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Abstract —Biologists hope to address grand scientific challenges by exploring the abundance of data made available through microar-
ray analysis and other high-throughput techniques. However, the impact of this large volume of data is limited unless researchers can
effectively assimilate the entirety of this complex information and integrate it into their daily research; interactive visualization tools are
called for to support the effort. Specifically, typical studies of gene co-expression can make use of novel visualization tools that enable
the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters and achieving
data reduction. These tools should allow biologists to develop an intuitive understanding of the structure of biological networks and
discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of
correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner
provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph
layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic al-
gorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using
neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian
gene co-expression.

Index Terms —Visualization in physical sciences, life sciences and engineering, graph and network visualization, bioinformatics
visualization, focus+context techniques
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1 INTRODUCTION

Recent systems genetics research offers near term hopes insadgirederns of co-expressed genes from the collected data presents another
scientific questions long-deemed unapproachable due to their cagrand challenge. Without an ability to efficiently and comprehensively
plexity. Current research is uncovering how the genetic makeup ®fplore the problem space, full genome-scale gene expressiorréata a
an organism is associated with the organism’s traits on both molecu$éitl of limited value for today’s hypothesis-driven research.
levels, such as gene expression or protein abundance, as wellsks phy Genes act alone or in groups during the process of gene expression
cal levels including body height or tendency toward alcohol addictioand regulation. Biological pathways are defined by the connectivity of
The systems genetics approach is a method to integrate data acrosgstiream and downstream effects of genes and gene products; includ
levels of biological scale to uncover molecular and physiological nefig their action in the regulation of the expression of other genes. The
works from DNA to function. Novel computational tools are calledearch for genes co-expressed in a common group, which likelst affe
for to support the effort. observable traits as a functional unit, often starts with using microarray
The central dogma [9] for genetic studies is that strings of infotechnology to profile transcript abundance. A microarray is a device
mation known as genes are stored in the DNA sequence (genomeg@fitaining microscopic DNA probes and is capable of measuring the
an organism, each gene can be transcribed into messenger RNA ¢x@ression levels from thousands of genes for a given sample [11].
a transcript), and ultimately into proteins which affect the behavidirom microarray data, biologists can statistically construct massive
or morphology of the organism. This multi-step process by whictorrelation matrices that describe pair-wise gene co-expression. The
a gene’s sequence of nucleic acids (ATCG) is converted into mRNg&y challenge then is the representation, decomposition, and interpre-
transcripts is known as gene expression. Gene expression directstétion of this genetic correlation matrix.
process of cellular differentiation, in which specialized cells are gen- By treating the correlation matrices as adjacency matrices, it is natu-
erated for the different tissue types. The regulation of gene expressial to consider correlations of gene expression in the setting of a graph,
(i.e. gene regulation) controls the amount and timing of changes to tlthere vertices represent genes and edges represent the stfestgth o
gene product. This is the basic mechanism for modifying cell functiaelation between pairs of genes. In this analogy, a group of genes that
and thereby the versatility and adaptability of an organism. Therefomm-express would necessarily form a network or subgraph consisting
gene expression and regulation function as a bridge between genefithighly correlated” genes.
makeup and expression of observable traits. Although it seems straightforward to directly apply classic graph al-
Despite its vital importance, determining the precise roles of givagorithms to discover those highly correlated subgraphs, this approach
transcripts remains a fundamental challenge. This is due in large peytitself is not sufficient. Many common graph problems such as
to the complex machinery employed for gene expression in whickique finding are NP-complete. Even for moderately sized problems,
some gene(s) may regulate the simultaneous transcription levelsttaf computation time is still often overwhelming. Hence, to ensure that
other genes. This regulation leads to statistically correlated, or qaroblems are computationally tractable, the current practice is to apply
expressed, genes in which one gene is expressed at high levels dalta filtering steps to dramatically reduce the density of the graph and
when the other is as well. While collecting gene expression data dimensionality of the data. The value of key parameters, such as cor-
ready requires great technical sophistication and resources, the limiteltion threshold, is often decided by an educated guess based on the
functionality of current computational tools to discover structural patfata size, algorithmic complexity, and the hardware available. Unfor-
tunately, picking a slightly different threshold often eliminates many
of the subtly important correlations and thereby drastically changes
« Authors New, Kendall and Huang are with the Department ah@ater the solutions of graph algorithms.

