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Abstract —Biologists hope to address grand scientific challenges by exploring the abundance of data made available through microar-
ray analysis and other high-throughput techniques. However, the impact of this large volume of data is limited unless researchers can
effectively assimilate the entirety of this complex information and integrate it into their daily research; interactive visualization tools are
called for to support the effort. Specifically, typical studies of gene co-expression can make use of novel visualization tools that enable
the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters and achieving
data reduction. These tools should allow biologists to develop an intuitive understanding of the structure of biological networks and
discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of
correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner
provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph
layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic al-
gorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using
neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian
gene co-expression.

Index Terms —Visualization in physical sciences, life sciences and engineering, graph and network visualization, bioinformatics
visualization, focus+context techniques
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1 INTRODUCTION

Recent systems genetics research offers near term hopes in addressing
scientific questions long-deemed unapproachable due to their com-
plexity. Current research is uncovering how the genetic makeup of
an organism is associated with the organism’s traits on both molecular
levels, such as gene expression or protein abundance, as well as physi-
cal levels including body height or tendency toward alcohol addiction.
The systems genetics approach is a method to integrate data across all
levels of biological scale to uncover molecular and physiological net-
works from DNA to function. Novel computational tools are called
for to support the effort.

The central dogma [9] for genetic studies is that strings of infor-
mation known as genes are stored in the DNA sequence (genome) of
an organism, each gene can be transcribed into messenger RNA (i.e.
a transcript), and ultimately into proteins which affect the behavior
or morphology of the organism. This multi-step process by which
a gene’s sequence of nucleic acids (ATCG) is converted into mRNA
transcripts is known as gene expression. Gene expression directs the
process of cellular differentiation, in which specialized cells are gen-
erated for the different tissue types. The regulation of gene expression
(i.e. gene regulation) controls the amount and timing of changes to the
gene product. This is the basic mechanism for modifying cell function
and thereby the versatility and adaptability of an organism. Therefore,
gene expression and regulation function as a bridge between genetic
makeup and expression of observable traits.

Despite its vital importance, determining the precise roles of given
transcripts remains a fundamental challenge. This is due in large part
to the complex machinery employed for gene expression in which
some gene(s) may regulate the simultaneous transcription levels of
other genes. This regulation leads to statistically correlated, or co-
expressed, genes in which one gene is expressed at high levels only
when the other is as well. While collecting gene expression data al-
ready requires great technical sophistication and resources, the limited
functionality of current computational tools to discover structural pat-
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terns of co-expressed genes from the collected data presents another
grand challenge. Without an ability to efficiently and comprehensively
explore the problem space, full genome-scale gene expression data are
still of limited value for today’s hypothesis-driven research.

Genes act alone or in groups during the process of gene expression
and regulation. Biological pathways are defined by the connectivity of
upstream and downstream effects of genes and gene products, includ-
ing their action in the regulation of the expression of other genes. The
search for genes co-expressed in a common group, which likely affect
observable traits as a functional unit, often starts with using microarray
technology to profile transcript abundance. A microarray is a device
containing microscopic DNA probes and is capable of measuring the
expression levels from thousands of genes for a given sample [11].
From microarray data, biologists can statistically construct massive
correlation matrices that describe pair-wise gene co-expression. The
key challenge then is the representation, decomposition, and interpre-
tation of this genetic correlation matrix.

By treating the correlation matrices as adjacency matrices, it is natu-
ral to consider correlations of gene expression in the setting of a graph,
where vertices represent genes and edges represent the strength of cor-
relation between pairs of genes. In this analogy, a group of genes that
co-express would necessarily form a network or subgraph consisting
of “highly correlated” genes.

Although it seems straightforward to directly apply classic graph al-
gorithms to discover those highly correlated subgraphs, this approach
by itself is not sufficient. Many common graph problems such as
clique finding are NP-complete. Even for moderately sized problems,
the computation time is still often overwhelming. Hence, to ensure that
problems are computationally tractable, the current practice is to apply
data filtering steps to dramatically reduce the density of the graph and
dimensionality of the data. The value of key parameters, such as cor-
relation threshold, is often decided by an educated guess based on the
data size, algorithmic complexity, and the hardware available. Unfor-
tunately, picking a slightly different threshold often eliminates many
of the subtly important correlations and thereby drastically changes
the solutions of graph algorithms.

In addition, scientists in many cases cannot exactly define the term
“highly” with rigor as it is a qualitative criterion with uncertainty. The
uncertainty aspect is further exacerbated by the noise present in current
microarray data, inaccuracies introduced during data collection, and
residual errors in subsequent statistical analyses. To date, it has been
hard for scientists to evaluate the true value of gene co-expression as
well as the sensitivity of an “optimal” result computed using expensive



graph algorithms.
In this work, we designed a visualization system to provide do-

main scientists with tools to evaluate the validity and sensitivity of key
parameters in their research hypotheses. By allowing realtime feed-
back of connectivity, determination of biological relevance is facili-
tated by allowing more thorough analyses of their empirical data. Our
main effort focuses on providing interactivity from a number of fea-
tures beyond fast rendering rates. A user can interactively explore and
filter the data to create meaningful subgraphs by leveraging four com-
plementary methods: (i) semi-automatic segmentation of highly cor-
related subgraphs with a 2D focus+context graphical user interface
segmented using block tridiagonalization, (ii) quantitative database
queries on data of interest using traditional compound boolean range
queries, (iii) qualitative queries on points of interest using neural net-
works, and (iv) dynamic extraction of subgraphs using several fast
graph theoretic algorithms. In addition, these meaningful subgraphs
may be used as templates to perform template-based searches through
the entire dataset. The whole process of template creation, template-
based search, extraction of graph metrics, and displaying statistical
and visualization results is interactive.

Modern microarray data is noisy and complex; visualization alone
is not the answer. By providing interactive visual analytics tools such
as graph algorithms, neural network analysis and level-of-detail con-
trol, we bring a human expert into the loop to negotiate the tradeoff be-
tween data size and algorithmic complexity by intuitively tuning key
parameters with realtime feedback for addressing the scientific ques-
tion at hand. We demonstrate our system using datasets from a real-
world, large-scale, genetical genomics study of mammalian gene co-
expression. In this study, the influence of genetic differences among
individuals is considered as a source of expression covariation.

In the remainder of this paper, we first describe the background of
this research in Section 2. In Section 3, we present our design of
the user interface and the overall system, followed by implementation
details in Section 4. Finally, our results and discussion are provided
in Section 5, and then concluded in Section 6.

