
ACM Mid-Southeast Chapter Fall Conference, 2002 

A Method for Hand Gesture Recognition 
 

Joshua R. New 
Knowledge Systems Laboratory 

Mathematical, Computing and Information Sciences Department 
Jacksonville State University 

newj@ksl.jsu.edu 

 Abstract - Ongoing efforts at our laboratory have been 
aimed at developing techniques to reduce the complexity 
of interaction between humans and modern computer 
systems.  As an example of these efforts, we have 
investigated the use of gesture recognition to allow more 
natural user interaction while still providing rich 
information content.  In this paper, we present a real-time 
gesture recognition system which can track hand 
movement, orientation, and recognize the number of 
fingers being held up.  This modularized system utilizes 
single-image processing techniques for noise reduction, 
hand segmentation, arm removal, hand movement 
calculations, orientation calculation, and a heuristic 
approach to finger-counting.  With these capabilities in 
place, it is straight forward to utilize hand gestures to, for 
example, control a user interface.  By supporting a more 
natural interface modality and utilizing only common 
hardware and software components, human-computer 
interaction can be simplified while also enriched.  Sample 
images, results, and benchmark tests are presented. 

2 Methods 
The system was developed using the Visual C++ compiler 
with the Image Processing Libraries (IPL) and Open 
Computer Vision (OpenCV) library from Intel.  These 
libraries contain special image-processing functions which 
utilize nuances of Pentium chip architectures to ensure 
efficient computational performance. 
 
2.1 Saturation Channel Extraction 
A digital camera was used to capture images of a hand in 
several positions (top/bottom, left/middle/right).  These 
images were saved as high-resolution JPGs.  Since most 
cameras capture a max of 640x480 images at 30 frames 
per second (fps), the JPGs were reduced to a resolution of 
640x480 and saved as PPMs.  The saturation channel was 
then extracted from these images and stored as PGMs.  
The saturation channel has been shown in many research 
papers to be a good choice for gesture recognition 
systems, especially when the lighting conditions are stable 
[2, 3].  Figure 1 shows an original 640x480 PPM and its 
corresponding hue, saturation, and lightness/intensity/ 
value channels. 

Keywords: Gesture recognition, machine vision, 
computer vision, image processing. 

1 Introduction  
As today’s computer systems grow increasingly complex, 
there arises a need to increase the capability in which 
humans may interact with these computer systems.  
Computer vision techniques have been applied toward this 
area in which the computer system processes image input 
from a camera to gain information about the user’s 
desires.  This technique has proven itself as a very 
effective augmentation to standard input devices such as 
the mouse and keyboard [1].  Kjeldsen’s thesis was used 
throughout the system design process as an inspirational 
guide.  Since this approach requires no additional 
encumbrance, computer vision allows information to be 
gathered without being intrusive. 
 The gesture recognition system developed is a real-time 
system which allows the tracking of hand movements as 
well as the number of fingers being held up by the user.  
This system is a step toward developing a more 
sophisticated recognition system to enable such varied 
uses as menu-driven interaction, augmented reality, or 
even recognition of American Sign Language. 

 

Hue 

Lightness 

Saturation 

Figure 1.  Hue, Saturation, and Lightness channels 
extracted from a color image 

 
2.2 Threshold Saturation Channel 
Once the saturation channel has been extracted, a 
threshold is applied to create a new image.  This choice 
was made because it has been found that few objects in 

mailto:newj@ksl.jsu.edu


the real world are as highly saturated as human skin tones.  
Thus, even in a relatively noisy environment, nature 
makes a way for human skin to be easily segmented within 
an image.  However, drastic changes in lighting can have a 
negative impact on segmentation quality. 
 In the system developed, a threshold value of 50/255 
was found to capture most of the hand with a tolerably 
small amount of noise.  The values at or above the 
threshold value were changed to 128 and the others were 
set to 0 via the following equation: 
 
@ PixelValue = PixelValue ≥ 50 ? 128 : 0  (1) 
 

 
Figure 2.  Saturation channel before and after threshold is 
applied  
Figure 2.  Saturation channel before and after threshold is 
applied  

  
2.3 Calculate Centroid 2.3 Calculate Centroid 
The centroid, or center of mass, was calculated for the 
resultant threshold image.  This was done by using the 
customary 0th and 1st moments of the image.  The 0th 
moment of an image is defined as: 

The centroid, or center of mass, was calculated for the 
resultant threshold image.  This was done by using the 
customary 0th and 1st moments of the image.  The 0th 
moment of an image is defined as: 
  