Science of the University of Tennessee, Knoxville. Enfagw, kendall, In addition, scientists in many cases cannot exactly define the term
huangj @cs.utk.edu. “highly” with rigor as it is a qualitative criterion with uncertainty. The
* Author Chesler is the Systems Genetics Group Leader atakeRitige uncertainty aspect is further exacerbated by the noise presentémturr
National Laboratory. Email:{cheslere} @ornl.gov. microarray data, inaccuracies introduced during data collection, and
Manuscript received 30 July 2007. residual errors in subsequent statistical analyses. To date, it has bee
Under review. hard for scientists to evaluate the true value of gene co-expression as

well as the sensitivity of an “optimal” result computed using expensive



graph algorithms. Gene

H H H H : H Probe Set1d Symbol Megabase Description ..
In thIS W.Ork’ We deSIQned a wsuallzatlo.n.syStem to p!’O.VIde d(l 100381 _at Actal 125.68%43 Alpha skeletal muscle actin £
main scientists W|t_h tools to evaluate the validity and sensitivity of ke 5[ 100955 3100a13 53208539 Calcium-binding protein A13 P
parameters in their research hypotheses. By allowing realtime fe(3[ 101086 £ at | Cabp 89.268018 | Zinc finger protein 273 <
back of connectivity, determination of biological relevance is facili 'QTL
tated by a”OWing more thoro_ugh analyses Of their empirical data. O Probe SetId Locus QTL  Chrem Gene Megabase  Heritability .
main effort focuses on providing interactivity from a number of fea 1[100381_a: D12Mit234 7 12 1671671 0.262125693] 4
tures beyond fast rendering rates. A user can interactively exphore ¢ £ | 100559 at S01Gnf003450 | 51 | 1 6.592 0.734209247] 2
h ; : 3[ 101086 £ at | DXMMit105 5 X 2499.020 0.280626696]
filter the data to create meaningful subgraphs by leveraging four co
plementary methods: (i) semi-automatic segmentation of highly ¢ Paracligue
related subgraphs with a 2D foedsontext graphical user interface _etex Faraclique  Percent connected to Paraclique 0,1,2,3, . , 36
segmented using block tridiagonalization, (ii) quantitative databa e : L £
gn gr g aton, q 2[105752.ca |31 63.0% | 196% | 12.1% | L6% | 364% >
gueries on data of interest using traditional compound boolean rar 3| 106060 i a 0 100% | 155% | 94.7% | 79.5% | 63.6% %

queries, (iii) qualitative queries on points of interest using neural ne :
works, and (iv) dynamic extraction of subgraphs using several fas
graph theoretic algorithms. In addition, these meaningful subgrapig. 1. In addition to the gene-gene correlation matrix, our system also
may be used as templates to perform template-based searches througties data supplied in relational tables such as these containing gene
the entire dataset. The whole process of template creation, templat@iotations, QTL membership from QTL Reaper [41], and paraclique
based search, extraction of graph metrics, and displaying statisticahnectivity [23].
and visualization results is interactive.
Modern microarray data is noisy and complex; visualization alone
is not the answer. By providing interactive visual analytics tools suefssociated with a specific phenotype, analogous to genetic landmarks
as graph algorithms, neural network analysis and level-of-detail coghich roughly indicate the position of the active gene. QTLs are not
trol, we bring a human expert into the loop to negotiate the tradeoff bgefined at very fine granularity; they usually correspond to areas larg
tween data size and algorithmic complexity by intuitively tuning kegnough to hold several genes. The genetic polymorphism (genotypes)
parameters with realtime feedback for addressing the scientific qugsneighboring areas of a set of loci, as a group, influence structdre an
tion at hand. We demonstrate our system using datasets from a réahction on both molecular and organismic scales.
world, large-scale, genetical genomics study of mammalian gene co+or decades, scientists have systematically randomized and then
expression. In this study, the influence of genetic differences amog@bilized genetic variation in groups of mice to effectively create a
individuals is considered as a source of expression covariation.  population of clones. These mice, called “recombinant inbred” (RI)
In the remainder of this paper, we first describe the backgroundsifains, function as a reference population which is used by groups
this research in Section 2. In Section 3, we present our designvadridwide in order to allow a basis of comparison and integration
the user interface and the overall system, followed by implementatiagross different experiments [8]. This is very important from a sta-
details in Section 4. Finally, our results and discussion are providgstical standpoint as it implies that the potential size of the combined