2 BACKGROUND

2.1 The Driving Application

2.1.1 Quantitative Trait Locus

Let us consider an analogy familiar to the field of computer science:
a variable stored at a location in the main memory of a computer. In
genomics, one can consider the entire memory space roughly corre-
sponding to the genome, a location-specific variable as a gene, and the
value stored in each variable as the genotype at that location. The value
of a genotype is transmitted by each parent. The fact that each loca-
tion can take on different genotypes is termed polymorphism, since
the same genome location for different individuals may hold (parts of)
different genes or non-gene DNA sequences.

The entire set of genotypes across the genome defines the genetic
makeup of an organism, while a phenotype defines the actual physi-
cal properties, or traits, of the organism. Although genetic makeup is
not the sole factor influencing an organism’s phenotype, it is often a
strong causative predictor of the trait. Consider common traits relat-
ing to physical appearances as an example. Having exactly the same
genotypes, identical twins have strikingly similar appearances (pheno-
types), yet due to environmental influences they may not look exactly
the same.

It is of great interest to unravel the inner workings of how genotypes
influence molecular networks to affect a phenotype such as agility,
seizures, and even drug addiction, to name a few. Geneticists have al-
ready achieved great success in associating a genotype and phenotype
for a trait determined by one gene (i.e. monogenic traits), but much
present attention is now focused on traits that are determined by many
genes (i.e. complex traits). These traits are continuously distributed
random variables and thus referred to as quantitative traits. Linear
modeling is used to identify genotypes that predict phenotype values.
The location of these genotypes are quantitative trait loci (QTLs) [3].
Detected via statistical methods [9], QTLs are stretches of DNA highly

Fig. 1. In addition to the gene-gene correlation matrix, our system also
handles data supplied in relational tables such as these containing gene
annotations, QTL membership from QTL Reaper [41], and paraclique
connectivity [23].

associated with a specific phenotype, analogous to genetic landmarks
which roughly indicate the position of the active gene. QTLs are not
defined at very fine granularity; they usually correspond to areas large
enough to hold several genes. The genetic polymorphism (genotypes)
in neighboring areas of a set of loci, as a group, influence structure and
function on both molecular and organismic scales.

For decades, scientists have systematically randomized and then
stabilized genetic variation in groups of mice to effectively create a
population of clones. These mice, called “recombinant inbred” (RI)
strains, function as a reference population which is used by groups
worldwide in order to allow a basis of comparison and integration
across different experiments [8]. This is very important from a sta-
tistical standpoint as it implies that the potential size of the combined
datasets is theoretically unbounded, resulting in extremely high di-
mensional data. Sufficient confidence is currently allowing integration
of diverse biological data across levels of scale in an approach related
to systems biology, “systems genetics.” This integrative approach for
multiscale and multiorgan phenotypic datasets has only become feasi-
ble in recent years and relies heavily on statistical techniques, complex
algorithms, high-performance computing and visualization.

2.1.2 Gene Expression Data

The statistical approach of QTL mapping associates phenotypes to
genotypes in order to identify plausible genome locations that control
those traits. The QTL region is large due to the imprecision of pheno-
typic estimation, the low density of genotypic recombinations (transi-
tions in the distribution of the genotype string across the genome), and
an often insufficient number of genotype parameters in mapping mod-
els. Identifying the specific region or interacting regions, and homing
in on the precise polymorphic regions or other DNA features that reg-
ulate trait variability requires tremendous information integration.

Gene expression data have been used to refine QTLs to the granular-
ity of genes and further reveal the underpinnings of how complex traits
are controlled. To understand gene expression, we need to identify ge-
netic regulators of gene expression, particularly those in the form of a
network of genes that are “regulated” together. In a way, the study of
gene expression identifies modules (gene networks), while QTL stud-
ies allow one to determine the cause of variation of those modules
in relation to complex traits. Gene expression data is collected us-
ing microarrays [11]. During the process of gene expression, mRNA
transcripts are produced based on the “instructions” contained in the
gene’s DNA sequence. We will refer to a gene as the DNA sequence
or causative polymorphism and transcript as the gene product.

The magnitude of co-expression relations among all pairs of tran-
scripts are computed from the microarray data. The levels of co-
expression (i.e. correlation), are then stored in ann×n matrix, with
n being the total number of genes. Treating the resulting symmetric
correlation matrix as an adjacency matrix, we then have an undirected



weighted graph. A positive weight means the two transcripts con-
nected by the edge are co-expressed (i.e. if one is active the other is
as well). Likewise, a negative edge weight means the two transcripts
are under opposing patterns of genetic regulation. In this context, a
network of highly related (either co/up- or oppositely/down-regulated)
transcripts would take the form of a dense subgraph.

To the visualization community, the main research challenge here
is to allow scientists to efficiently and effectively explore gene ex-
pression datasets to discover gene networks and to suggest control-
ling mechanisms of complex traits in a credible manner. To validate
causality, scientists can then employ in vivo experiments to perturb
(e.g. “knock out” a set of “master switch” genes) gene products and
observe whether the organism expresses the expected phenotype.

2.2 Related Work

A graph is a universal concept used to represent many different prob-
lems. While more restrictive layouts, such as trees, should be used
when possible, this work will address the general case of graph inter-
action. In relation to this work, we categorize methods to comprehend
graph properties as: (i) those solely depending on algorithms, i.e. the
algorithmic approach, and (ii) those incorporating human input as an
integral component, i.e. the interactive approach. Let us review both
approaches in turn.

2.2.1 The Algorithmic Approach

Algorithmic research to automatically compute graph properties of
various kinds has been extensively studied. Well known examples
include clique, strongly connected components, induced subgraph,
shortest paths, and k-connected subgraph. Let us use clique analysis
as a representative example. By filtering out edges with weights be-
low a certain threshold, a gene network with high co-regulation should
appear as a complete subgraph, or a clique. Hence, it is natural to con-
sider clique analysis in gene expression data analysis.

However, clique analysis is an NP-complete problem. Even though
more efficient fixed-parameter methods [23] are currently being used,
it is still a very time consuming procedure to compute. It is also hard
to treat edges with negative weights in the context of clique analysis,
so common approaches typically preprocess the graph to convert all
edge weights to absolute values. The impact of information loss due
to thresholding is hard to evaluate and is further complicated by the
presence of noise. While partially resolved by paraclique [23] methods
in which a few missing edges are acceptable, additional problems are
introduced such as the meaning of paraclique overlap which may be
handled differently depending on the working hypothesis.

Such shortcomings apply to different graph algorithms in varying
degrees, but are generally inherent with graph theoretic analysis. How-
ever, this should in no way prevent graph algorithms from being used
for suitable problems. From this perspective, it would be greatly ad-
vantageous to develop a visual, effective and efficient feedback frame-
work. In this framework, a human expert is enabled to quickly identify
imperfect portions and details of the data, and not only remove irreg-
ularities but also to significantly reduce the dataset’s complexity by
interactively constructing various levels of abstraction. The resulting
problem space would be more appropriate for graph theoretic analy-
sis to be applied. In fact, some undertakings in visualization research
have already adopted similar approaches [29].