∑∑= ),(00 yxIM ∑∑= ),(00 yxIM               (2)               (2) 
  
The first moments of an image, for x and y respectively, 
are defined as: 
The first moments of an image, for x and y respectively, 
are defined as: 
  

∑∑ ∗= ),(10 yxIxM ∑∑ ∗= ),(10 yxIxM             (3)             (3) 

∑∑ ∗= ),(01 yxIyM ∑∑ ∗= ),(01 yxIyM             (4)             (4) 
  
The centroid of an image is defined as: The centroid of an image is defined as: 
  

),( cc yx ),( cc yx  where  where 
00

10

M
M

xc = and 
00

01

M
M

yc =    (5) 

 
where 

 rgetValueta
Otherwise

pixelValueif
yxI

=





=
0
1

),(

 
2.4 Reduce Noise 
Once the centroid has been computed, a Flood-Fill is 
applied to the image at that location.  This operation acts 

centroid and are of the same value, to another value.  In 
this way, all unconnected noise can be relatively 
suppressed.  A threshold could then be applied to 
eliminate all noise. 
 In the system deve

to change the pixel value of all pixels connected to the 

loped, the thresholding operation was 

.5 Remove Arm from Hand 
here is a problem 

for 

 
Figure 4.  Image before and after bounding box is applied 

.6 Calculate Refined Centroid 
m the arm, a 

withheld to a later processing stage in order to save 
processing time.  All 128-valued pixels connected to the 
centroid were converted to 192. 
 

 
age before and after Flood-Fill at the Figure 3.  Im

centroid 

 
2
In several gesture recognition systems, t
with the arm playing an unwanted role in the process of 
gesture recognition.  Some researchers address this issue 
by having the users where long-sleeved shirts in order to 
keep the arm from being segmented with the hand [4].  In 
order to circumvent such user restrictions, a heuristic 
method was used to segment the hand from the arm. 
 In the current system, a bounding box was computed 
the 192-valued pixels by finding the topmost and leftmost 
pixels of the target value in the image.  A box of black 
pixels is then written using the calibration measure of 
hand size, effectively drawing a line at the wrist.  A 
Flood-Fill is then applied at the centroid to turn all 192-
valued pixels to 254. 
 

to the hand and Flood-Fill at the centroid to separate the 
arm from the hand 

 
2
Once the hand has been segmented fro
threshold is applied to the image in order to remove all 
noise as well as the arm.  At this point, only pixels 
representing the hand should be remaining.  A refined 



centroid is then computed which represents the “true” 
location of the hand. 

 In this system, a finger is defined to be 10+ white pixels 
separated by 3+ black pixels, which function as 
salt/pepper tolerance, minus 1 for the hand itself.  This 
proved to be very effective for counting fingers in most 
cases, but thumb counting proved problematic since a 
widely extended thumb would be counted as part of the 
wrist. 

 In the system developed, 254-valued pixels were 
thresholded to 255.  The centroid for 255-valued pixels 
was then computed in the manner discussed previously. 
 

 

 

Figure 5.  Image before and after threshold is applied to 
remove noise; the circle was added only to enhance the 
location of the refined centroid 

 
Figure 6.  Original saturation channel and result after 
complete processing ; shows the arc swept out to count the 
fingers  

2.7 Calculate Orientation  
3 Results The orientation, or image major axis, of the hand is also 

calculated using the second moments of the image, for x 
and y respectively: The gesture recognition system developed was designed to 

run in real-time on 640x480 images, which translates to 30 
frames per second (fps).  The system was tested on various 
images on two computers.  The average results are shown 
in Table 1. 

 

∑∑ ∗= ),(2
20 yxIxM             (6) 

∑∑ ∗= ),(2
02 yxIyM             (7) 

 The current system takes 16.5 ms to completely process 
one frame on a 1.33 Ghz system (without reading or 
writing the ASCII pgm files which is slower than reading 
or writing Binary pgm files).  This translates to an 
effective processing of 60 fps, allowing future extensions 
to be made to the system while still being capable of 
running in real-time. 

 
where the orientation of the image is given by: 
 

2

2
arctan

2

00

022

00

20

00

11





























−−








−









−

=Θ
cc

cc

y
M
M

x
M
M

yx
M
M

  (8) 

 
 Example #1 Example #2 

I 
n 
p
u 
t 
# 
1  
   
I 
n 
p 
u 
t 
# 
2  
   

 
 This orientation measure was implemented in order to 
take into account rotations of the hand in the image.  That 
is, the current system only works when the hand is straight 
up or down.  However, the orientation measure was never 
verified to behave correctly or applied toward rotation-
independent gesture recognition. 
 