in Section 5, and then concluded in Section 6. datasets is theoretically unbounded, resulting in extremely high di-
mensional data. Sufficient confidence is currently allowing integration
2 BACKGROUND of diverse biological data across levels of scale in an approach related

to systems biology, “systems genetics.” This integrative approach for
o ) multiscale and multiorgan phenotypic datasets has only become feasi-
2.1.1 Quantitative Trait Locus ble in recent years and relies heavily on statistical techniques, complex

Let us consider an analogy familiar to the field of computer scienc@lgorithms, high-performance computing and visualization.
a variable stored at a location in the main memory of a computer. In .
genomics, one can consider the entire memory space roughly cofe-2  G€ne Expression Data
sponding to the genome, a location-specific variable as a gene, andThe statistical approach of QTL mapping associates phenotypes to
value stored in each variable as the genotype at that location. The vaje@otypes in order to identify plausible genome locations that control
of a genotype is transmitted by each parent. The fact that each lotfeese traits. The QTL region is large due to the imprecision of pheno-
tion can take on different genotypes is termed polymorphism, singgic estimation, the low density of genotypic recombinations (transi-
the same genome location for different individuals may hold (parts dfpns in the distribution of the genotype string across the genome), and
different genes or non-gene DNA sequences. an often insufficient number of genotype parameters in mapping mod-
The entire set of genotypes across the genome defines the geratic Identifying the specific region or interacting regions, and homing
makeup of an organism, while a phenotype defines the actual phyision the precise polymorphic regions or other DNA features that reg-
cal properties, or traits, of the organism. Although genetic makeupufate trait variability requires tremendous information integration.
not the sole factor influencing an organism’s phenotype, it is often a Gene expression data have been used to refine QTLs to the granular-
strong causative predictor of the trait. Consider common traits reldly of genes and further reveal the underpinnings of how complex traits
ing to physical appearances as an example. Having exactly the sareecontrolled. To understand gene expression, we need to identify ge-
genotypes, identical twins have strikingly similar appearances (phemetic regulators of gene expression, particularly those in the form of a
types), yet due to environmental influences they may not look exactigtwork of genes that are “regulated” together. In a way, the study of
the same. gene expression identifies modules (gene networks), while QTL stud-
Itis of great interest to unravel the inner workings of how genotypées allow one to determine the cause of variation of those modules
influence molecular networks to affect a phenotype such as agility, relation to complex traits. Gene expression data is collected us-
seizures, and even drug addiction, to name a few. Geneticists haveral-microarrays [11]. During the process of gene expression, mMRNA
ready achieved great success in associating a genotype and plendtgmscripts are produced based on the “instructions” contained in the
for a trait determined by one gene (i.e. monogenic traits), but mugene’s DNA sequence. We will refer to a gene as the DNA sequence
present attention is now focused on traits that are determined by mamyausative polymorphism and transcript as the gene product.
genes (i.e. complex traits). These traits are continuously distributedThe magnitude of co-expression relations among all pairs of tran-
random variables and thus referred to as quantitative traits. Linesripts are computed from the microarray data. The levels of co-
modeling is used to identify genotypes that predict phenotype valuegpression (i.e. correlation), are then stored imann matrix, with
The location of these genotypes are quantitative trait loci (QTLs) [3}.being the total number of genes. Treating the resulting symmetric
Detected via statistical methods [9], QTLs are stretches of DNA highgorrelation matrix as an adjacency matrix, we then have an undirected