Here we note that our goal is neither to accelerate all computation
in a scientist’s workflow nor replace computation solely with visual-
ization. We hope to develop a visualization framework which allows
navigation through gene expression data and segmentation of the ap-
propriate data for further study. In this way, s/he can flexibly choose
and apply the right computational tool on the right kind of problem.

2.2.2 The Interactive Approach

Much related work in visualization follows the Information Seeking
Mantra proposed by Shneiderman [36]. That is: overview first, zoom
and filter, and then details on demand. At each of the three stages,
there are a number of alternative approaches, many of which are highly

optimized for a specific application. A key driving application in this
area has been visualization of social networks [28].

To provide an overview, the graph can be rendered in the traditional
node-link setting or adjacency matrix [1], and more recently as a self-
organizing map [21]. When using the common node-link model, it
is pivotal to develop a sufficient hierarchy of abstraction to deal with
even moderately sized graphs. Solely relying on force directed meth-
ods (i.e. spring embedding [26]) for graph layout cannot resolve vi-
sual clutter and may still significantly hamper visual comprehension.

Structural abstraction can be computed either bottom-up or top-
down. In bottom-up approaches, one can cluster strongly connected
components [22], or by distance among nodes in the layout produced
by a spring embedder [40]. Top-down approaches are often used for
small scale or largely sparse graphs in which hierarchical clusters are
created by recursively dropping the weakest link [4]. More compre-
hensive systems employ clustering algorithms that consider a number
of different node-edge properties [2].

Semantic-based abstraction is a more powerful mechanism for pro-
viding an overview, zooming, or giving details. This approach is tied
to its intended application since it requires specific domain knowledge
of the semantic information [37]. When combined, structural and se-
mantic abstraction can prove to be very effective [34]. Also in [34],
it is shown that overview and level-of-detail (LoD) enabled browsing
can be based on induced subgraphs of different sizes.

There are many well-known packages that have evolved over time
to specifically address visualization of gene correlation data using
node-link diagrams such as Cytoscape [32] and VisANT [17]. These
tools are built to be web accessible and thus render node-link diagrams
using 2D layouts. While 2D layouts are accepted by the community,
such packages neglect modern 3D acceleration hardware, rarely scale
well beyond hundreds of nodes, and do not leverage 3D operations that
have proven to be the preferred representation and navigation tech-
niques for our users. Due to the common 2d framework, and in con-
trast to Shneiderman’s principle, biologists are typically forced into a
workflow in which filtering must be first applied and a global overview
of the entire dataset simply isn’t possible. Our software leverages both
OpenGL and efficient C compilation to facilitate interaction with tens
of thousands of nodes while maintaining interactive performance with
complex visual analytics tools not currently available in these pack-
ages. Current work involves integration with a lightweight API [33] to
allow web-based interaction and data-sharing so our software may be
used synergistically with such well-developed packages.

In contrast to the node-link model, an adjacency matrix is a clutter
free interface. While an adjacency matrix interface for large data is
limited by the resolution of the display, it is still ideal for a bird’s eye
view [1]. Some patterns such as clique and bipartite subgraphs could
be very distinctive when examined in an adjacency matrix. However,
a proper order of vertices is critical. The community has studied this
problem at length. In [16], a comprehensive survey on automatic ver-
tex order is included. In general, binary, undirected graphs are the
most straightforward. While weighted graphs needed more compli-
cated algorithms, graphs with negative weights are less studied. Based
on adjacency matrices, LoD type of browsing is often supported as
well [1].

Due to the complexity involved in computing a high quality
overview of a graph, researchers have also attempted to use self-
organizing maps [21]. Self-organizing maps are a dimension-
reduction technique which adjusts weights in a manner similar to neu-
ral networks to discretize the input space in a way that preserves its
topology. The end result is (usually) a 2D field that can be conve-
niently rendered as a terrain.

By creating a spatial layout for a graph, it can be interactively visu-
alized while preserving the data’s underlying topological relationships.
Typical interaction methods include focus+context methods (i.e. zoom
and filter), graph queries using language-based methods [35], and fil-
tering databases of graphs using graph similarity metrics, typically
based on non-trivial graph theoretic algorithms [29].

Social networks are currently a primary driving application of in-
teractive methods for graph visualization. This has resulted in non-



binary, non-positive definite weights not being as thoroughly studied.
Also, tools for extracting highly connected subgraphs from this data
in a way that addresses the inherent uncertainty appear to be lacking.
Whereas neural networks have already been used for volume segmen-
tation [39], similar approaches have rarely been attempted in graph
visualization. In this work, we propose several tools that allow tradi-
tional quantitative drill-down as well as qualitative selection and filter-
ing techniques to aid domain experts with their analysis.

2.3 Beyond The Size of the Dataset

Over the years the cutting edge of large data has advanced in strides.
At all times, however, the criteria of being large can only be defined
in a domain specific manner. For instance, while a terabyte (TB) scale
multivariate time-varying simulation is large by current standard, a
dataset sized at 10 gigabytes (GB) is already large for medical visual-
ization requiring real time frame rates.

In systems biology, datasets are large in a different way. Specifi-
cally for gene co-expression data, 100 megabytes (MB) already quali-
fies as large. This is due to the fact that genes act more often in com-
bination than alone. The research is to discover how (overlapping)
combinations of genes act to regulate various phenotypes. Hence the
real problem space to deal with is exponentially larger. Further exac-
erbating the problem is the uncertainty caused by data noise and those
critical data filtering thresholds that are usually chosen according to
previous experiences.

While thresholding of edge weights is a useful filter mechanism, it
may seriously affect subsequent statistical analyses when decompos-
ing a correlation matrix. Discovery of dense subgraphs and the genes
that connect them allow a higher level of abstraction and provide spe-
cific targets for gene perturbation tests. Because the genes must be
highly connected with a sub-network, thresholding of edge weights
is often used. However, this often excludes genes that would receive
higher consideration based on domain specific knowledge. Further,
this strict thresholding specifically excludes genes that fall outside
of the dense subgraph, but which are highly connected to it and po-
tentially other networks; such genes may occupy important positions
within the network of expressed genes and QTL locations. The sim-
ple capability of dynamically adjusting the threshold, in combination
with immediate visual feedback and dynamic statistics, allows users
to develop a much better intuitive understanding of their data and thus
better define the network properties of genes of interest for a given
task. By making this analysis an interactive visual experience, network
characteristics can be identified and used to identify similar structures
without a deep mathematical understanding of the correlation matrix.