2.8 Count Fingers 
In order to count the number of fingers being presented, a 
heuristic approach was used which sweeps out a circle 
centered at the refined centroid and with a radius 
computed based on the calibration measures.  A good 
radius size for this circle was found to be: 
 

( )HandsizeYHandsizeXradius +∗= 17.    (9) 
 



O 
u 
t 
p 
u 
t 
 

4.2 Optimization 

 
 

Time (ms) Process 
Steps 

Athlon MP 1500 
(1.33 Ghz) 

Pentium III  
(850 Mhz) 

2.1) Saturation 
Extraction 

NA NA 

Reading Image 208 340 
2.2) Threshold .5 6.5 
2.3) Centroid 3.5 18.5 
2.4) Flood Fill 1.5 27 
2.5a) Bounding 
Box Top-Left 

3.5 5.5 

2.5b) Arm 
Removal 

2 34.5 

2.6) Refined 
Centroid 

4 19 

2.8) Finger 
Counting 

.5 1 

Write Image 233 324 

Time w/o R&W 16.5 112 
Time w/o Write 224.5 452 

Total Time 457.5 776.5 

While the current system is highly optimized through the 
use of OpenCV’s processor-dependent functions, other 
approaches could be used to accomplish the same function 
as those currently used.  For example, a largest connected 
component algorithm could be used instead of finding the 
center of mass and then flood-filling.  This would also 
allow for two hands to be used in the image while also 
being more noise tolerant. 

 
4.3 Orientation for Hand Registration 
The current system is capable of computing the orientation 
of the hand.  However, this measure has not been 
validated to be robust nor been used by other stages in the 
system such as application of the bounding box for arm 
removal.  The orientation of the hand is also an important 
variable for hand registration, which is required by a 
learning system. 
 
4.4 New Finger Counting Approach 
The finger counting approach utilized is a simple heuristic 
and is not robust, especially for thumb counting.  A better 
heuristic would be to count along a semicircle centered at 
the wrist in line with the orientation of the image major 
axis.  However, the best approach would be to add the 
capability of a machine learning system for gesture 
classification. 

 
4.5 Learning System 
A learning system is the next logical addition to the 
gesture recognition system.  Current approaches vary from 
recognition based on edge-detection to interior pixel 
values [4, 6].  A learning system would allow much more 
sophisticated gesture recognition capabilities. 

Table 1.  This table shows the  gesture system runtimes 
step-by-step for two computers 

  References 4 Future Work 
  [1] Kjeldsen, “Visual Interpretation of Hand Gestures as a 

Practical Interface Modality”, Ch. 6, Columbia University, 
1997. 

Many heuristic approaches were taken in the course of 
this work to ensure real-time performance.  Since there is 
still much time which could be utilized, many other 
capabilities and other sophisticated approaches could be 
used to enhance the current system. 

  [2] M. Störring, H.J. Andersen, E. Granum, “Skin Colour 
Detection Under Changing Lighting Conditions”, 7th 
Symposium on Intelligent Robotic Systems, Coimbra, 
Portugal, 1999, 187-195. 

  [3] M. Soriano, B. Martinkauppi, S. Huovinen, M. Laaksonen, 
“Skin Detection in Video Under Changing Illumination 
Conditions”, IEEE International Conference on Pattern 
Recognition, Vol.1, Barcelona, Spain, 2000, 839-842. 

4.1 Input Automation 
The current system’s automated processing begins by 
reading saturation channel images saved by the human 
operator.  A better approach would be to read memory 
straight from the capturing camera and automatically 
extract the saturation channel.  The saturation channel is 
simply a linear combination of the image’s RGB values 
[5]. 

  [4] Kjeldsen, “Visual Interpretation of Hand Gestures as a 
Practical Interface Modality”, Ch. 4, pg. 6, Ch. 3, pgs. 29-
36, Columbia University, 1997. 

  [5] L. Shapiro, G. Stockman, Computer Vision, pg. 196, 
Prentice Hall, 2001 

  [6] K. Yow, R. Cipolla, “Feature-Based Human Face 
Detection”, Cambridge University, 1996.  


	Introduction
	Methods
	Saturation Channel Extraction
	Threshold Saturation Channel
	Calculate Centroid
	Reduce Noise
	Remove Arm from Hand
	Calculate Refined Centroid
	Calculate Orientation
	Count Fingers

	Results
	Future Work
	Input Automation
	Optimization
	Orientation for Hand Registration
	New Finger Counting Approach
	Learning System

	References

