which describes the registers and

allowable data values for a device; however, this can

be tedious and error-prone for device vendors. To

streamline the generation of these XML files,

software is provided that enables automated

<!-- definition of a function type -->
<xs:complexType name="function_type">
 <xs:annotation>
 <xs:documentation xml:lang="en">
 <p>This element contains the
 description(s) of data item(s) by
 functionality of the device.</p>
 </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name"

 type="mdl:name_type"
 minOccurs="1" maxOccurs="1"/>

 <xs:element name="description"
 type="mdl:description_type"
 minOccurs="1" maxOccurs="1"/>
 <xs:element name="addresses"

type="mdl:address_list_type"
minOccurs="1" maxOccurs="1"/>

 <xs:element name="length"
 type="mdl:length_enum_type"
 minOccurs="0" maxOccurs="1"
 default="Full word"/>

 <xs:element name="count"
 type="mdl:count_type minOccurs="0"
 maxOccurs="1" default="1"/>

 <xs:element name="format"
type="mdl:format_enum_type"
minOccurs="0" maxOccurs="1"
default="INT8"/>

 <xs:element name="block_label"
 type="mdl:block_label_type"
 minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="multiplier"
 type="mdl:multiplier_type"
 minOccurs="0" maxOccurs="1"
 default="1.0"/>

 <xs:element name="units"
 type="mdl:units_type"
 minOccurs="0" maxOccurs="1"/>
<xs:element name="read_function_code"
 type="mdl:read_function_type"
 minOccurs="0" maxOccurs="1"/>
<xs:element name="write_function_code"
 type="mdl:write_function_type"
 minOccurs="0" maxOccurs="1"/>

 </xs:sequence>
</xs:complexType >

transformation of standard device register map tables

in comma separated value (CSV) format to MDL.

First, a Python-based CSV parser translates a

vendor’s device register tables into a prototypical

XML file that describes the device and its

functionality. Second, a C++ device driver generator

creates device drivers from the XML file that allows

programmers, or software applications, to easily read

from or control each device.

The conversion from device register maps to driver

code involves the following 2-step process:

Step 1: Conversion of register maps to MDL-

compatible XML files. The register maps, commonly

expressed in a tabular manner as a CSV file, can be

read into a Python program which creates an XML

file adhering to the MDL schema. This is illustrated

in Figure 8.

Step 2: Generation of driver code. The MDL-

compatible XML file is read by a device driver

generator code to create C++ source code for reading

and controlling the device. This is illustrated in

Figure 9.

Figure 6: The definiton of read functionality element

in the XSD.

Figure 7: An example of a C code snippet that will be

used in the device driver generation.

CSV Parser

The CSV parser is a Python script that reads in a

device INI-style file that specifies the specific

parameters it needs to successfully generate an MDL-

compatible XML. The INI file supplies an initial list

of functional keywords compiled from multiple

devices and vendors. This file is used by the parser to

search a register table for keyword matches. As an

example, reading and writing the temperature set

point for a thermostat device is fairly common.

Therefore, the algorithm searches for all instances of

‘temperature’ in a manufacturer’s spreadsheet to

determine a possible data item that should be read or

written to by a device driver. For exact matches, the

script uses values in fields (such as address, length,

count, etc.) to create an XML entry for the Modbus

function. However, it is impossible to have a

completely consistent nomenclature across all device

manufacturers. Partial matches are common. In such

situations, it calculates a similarity ratio using the

Python difflib SequenceMatcher algorithm (Python

difflib, 2015) to make a best guess at what each

device’s functionality is and how it corresponds to

known/traditional functionality.

The script may be run interactively or non-

interactively. In interactive mode, the script provides

a sorted listing of the closest matches and allows the

user to determine which field in the manufacturer’s

device spreadsheet corresponds to the field required

by the device’s XML data description. In the non-

interactive mode, the script uses what it has

algorithmically determined to be the closest match.

The device INI file contains meta-information, I/O

functionality information, column indices for lookup

of required fields, list of synonyms for exposed

functionality, and additional user-defined columns

for extending programming logic within the script.

The list of synonyms is fundamental in automating

the matching of functionality to keywords in the

process of generating MDL-compatible XML for a

given device.

Device Driver Generator

The device driver generator ingests an MDL-

compatible XML file. This file is extremely verbose

and contains vendor supplied code snippets that show

precisely how to utilize the device’s functionality.

The output of the device driver generator is a

<device_name>.h and <device_name>.cc files. This

is a fully automated process and requires no

interactive human guidance.