As methods to measure quality, usefulness and uncertainty in data
are becoming central issues of visualization research, our researchis
an application driven undertaking that builds upon the knowledge and
expertise of domain scientists in systems biology. Our primary focus
is to comprehensively study the exponential problem space embedded
in a real world gene co-expression dataset through visualization.

Much previous research and applications have been developed
which utilize visualization to facilitate biological insight. For in-
stance, a method to navigate proteomics datasets obtained using
liquid-chromatography/mass-spectrometry was reported in [24]. A
comprehensive survey of five existing popular gene expression mi-
croarray data visualization tools was provided in [31] with empirical
evaluations. Methods used include heat map, clustering and graph ren-
derings, parallel coordinates, scatterplots, bar charts, and histograms.
While users preferred to have more analysis capabilities such as clus-
tering integrated with the interactive visualizations [31], those tools
focused on providing high quality visual representations and interac-
tion with the data. Throughout the literature, we are not aware of any
previous works that aimed at supporting visualization and analysis of
a large combinatorial space with a tolerance of uncertainty.

3 APPROACH

Our goal is to develop a visualization system in which a human expert
discerns uncertainties in the data and guides the system to segment a

large graph using a set of automated tools through an interactive in-
terface. The key components of the system include the 2D interactive
interface, modules to select subgraphs both qualitatively and quantita-
tively, and the neural network based classifier that uses selections as a
template. We start the discussion by describing the exact set of input
data to our system.

3.1 The Data

The only required data is a matrix containing gene-gene correlation
values. While all of our testing data use Pearson’s correlation, differ-
ent metrics of correlation are treated no differently in our system. In
addition, we handle a database of information corresponding to each
gene as can be seen using three relational tables (Figure 1). Specific
information about the object of interest is stored in the Gene table
while information relating to computed gene networks is stored in the
Paraclique table. Since our driving application is to identify the genes
that cause variation in complex traits, it is necessary to show the re-
lationship or distance between genes and QTLs. For that, we need an
additional relational table describing the exact location of QTLs in the
unit of megabases.

Graph theoretic algorithms provide valuable information that is oth-
erwise hard to discern about the data. However, many such algorithms
incur long compute times and are far from being interactive. For
those algorithms, it is then necessary to pre-compute and store their
results for visualization at run-time. In this work, for example, we pre-
compute and store each gene’s membership in any of the paracliques.
The resulting data can easily be stored in a relational table.

We treat all data in the relational tables as attributes of individual
vertices, and the correlation values as an attribute specific to each edge.
This is a very generic model that is applicable to a variety of applica-
tion domains and is a boon to scientists typically involved in spread-
sheet science. Based on these data, it is then the job of the visualization
system to facilitate interactive, hypothesis-driven study by the user.

3.2 A Clutter-Free Interface for Graph Abstraction

A major difficulty with graph visualization is the visual clutter caused
by the sheer complexity of the data. As discussed in Section 2.2.2,
an adjacency matrix provides a concise interface for overviewing the
data in a way that is free from visual clutter. However, the 3D space is
still a natural domain for user cognition. The added dimension can be
used to convey additional data, allowing navigation through node-link
rendering and full appreciation of structural cues in the data. For our
application, we have designed a framework (illustrated in Figure 2)
where an overview is provided through a 2D adjacency matrix. Users
can arbitrarily select subsets of interesting vertices and create abstrac-
tions for further interactions in 3D.

Unlike popular datasets studied in most previous works, the range
of edge weights in our data is[-1.0,1.0]. In addition, to let users
decide about uncertainty issues, we would like to avoid taking a thresh-
old at this stage of processing due to possible information loss. This
makes it hard to directly leverage existing vertex reordering algorithms
like those surveyed by Mueller [25] or Henry et al. [16].

Block tridiagonalization (BTD) is a mature numerical algorithm
that permutes row and column elements of a matrix in such a way as
to cluster nonzero elements in blocks along the diagonal [5]. This al-
gorithm always preserves the eigenvalues of the original matrix within
a specified error tolerance. It iterates until the following criteria are
met: (1) the final matrix has small bandwidth relative to the size of the
matrix, and (2) any off-diagonal blocks in the final matrix have either
low dimension or are close to a low-rank matrix.

The BTD algorithm was developed to improve both performance
and storage efficiency for solving eigen problems. The smaller a block
is in a matrix, the lower the corresponding rank in most cases. Thus,
the optimization goal of BTD is to minimize block sizes on the diago-
nal, and correspondingly reduce block sizes off-diagonal as well.

The result of BTD is often characterized as minimization of band-
width, because non-zero entries are clustered around the diagonal. Itis
very significant to our research. In our application, the minimization



Fig. 2. Illustration of a permuted adjacency matrix with common graph
patterns (top), and extraction of the BTD belt for qualitative selection
(bottom).

of diagonal block sizes through global optimization provides a reli-
able means to abstract a large graph into a set of minimal basic “build-
ing blocks,” each of which represents a densely correlated subgraph.
The vertices in these subgraphs appear in contiguous segments along
the diagonal. The off-diagonal blocks determine how these “building
block” subgraphs are interconnected. In this way, we can conveniently
reassemble the original graph using the minimized diagonal blocks,
and show more appreciable structures with significantly less clutter.

Let us consider the illustration in Figure 2 from a biological per-
spective. In this example, we show four graph patterns that are often
of interest to geneticists. Since every data entry in an adjacency ma-
trix represents an edge, selections made in adjacency matrices are on
edges and only indirectly on vertices. The green subgraph is a clique
of highly correlated genes that potentially operate as a unit. The or-
ange subgraph is a bipartite graph, used in gene-phenotype mapping,
in which the trait is correlated with a number of related genes which
would be of experimental interest. The blue subgraph is a perfect
matching graph which functions as bridges between subgraphs. The
red subgraph is a star containing a “hub” gene which could be targeted
for knock-out and affect expression in many structures.

For our real world datasets, BTD has been able to consistently gen-
erate permutations that compress the majority of non-zero to the di-
agonal. This enabled us to crop a stripe along the diagonal and rotate
that stripe to a horizontal position, as shown in Figure 2, bottom. We
refer to the horizontal stripe as the BTD belt.

BTD belt is a more efficient use of precious screen resources. Our
datasets typically contain several thousand genes so the adjacency ma-
trix is typically very large. Although it is possible to downsample the
matrix for on-screen viewing, the essential high frequency details in
the matrix could be hard to distinguish.

We show an example of the BTD belt computed from a gene co-
expression study of brain development in Figure 3. There are 7,443
genes in this dataset. In an adjacency matrix, one can make selections
with square shaped bounding boxes. In BTD belt, these square bound-
ing boxes become diamond shaped. Ten sample diamond shaped se-
lections have been specified in Figure 3 and magnified to show details.