2.1 The Driving Application



weighted graph. A positive weight means the two transcripts cooptimized for a specific application. A key driving application in this
nected by the edge are co-expressed (i.e. if one is active the othearisa has been visualization of social networks [28].
as well). Likewise, a negative edge weight means the two transcriptsTo provide an overview, the graph can be rendered in the traditional
are under opposing patterns of genetic regulation. In this contextnade-link setting or adjacency matrix [1], and more recently as a self-
network of highly related (either co/up- or oppositely/down-regulatedyrganizing map [21]. When using the common node-link model, it
transcripts would take the form of a dense subgraph. is pivotal to develop a sufficient hierarchy of abstraction to deal with
To the visualization community, the main research challenge hexeen moderately sized graphs. Solely relying on force directed meth-
is to allow scientists to efficiently and effectively explore gene exads (i.e. spring embedding [26]) for graph layout cannot resoilve v
pression datasets to discover gene networks and to suggest consoél clutter and may still significantly hamper visual comprehension.
ling mechanisms of complex traits in a credible manner. To validate Structural abstraction can be computed either bottom-up or top-
causality, scientists can then employ in vivo experiments to pertuglown. In bottom-up approaches, one can cluster strongly connected
(e.g. "knock out” a set of “master switch” genes) gene products agdmponents [22], or by distance among nodes in the layout produced
observe whether the organism expresses the expected phenotype.by a spring embedder [40]. Top-down approaches are often osed f
small scale or largely sparse graphs in which hierarchical clusters are
2.2 Related Work created by recursively dropping the weakest link [4]. More compre-
A graph is a universal concept used to represent many differebt p hensive systems employ clustering algorithms that consider a number
lems. While more restrictive layouts, such as trees, should be u&idlifferent node-edge properties [2]. _
when possible, this work will address the general case of graph inter->€mantic-based abstraction is a more powerful mechanism for pro-
action. In relation to this work, we categorize methods to compreheM#ing an overview, zooming, or giving details. This approach is tied
graph properties as: (i) those solely depending on algorithms, i.e. {RdtS intended application since it requires specific domain knowledge
algorithmic approach, and (ii) those incorporating human input as gﬁthe_ semantlc_lnformatlon [37]. When comblr_led, structural _and se-
integral component, i.e. the interactive approach. Let us review bdiifntic abstraction can prove to be very effective [34]. Also in [34],

approaches in turn. it is shown that overview and level-of-detail (LoD) enabled browsing
can be based on induced subgraphs of different sizes.
2.2.1 The Algorithmic Approach There are many well-known packages that have evolved over time

N . . to specifically address visualization of gene correlation data using
Algorithmic research to automatically compute graph properties ghqe.|ink diagrams such as Cytoscape [32] and VisANT [17]. These
various kinds has been extensively studied. Well known examplgs)|s are built to be web accessible and thus render node-link diagrams
include clique, strongly connected components, |nduce(_:i Su_bgrae ing 2D layouts. While 2D layouts are accepted by the community,
shortest paths, and k-connected subgraph. Let us use cliqueianalygqp packages neglect modern 3D acceleration hardware, raatdy sc
as a representative example. By filtering out edges with weights bgs|| peyond hundreds of nodes, and do not leverage 3D operatians th
low a certain threshold, a gene network with high co-regulation shoyld,« proven to be the preferred representation and navigation tech-
appear as a complete subgraph, or a clique. Hence, itis natural to Gf,es for our users. Due to the common 2d framework, and in con-
sider clique analysis in gene expression data analysis. trast to Shneiderman’s principle, biologists are typically forced into a