CONCLUSION

The paper presents an XML based Modbus Defintion

Language and automatic driver generation

framework to facilitate rapid, cost-effective retrofit

integration of building automation systems by

exposing the functions of sensors, actuators, and

other data sources through a uniform software

interface. This enables new and existing device

discovery protocols that can overlay legacy

technologies, with varied communication protocols

interfaces, and be incorporated into new services

which can read and control multiple Modbus devices.

This paves a path twoards building interoperable

solutions that can be retrifit in existing building for

improving energy efficiciency. The XML schema

offers a standardized technique for device

enumeration. It is anticipated that the XML schema

described here will be used by device vendors to state

the functionality of their devices. The expected

benefits of adoption are many and range from

increased penetration of whole building control

systems for inproved building performance to fine-

grained individualized control of devices using data-

driven approaches.

<read_function_type>
 arg = (float)r1/10.0f;
</read_function_type>

<xs:simpleType name="read_function_type">
 <xs:restriction base="xs:string"/>
</xs:simpleType>

Spec sheet Python translator XML

Parser

XML file
Register table

Figure 8: Logical representation of the CSV parser to MDL-compatible XML file

Device Driver Generator

Figure 9: Logical representation of the device driver is validated and then used to generate

C++ driver code for communicating with the device.

XML Validation

Code Generation

C++ header

C++ sources

XML file

ACKNOWLEDGEMENT

This manuscript has been authored by UT-Battelle,

LLC under Contract No. DE-AC05-00OR22725 with

the U.S. Department of Energy. The United States

Government retains and the publisher, by accepting

the article for publication, acknowledges that the

United States Government retains a non-exclusive,

paid-up, irrevocable, world-wide license to publish or

reproduce the published form of this manuscript, or

allow others to do so, for United States Government

purposes. The Department of Energy will provide

public access to these results of federally sponsored

research in accordance with the DOE Public Access

Plan (http://energy.gov/downloads/doe-public-

access-plan). The authors would also like to

acknowledge the U.S. Department of Energy, Office

of Energy Efficiency and Renewable Energy’s

Building Technologies Office for funding this work.

REFERENCES

BEDES. Building Energy Data Exchange

Specification (BEDES), US DOE,

http://energy.gov/eere/buildings/building-

energy-data-exchange-specification-bedes,

Accessed 14 May 2015.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler,

E., & Yergeau, F. (1998). Extensible markup

language (XML). World Wide Web Consortium

Recommendation REC-xml-19980210.

http://www. w3. org/TR/1998/REC-xml-

19980210, 16.

Bryan Gorman and David Resseguie. Final Report:

Sensorpedia Phases 1 and 2. SERRI Report 10-

89950-1. May 2010.

Haystack, Project Haystack, http://project-

haystack.org/, Accessed 14 May 2015.

Liping Wang, Steve Greenberg, John Fiegel, Alma

Rubalcava, Shankar Earni, Xiufeng Pang,

Rongxin Yin, Spencer Woodworth, Jorge

Hernandez-Maldonado, Monitoring-based

HVAC commissioning of an existing office

building for energy efficiency, Applied Energy,

Volume 102, February 2013, Pages 1382-1390.

Python difflib. 2008. Helpers for computing deltas,

https://docs.python.org/2/library/difflib.html,

Accessed 14 May 2015.

Sorin C. Bengea, Anthony D. Kelman, Francesco

Borrelli, Russell Taylor, and Satish Narayanan.

“Model Predictive Control for Mid-Size

Commercial Building HVAC: Implementation,

Results and Energy Savings.” The Second

International Conference on Building Energy

and Environment (COBEE2012), August 1–3,

2012

Stephen Dawson-Haggerty, Xiaofan Jiang, Gilman

Tolle, Jorge Ortiz, and David Culler. “sMAP—A

Simple Measurement and Actuation Profile for

Physical Information.” SenSys’10, November 3–5,

2010.

Temco Controls, http://www.temcocontrols.com/,

Accessed 14 May 2015.

TIAX 2005. Energy Impact of Commercial Building

Controls and Performance Diagnostics: Market

Characterization, Energy Impact of Building

Faults and the Energy Savings Potential, TIAX

Report D0180 for US Department of Energy

Contract 030400101, November 2005.

U.S. Congress, Office of Technology Assessment,

1995, Distributed Interactive Simulation of

Combat, OTA-BP-ISS-151, Washington, DC:

U.S. Government Printing Office.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