Fig. 3. A BTD belt, with magnified views, from a real-world mammalian
gene co-expression study of brain development involving 7,443 genes.

Fig. 4. A 2D level-of-detail graph created from brushed BTD belt selec-
tions to show correlations among BTD structures.

From the BTD belt interface, a user can select diagonal blocks that
are perceived to be “highly correlated”. Letting a human expert decide
what can be considered as “highly correlated” is our way of handling
data uncertainty. We note that the functionality of detecting high cor-
relation in a general setting is a hard problem, particularly when the
acceptable tolerances of error can only be qualitatively determined in
a subjective manner.

In this regard, BTD can be considered as a computational tool for
creating data abstraction. Figure 4 shows a simple example in which
ten subgraphs have been selected using diamond shaped bounding
boxes. Each subgraph is abstracted as a supernode in the LoD graph.
From the much simplified graph, the interconnections among the graph
nodes are clearly discernable. As expected from the BTD representa-
tion, a-c andg-i form cliques with high edge weights. Interestingly,
nodea has a strong negative correlation (as indicated by the dark line
color) with subgraphsd, g, and j. LoD visualization of BTD selec-
tions complements BTD in the sense that while these multiple sepa-
rated clusters may not share many edges (and thus may not be readily
visible in the BTD belt), the edges that do exist have strong negative
correlations. The LoD representation implies that subgrapha is a po-
tential down-regulator for these three major networks.

Since the BTD-belt is a permuted and rotated adjacency matrix,



much information is visible along the diagonals which correspond to
an individual vertex. Therefore, the BTD belt immediately shows the
major graph structures in which each vertex participates. These prop-
erties can be used to quickly determine the role of specific genes in
varying numbers and types of networks.

At a higher level of abstraction, several large structures share many
edges where their diagonals cross as seen in Figure 4 where subgraphs
g-i form a bipartite-like structure withj. To be specific, the bipartite
structure visually represents the edges induced by the intersection of
each graph’s vertex set. The striping pattern of the bigraph structure
implies it is typically the case that a single vertex ing-i is connected to
many vertices inj and not vice versa. This allows biologists to get a
view of how multiple structures may interact, or be regulated, through
genes that they have in common.

To allow further data abstraction, users are able to dynamically gen-
erate level-of-detail (LoD) representations that facilitate simultaneous
operation across multiple levels of scale. At any point in our system,
the current working graph can be saved and is rendered, along with
all other saved subgraphs, in the background of the current working
graph. The LoD graph can be generated by taking all user-defined
subgraphs and treating them as supernodes. By default, the edge con-
necting two supernodes has a weight defined as the average of all edge
weights between vertices within the two corresponding subgraphs.
Optionally, feature vectors of topological metrics can be calculated on
each subgraph for querying and graph pattern matching, using meth-
ods described in Sections 3.3 through 3.5, to find similar graph struc-
tures rather than similar data items. This LoD graph can subsequently
be treated as a normal graph and all provided analytics tools in our
system can be used to perform increasingly complex analysis at higher
levels of abstraction.

3.3 Quantitative Queries

Information contained in relational tables (Figure 1) needs to be stud-
ied in an integral fashion with gene networks. A common compre-
hensive tool for accessing information in those formats is compound
boolean range queries. Unfortunately, it is a difficult process to effi-
ciently integrate a commercial database management system with re-
altime visualization systems. For this application, we have extended
the functionality of a recent visualization data server to provide essen-
tial data management functionalities. The core of that data server is
a simplified B-tree that is optimized assuming no run-time insertion
or deletion in the B-tree [12]. Using this B-tree, the database in our
system, with compound boolean range queries over 8 features, can be
queried in O(log n) time at a rate of 10 million vertices per second on a
2.2Ghz Athlon64. This results in interactive, sub-millisecond response
to sets of dynamic queries even for large graphs.

The effect of querying is data filtering and thereby complexity re-
duction. One of the most common data filtering operations for biolo-
gists is thresholding. With visualization, this threshold choice can be
applied to a graph interactively and result in both visual and statistical
testing for proper threshold selection. Besides thresholding, we also
provide more power by also allowing multiple, dynamic, quantitative
queries over any computable attributes of a vertex or edge. Sample
queries include all genes within a 100-megabases distance to a target
QTL, or all genes in the current subgraph that are significantly related
to a paraclique of interest.

The queried genes also form a subgraph, no different from those
qualitatively selected via the BTD belt interface. Our querying system
attains realtime performance, making it feasible to visually evaluate
the effects or sensitivity of key parameters, such as what threshold
value to use.

3.4 Dynamic Fuzzy Classification

When interacting with complex data, it is often useful to provide an
automated arbitrator between the user and the data so that repetitive
tasks are off-loaded from the human user. One such important task
is to exhaustively search for genes that match a certain pattern and
classify the data accordingly while handling the innate uncertainty. A
key motivation is to alleviate users from the need to manually browse

through the entire dataset and thus specifying the feature they think
they are seeing in an overly rigorous manner. It is desirable to have
a proper level of fuzziness into this iterative feedback loop. While
elaborate agents can take a long time to develop and are too complex
to train in realtime, we have implemented a simpler AI system which
users can train at run-time.

In our system, we use a feedforward, multilayer, back-propagation
neural network capable of quickly learning items of interest and dis-
playing similar items to the user. From this perspective, qualitative se-
lection allows users to visually perceive uncertainties and decide how
to best guide the computational process, while quantitative queries
provide an exact means to request a subset of data. With all datasets,
the neural network classifier can be trained with subsecond efficiency.

3.5 Graph Properties

While our neural network treats input attributes indifferently, the
choice of which properties to feed into the classifier is quite impor-
tant. Besides domain-specific database variables, one may also em-
ploy several integrated graph properties for graph similarity classifi-
cation. Those include: degree of vertex, transitive closure, connected
components, edge expansion, and shortest path.

Each of these properties has a unique biological interpretation. De-
gree is one of the simplest useful metrics that can be calculated and al-
lows biologists to determine statistical correlation between genes and
gene networks as there are often many loosely connected genes and
few highly-related genes. Transitive closure minimizes the longest dis-
tance to all other nodes and can be used to find the core of a genetic
structure. Connected components allow biologists to visualize only
related data within a given subgraph. Edge expansion shows relation-
ships within a given subgraph without regard to threshold. Shortest
path allows biologists to see how specific genes most directly regu-
late one another. It could also be used to further investigate a favorite
location in the graph and gather only the local correlates view of the
specific gene(s) under study.

These properties may be used as extra variables in the feature vector
used for training a neural network. By adding these to the relational
data that are queried, we provide more information to be leveraged for
fuzzy classification.