However, clique analysis is an NP-complete problem. Even thougyrkfiow in which filtering must be first applied and a global overview
more efficient fixed-parameter methods [23] are currently beind,usgyf the entire dataset simply isn't possible. Our software leverages both
it is still a very time consuming _proce_dure to compute. I_t is also ha"_@penGL and efficient C compilation to facilitate interaction with tens
to treat edges with negative weights in the context of clique analysigthousands of nodes while maintaining interactive performance with
so common approaches typically preprocess the graph to convert@iinplex visual analytics tools not currently available in these pack-
edge weights to absolute values. The impact of information loss dyges. Current work involves integration with a lightweight API [33] to
to thresholding is hard to evaluate and is further complicated by thgow web-based interaction and data-sharing so our software may be
presence of noisg. While partially resolved by parat_:l_ique [23] methogseq synergistically with such well-developed packages.
in which a few missing edges are acceptable, additional problems argy, ¢onirast to the node-link model, an adjacency matrix is a clutter
introduced such as the meaning of paraclique overlap which may foge jnterface. While an adjacency matrix interface for large data is
handled differently depending on the working hypothesis. _limited by the resolution of the display, it is still ideal for a bird’s eye

Such shortcomings apply to different graph algorithms in varyingey [1]."Some patterns such as clique and bipartite subgraphs could
degrees, but are generally inherent with graph theoretic analysis. Hyi very distinctive when examined in an adjacency matrix. However,
ever, this should in no way prevent graph algorithms from being usgdhroper order of vertices is critical. The community has studied this
for suitable problems. From this perspective, it would be greatly agroplem at length. In [16], a comprehensive survey on automatic ver
vantageous to develop a visual, effective and efficient feedbagtefra ey order is included. In general, binary, undirected graphs are the
yvork. In this framework, ahL_Jman expert is enabled to quickly |de_nt|%ost straightforward. While weighted graphs needed more compli-
imperfect portions and details of the data, and not only remove irregisted algorithms, graphs with negative weights are less studied. Based
ularities but also to significantly reduce the dataset’s complexity adjacency matrices, LoD type of browsing is often supported as
interactively constructing various levels of abstraction. The resultingg| 1.
problem space would be more appropriate for graph theoretic analy-p e o the complexity involved in computing a high quality
sis to be applied. In fac_t, some undertakings in visualization reseaghbniew of a graph, researchers have also attempted to use self-
have already adopted similar approaches [29]. organizing maps [21]. Self-organizing maps are a dimension-
_Here we note that our goal is neither to accelerate all computatigtyyction technique which adjusts weights in a manner similar to neu-
in a scientist's workflow nor replace computation solely with visual-5| networks to discretize the input space in a way that preserves its
ization. We hope to develop a visualization framework which aHOWt%pology. The end result is (usually) a 2D field that can be conve-
navigation through gene expression data and segmentation of the @Bntly rendered as a terrain.
propriate data for further study. In this way, s/he can flexibly choose gy ‘creating a spatial layout for a graph, it can be interactively visu-
and apply the right computational tool on the right kind of problem. 564 while preserving the data’s underlying topological relationships.

. Typical interaction methods include focus+context methods (i.e. zoom
2.2.2 The Interactive Approach and filter), graph queries using language-based methods [35],land fi
Much related work in visualization follows the Information Seekingering databases of graphs using graph similarity metrics, typically
Mantra proposed by Shneiderman [36]. That is: overview first, zoohased on non-trivial graph theoretic algorithms [29].
and filter, and then details on demand. At each of the three stagesSocial networks are currently a primary driving application of in-
there are a number of alternative approaches, many of which adg higteractive methods for graph visualization. This has resulted in non-



binary, non-positive definite weights not being as thoroughly studieldrge graph using a set of automated tools through an interactive in-
Also, tools for extracting highly connected subgraphs from this daterface. The key components of the system include the 2D interactive
in a way that addresses the inherent uncertainty appear to be lackinterface, modules to select subgraphs both qualitatively and quantita-
Whereas neural networks have already been used for volume segniiely, and the neural network based classifier that uses selections as a
tation [39], similar approaches have rarely been attempted in gragmplate. We start the discussion by describing the exact set of input
visualization. In this work, we propose several tools that allow trad@ata to our system.