4 SYSTEM IMPLEMENTATION

In this section, we describe details of our system that may be of interest
to readers who would like to implement a similar system. Several per-
formance numbers for our system may be found in Table 1. The num-
ber of vertices, edges, and range of absolute values of edge weights
are shown, respectively, along with performance metrics referenced in
the sections below. The columns of “2D” and “3D” show the running
times (in seconds) of Fruchterman and Reingold’s [10] method oper-
ating in 2D and 3D, respectively. The column of “BTD” shows the
timing results of the BTD permutation process in seconds. The time
to complete neural network training from a few examples and coun-
terexamples along with classification of the entire dataset is recorded
in number of milliseconds (ms) in the column “NN”.

Since this discussion is not restricted to one of only gene expression
applications, we use four test datasets detailed in Table 1 to indicate
the scalability of the system. The datasets include genotype correla-
tion datasets used to study human lung cancer, medical bibliographic
references, mouse behavior, and web architecture made available by
the developers of GeNetViz [42].

The primary dataset, which we use throughout the rest of this pa-
per, for our driving application involves regulation of 7,443 genes for
research of mammalian brain and behavior [7]. Visualization results
concerning complex traits in this dataset are shown in Section 5.

4.1 Graph Layout

Our system attempts to load any pre-processed data available or sub-
sequently generates the files if they are not available. Upon startup
with a valid weighted-edge graph, the system inspects the graph to de-
termine specific properties which would necessitate a special layout,
as in the case of a bipartite graph. Otherwise, it generates 2D and



Table 1. Datasets and Timing Results (in Seconds)

|V| |E| |Weight| 2D 3D BTD NN(ms)
254 401 [0.57,0.95] 0.203 0.282 0.1 16

2,150 6,171 [0.97,1.00] 16.20 17.19 6.1 31
7,443 695,122 [0.85,1.00] 336.0 318.3 50.9 141

12,343 28,338 [1,74] 883.3 912.7 234.7 172

3D layouts using either Kamada-Kawai [20] energy minimization or
Fruchterman and Reingold’s [10] force-directed placement. Both lay-
out algorithms are the standard implementations which use simulated
annealing to slowly freeze the layout in place. The layout is said to
converge when it reaches a maximum number of iterations, reaches a
small percentage of the initial system temperature, or does not change
significantly between iterations.

Like most regular layout algorithms, in our implementation the ver-
tices are initially placed randomly and then iterated through four main
phases until convergence: random impulse, impulse away from all
other vertices to keep them from overlapping, impulse toward the cen-
ter to keep the system from continuously expanding, and per-vertex
impulse toward or away from its connected neighbors in proportion
to the edge weight to preserve graph topology. The entire process is
O(M|V|2) where|V| is the number of vertices andM is the number
of iterations (M∼|V| but varies significantly). Through experiments
we found that the performance differences between 2D and 3D graph
layout algorithms are quite minor as shown in Table 1.

The software has been designed to easily incorporate other graph
layout algorithms, such as the fast multipole multilevel method
(FM3) [14] or LinLog [27]. Such layout algorithms have different
strengths and weaknesses in conveying specific properties in the re-
sulting topology. Custom algorithms can be easily incorporated in our
application either procedurally or by simply loading a graph layout
file. By default, a single layout is computed for a graph and its ap-
pearance is modified at run-time but the user may also switch interac-
tively between multiple layouts. Additionally, the user may dynam-
ically swap between the customary 2D view and the 3D view which
tends to convey more relationship information.

It is also noteworthy that clustering is another term often used by bi-
ologists in their research. Although in our work “cluster” and “dense
subgraph” have similar meanings, the goal of our approach is quite
different from the basic goal of popular clustering algorithms. Our
goal is to adequately handle uncertainty in the pursuit of co-regulated
(putatively cooperating) genes forming a network, and the nature of
the interconnections among those networks. We use BTD belt, queries
and neural network to computationally assist the discovery and real-
time fine-tuning of those dense subgraphs of interest. We do not solely
rely on graph layout algorithms to reveal dense clusters.

4.2 Rendering

Vertices are rendered after the edges without the depth buffer to pre-
vent edges from occluding data points. We support the option of ren-
dering vertices as splats (also known as billboards or impostors) or
quadrics which can take arbitrary shape (usually spherical). The splat-
ting implementation is the typical geometry-based primitive scheme
using pre-classification and thus results in slightly blurry vertices but
has the advantage that it is typically fast. While both options render
in realtime on most single computers, framerate tests were conducted
for the 7,443-node graph at several resolutions on a powerwall using
Chromium. This resulted in 16 fps quads vs. 246 fps splats on an
800x600 viewport, and 5 fps quads vs 17 fps splats at 3840x3072 (9
monitors).

There are many interactive rendering options such as color table
generation and weight-mapping mechanisms for coloring edges. A
default set of these has been provided to express differentiation be-
tween solely positive and negative edges (up and down regulation) or
to enhance contrast between edges with similar weights. The render-

ing mechanism is adaptive and can optionally adjust properties such
as the number of subdivisions in the quadrics based upon the cur-
rent frame rate. Semi-transparent vertex halos [38] are renderedus-
ing splatting for enhanced depth perception. Intuitive click-and-drag
interaction and continuous rotation during manipulation circumvents
problems with 3D occlusion and aids perceptual reconstruction of the
topology through motion parallax. The system also has dozens of mi-
nor utilities including the ability to change the color table used by all
elements of the program, take a screenshot, create video, print statisti-
cal information for the current graph, and output gene lists.

4.3 Neural Network

We use a multilayer, feedforward, back-propagation, online neural net-
work for realtime classification which is able to learn while in use by
employing stochastic gradient descent. Our implementation closely
follows the description in [30]. Results are given for a neural net-
work with the number of input nodes corresponding to the number of
provided attributes, 30 hidden nodes, 2 output nodes, a learning rate
of 0.4, a sigmoid threshold function, and a hard max used to simply
select the most likely output. The unusually large number of hidden
nodes provides sufficient degrees of freedom for any problem domain
and could be reduced if training speed or overfitting become issues.
Each of the two output nodes corresponds to the likelihood that the
user does or does not want to see the object.

Neural network interaction involves only a few easy steps. The
user left-clicks on an arbitrary number of vertices to select them as
examples. Similarly, right clicking on a vertex adds the vertex as a
counter-example. The user may use any filtering or processing tech-
niques previously mentioned to aid the process of defining the training
set. Once all examples and counter-examples have been selected, the
entire dataset is processed to only show items like the examples or to
segment the data using color. Training the neural network and clas-
sifying all other data items is in the order of dozens of milliseconds,
shown in Table 1, and is transparent to the user.

Deciding the proper training set is critical when attempting to
achieve accurate classification for multivariate data due to the high-
dimensional decision space. In our system, we provide two alternative
approaches for the user definition of large training sets. First, we al-
low selection of the training set using supernodes in the LoD graph.
Each supernode represents a network of genes, typically segmented
through BTD selections or database queries, such that a few example
supernodes can correspond to hundreds of individual data points. In
this way, users can visually interact with the data while quickly select-
ing entire groups of vertices as examples or counterexamples. Second,
the application allows the import/export of vertex data for the current
working graph using ASCII files. This can be used to analyze the
corresponding data with much more sophisticated statistical packages
such as Statistical Analysis Software (SAS) or statistics programming
languages such as R. These analytics tools or their batch programs can
be called during run-time to either fully segment or partially classify
the data. The result can be stored in a vertex list file and then utilized
as a training set.

5 RESULTS AND DISCUSSIONS

5.1 Overview: Data and Workflow

While early microarray studies emphasized differential expression and
comparative analyses, modern applications [18] emphasize correlation
of gene expression across large sets of conditions, including environ-
ments, time points and tissues. Increasingly, this data is being col-
lected in a context of natural genetic variation [7], where it can be in-
tegrated with multiple data sources such as genome sequencing, QTL
analysis, and disease relevant phenotypic data. For this application
we focus on gene expression analysis conducted with a particular em-
phasis on those traits related to brain and behavior in the laboratory
mouse.

A primary source of covariation in gene expression are single nu-
cleotide polymorphisms (SNPs). Studies in genetical genomics [18]
attribute variation and covariation in gene expression to the influence



Fig. 5. BTD selections (bottom) qualitatively extract gene networks (sides), are rendered using dynamic level-of-detail (center left), and used for
template-based classification of entire subgraphs in the original data (center right) for other regulatory mechanisms.

of these differences in DNA sequence. The use of recombinant in-
bred strains allows biologists to study replicate populations of mice
with identical genomes. These populations allow indefinite aggrega-
tion of data across studies as new technologies for characterization of
mice become available. When traits are assessed across genetically
identical individuals, the correlations among traits are assumed to be
due to common genetic regulation. By finding and analyzing statisti-
cal correlations between genotypes and phenotypes, geneticists hope
to discover and interpret the network of causal genotype-phenotype
relationships that determine a trait of interest.

Systems genetics research often follows a workflow of finding a
gene network, finding regulators of that network, and then perform-
ing a focused gene perturbation experiment to determine the role of
the associated network on gene expression or function. To begin, a
“large” gene correlation graph must be sifted through, to find a highly
connected subgraph which corresponds biologically to a gene network
in which genes are expressed together, presumably to regulate or sub-
serve a common function. They must then find a small set of causative
genes, highly correlated with the subgraph and likely to regulate co-
expression, to be used as targets of focused investigation. By ma-
nipulating the expression of these genes, the function of the gene net-
work can be determined through observation of expressed phenotypes.
Proof of causality occurs when the gene manipulations recapitulate
network relations. It should be noted that while standards of “large”
are highly application dependent, even graphs with less than 10k ver-
tices exhibit a combinatorial space that is overwhelming and, indeed,
presents a rather large and unique problem unlike dealing with volume
datasets.

In this section, we showcase results for publicly available biologi-
cal data which has been the subject of several previous studies. Whole
brain mRNA gene expression data was obtained using the Affymetrix
U74Av2 microarray for each of the strains in the BXD mouse popu-
lation and subsequently processed using Robust Multi-Array (RMA)
normalization [7]. Throughout the paper, we use Pearson’s corre-
lation over 7,443 genes of this dataset as our driving application.

The associated database in our system is used for querying, interac-
tive neural network training, and constructing dynamic level-of-detail
(LoD) graph features; it contains information relating to typical sys-
tems genetic analyses for each gene such as: the chromosome, position
(in megabases), paraclique membership and connectivity, broad-sense
heritability indices, and QTL mapping [41] locations with p-values
from QTL Reaper (sourceforge.net/projects/qtlreaper).

5.2 Discovery of Novel Networks

Typical biologists bring a large amount of domain-specific knowledge
to their investigative process, for which many tools exist but are usu-
ally challenged by purely data driven investigation of networks. One
approach to discovery of novel systems genetics networks is the use of
computational tools which allow extraction of highly connected sub-
graphs in a qualitative fashion. By providing block tridiagonalization
in which clusters around the diagonal constitute highly related genes,
biologists can easily select potentially novel gene networks. Indeed,
this O(|V|2) algorithm quickly extracts dense subgraphs and can be
treated as a rough approximation to the NP-complete problem of par-
aclique enumeration in this context.

In Figure 5, the user has selected four BTD regions and dynami-
cally generated a level-of-detail graph. As is expected, the selection
1 is most unrelated to the rightmost selections and therefore placed
far away from the other selections with a negative correlation to selec-
tion 3. By selecting LoD vertices 2-4 as examples and 1 as a coun-
terexample, neural network training on entire subgraphs is used to
perform template-based search for similar genes in the original data.
The resulting classification from the database information is the graph
in the right center which has been extracted through the application
of domain-specific knowledge in combination with several compu-
tational tools (BTD selection, LoD graphs, and NN template match-
ing). This highly-connected subgraph contains genes which are simi-
lar to cliques 2 and 3 and bipartite structure 4 selected from the BTD
and gives biologists a potentially novel network of two highly-related
dense subgraphs to inspect for related function(s). This is currently be-



ing applied to create a comprehensive bipartite graph of gene networks
(represented by LoD vertices) on one side and all network regulators
(network interface genes) on the other. The ability to interactively and
qualitatively search across multiple levels of detail has given biologists
several tools for which they can not only solve current problems but
also find new ways to address more difficult problems.

The central motivation of our system is to enable more in-depth and
flexible expert-driven analysis by providing a diverse set of compu-
tational tools. However, there are other more established algorithmic
tools, such as graph analysis, that are of value to scientific research.
Those tools can be leveraged from within our system through our inter-
nal B-tree based data structure which allows queries from algorithmic
solutions at a rate that facilitates realtime rendering and interaction. In
the section below, we present a significant use case that demonstrates
parts of our system to discover network interface genes.

5.3 Use Case: Discovery of Network Interface Genes

We now demonstrate our application with a biologically significant
use case. Once gene networks have been extracted, it is of primary
interest to determine the identity of the gene products that regulate
these networks. Using either qualitative BTD selection or algorithmic
network extraction, the total decomposition of a genetic correlation
matrix into disjoint subgraphs can be achieved. With each disjoint
subgraph treated as a structure, finding mRNA transcripts with strong
correlations to multiple structures would lead to the discovery of “in-
terface genes”. These mRNA transcripts regulate expression of genes
in those structures, and thereby couple multiple networks and biolog-
ical processes. The detection of these transcripts and the analysis of
their gene’s regulatory polymorphisms could lead to the discovery of
major genetic modifiers of large biological networks.

Our domain experts have found paraclique extraction to be the
most useful and general algorithmic technique. Although choosing
the proper threshold is a hard problem in general, by way of repeti-
tive experimentation, statistical and combinatorial analysis, 0.85 is a
preferred threshold for extracting paraclique in the dataset at hand [6].
Paracliques with more than ten vertices were extracted, resulting in
thirty-seven dense subgraphs, and stored in the systems database. We
show the largest and third largest paracliques corresponding to gene
networks ready for further study in Figure 6.

In this use case, the challenge is to identify candidate genes that
may be the common regulators of expression for a large number of
other genes, and to determine which functional biological characteris-
tics or disease related traits the network may be involved with. Some
facts are known about this situation: 1) each gene’s physical location
within the genome is near the location of one of the genotype markers
associated with the gene expression level; 2) the interface gene may
be a member of one of the dense subgraphs, but it must be highly
connected to members of both dense subgraphs; and 3) the biological
regulator is likely to be in the same pathway as the genes it regulates.

By creating a level-of-detail graph in which the edge weight for su-
pernodes is defined as the percent of connectivity to the adjacent gene
or supernode, we can use the hot-cold coloring scheme to visually elu-
cidate the correlation between multiple structures. This allows for an
intuitive representation of network distance which can allow biologists
to identify functional modules and their relationship to each other in
forming the pathways underlying specific biological processes. The
data is then filtered via threshold to retain only the strongest correla-
tions between individual transcripts and entire networks. Once such
a network is constructed, additional queries may be posed that relate
to additional candidate genes and their association to the genetic poly-
morphisms that regulate the network.

In this use case, the technique described above was applied to visu-
ally identify a specific gene of interest whose transcript is connected
to over 99% of both the largest and third largest paracliques as shown
in Figure 6. The gene of interest, Pr1 or Tmem37 (Affymetric probe
set ID 95464at), has thus been implicated as part of the regulatory
pathway that co-regulates the two large networks. This gene encodes a
voltage-dependent calcium channel gamma subunit-like protein which
modulates electrical properties of neuronal cells. It can be hypothe-

Fig. 6. In this screenshot, two gene networks (bottom left and right)
have been discovered with a single putatively co-regulating gene as a
potential target of knock-out study (center) with proximity information for
other potential regulatory genes (top left) undergoing further study. This
illustrates the discovery of candidate genes which can affect expression
of several genes throughout the genome that play a role in the locomotor
response of mice exposed to methamphetamine and cocaine.

sized that the paracliques are related to neuronal activity. Further test-
ing was then accomplished through data export and communication
capabilities to specialized bioinformatic pathway analysis tools. By
further analysis of expression for the gene of interest, using GeneNet-
work.org, it was revealed that its transcript abundance is correlated
with stereotyped locomotor behavior induced in BXD mice by drugs
such as cocaine [19] or methamphetamine [13].

The next stage in the workflow is to enumerate candidate genes
which reside at chromosomal locations nearby the gene of interest’s
regulatory QTLs. To do this, we must first run an analysis of genotype
associations to the expression of interface gene Pr1 in order to iden-
tify QTLs that regulate its expression. This analysis, which we have
performed using GeneNetwork.org and linear modeling in SAS v9.1,
reveals putative regulatory loci at specific locations on chromosomes
1, 2, 6 and 14. By using our tool’s integrated data query capability,
we can then highlight co-expressed genes that reside in regions pro-
vided by the other tools. The candidate genes may help regulate the
networks since they are located in close physical proximity to one an-
other, their transcripts are highly correlated to many paraclique mem-
bers, and the QTL that regulates them also regulates many members of
both paracliques. This leads to the identification of a limited number
of candidate regulators including Pax3, Lama5, Mkrn2, and Dhrs4.

We have now derived testable hypotheses regarding the mechanisms
by which the networks are co-regulated and can validate this new
knowledge with in vivo experimentation. It follows from the anal-
ysis of co-expression that these two paracliques are controlled by a
common genetic regulator. A high genetic correlation implies that the
biomolecules represented by the connected vertices have values that
are determined by the same genotype. Expression of the interface gene
Pr1 can also be correlated with biological function and traced back to
a regulatory QTL. Pr1 and the two dense subgraphs have been associ-
ated with specific traits measured in BXD mice. A small number of
candidate regulators from positions near the regulatory QTL has also
been identified. The resulting visualization reveals networks which
go from locomotor responses to specific drugs down to the connected
molecular pathways which underly them.

While Figure 6 represents only a few steps from a typical work-
flow, the result of this finding captures overwhelming complexity. As
early forays into systems genetic analysis have demonstrated, biolog-
ical processes such as mammalian behavior involve a complex inter-



play of expression from many hundreds of genes across multiple chro-
mosomes and biological systems. For this reason, we expect similar
linked views of multiple tools to be the norm for systems genetic vi-
sualization. The tool presented herein allows users to retain networks
and their relationships as well as rapidly isolate genes and subgraphs
based on their connectivity. The tools demonstrated represent a flexi-
ble and dynamic approach which allows users to scale up from single
genes or traits of interest found in web based tools to results of global
analyses such as clustering and high-performance combinatorial anal-
yses.

6 CONCLUSION AND FUTURE WORK

In conclusion, it has been shown that the integrated computational
tools not only provide research scientists and analysts a way to vi-
sualize their data, but it also allows complex querying and filtering for
drill-down, graphical analysis, and statistical output. Each of these
are facilitated by combinations of a 3D spring-embedded layout, effi-
cient B-tree processing, neural networks, matrix operations, and graph
algorithms.

While our visualization tool enables significant biological discover-
ies, its full potential can only be leveraged when used in combination
with mature applications and data management systems for genetical
genomics datasets. For this purpose, our future work includes integra-
tion with the Gaggle API [33], a web-enabled, platform-independent,
multi-application, data-sharing framework for widespread use among
systems biologists available at gaggle.systemsbiology.org. In addition
to the linked viewports framework, we are also considering domain-
specific hybrid visualizations such as [15]. This tool is also currently
being integrated as a correlation visualization tool to complement the
genome-phenome data integration tools in the Ontological Discovery
Environment (ODE) suite at ontologicaldiscovery.org. Ongoing work
is currently being conducted with biologists to implement new func-
tionality relating to domain-specific requests for handling linkage dis-
equilibrium, QTL analysis, integration of genetic information across
multiple scales, multiple time points, and different graph types.
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