tional quantitative drill-down as well as qualitative selection and filter-

ing techniques to aid domain experts with their analysis. 3.1 The Data

. The only required data is a matrix containing gene-gene correlation
2.3 Beyond The Size of the Dataset values. )\/Nhi(lle all of our testing data use Pearqsgn’s cgrrelation, differ-
Over the years the cutting edge of large data has advanced in strigeg.metrics of correlation are treated no differently in our system. In
At all times, however, the criteria of being large can only be defineatidition, we handle a database of information corresponding to each
in a domain specific manner. For instance, while a terabyte (TB) scgene as can be seen using three relational tables (Figure 1). Specific
multivariate time-varying simulation is large by current standard, iaformation about the object of interest is stored in the Gene table
dataset sized at 10 gigabytes (GB) is already large for medical visuahile information relating to computed gene networks is stored in the
ization requiring real time frame rates. Paraclique table. Since our driving application is to identify the genes
In systems biology, datasets are large in a different way. Specifiat cause variation in complex traits, it is necessary to show the re-
cally for gene co-expression data, 100 megabytes (MB) already quédtionship or distance between genes and QTLs. For that, we need an
fies as large. This is due to the fact that genes act more often in condditional relational table describing the exact location of QTLs in the
bination than alone. The research is to discover how (overlappinig)it of megabases.
combinations of genes act to regulate various phenotypes. Hence th&raph theoretic algorithms provide valuable information that is oth-
real problem space to deal with is exponentially larger. Further exaawise hard to discern about the data. However, many such algorithms
erbating the problem is the uncertainty caused by data noise and thioseir long compute times and are far from being interactive. For
critical data filtering thresholds that are usually chosen according ttwose algorithms, it is then necessary to pre-compute and store their
previous experiences. results for visualization at run-time. In this work, for example, we pre-
While thresholding of edge weights is a useful filter mechanism, ¢ompute and store each gene’s membership in any of the paracliques.
may seriously affect subsequent statistical analyses when decompdie resulting data can easily be stored in a relational table.
ing a correlation matrix. Discovery of dense subgraphs and the genedVe treat all data in the relational tables as attributes of individual
that connect them allow a higher level of abstraction and provide spertices, and the correlation values as an attribute specific to each edge.
cific targets for gene perturbation tests. Because the genes musiTbis is a very generic model that is applicable to a variety of applica-
highly connected with a sub-network, thresholding of edge weightisn domains and is a boon to scientists typically involved in spread-
is often used. However, this often excludes genes that would recesfeeet science. Based on these data, itis then the job of the visualization
higher consideration based on domain specific knowledge. Furthgystem to facilitate interactive, hypothesis-driven study by the user.
this strict thresholding specifically excludes genes that fall outside
of the dense subgraph, but which are highly connected to it and B2 A Clutter-Free Interface for Graph Abstraction
tentially other networks; such genes may occupy important positions__. difficulty with h visualization is the visual clutt q
within the network of expressed genes and QTL locations. The si major difficulty with graph visualization 1S the visual clutter cause

ple capability of dynamically adjusting the threshold, in combinatioR?. thdg sheer complexity (.)J the data. As d|5(f:ussefd In Section 2'252'
with immediate visual feedback and dynamic statistics, allows us @ta _jacencytrr?att_rleprm]{l esa COTC'IS?t'me:' ace for (t:)t:/egllgawmg t e
to develop a much better intuitive understanding of their data and th %Ia in awa?/d atis rfee romvisual clu Te;\ Ogée\&eg- el spacekl)s
better define the network properties of genes of interest for a givg a natural domain for user cognition. The added dimension can be
task. By making this analysis an interactive visual experience, netwoLf'ﬁed to convey additional data, allowing navigation through node-link

characteristics can be identified and used to identify similar structurrg]derlng and full appreciation of structural cues in the data. For our

without a deep mathematical understanding of the correlation matriQPp“Cat'on’ we_hav_e deS|_gned a framework (|II_ustrated in Figure 2)

As methods to measure aquality. usefulness and uncertainty in dwhere an overview is provided through a 2D adjacency matrix. Users
: ) 4 y, usetut Y I arbitrarily select subsets of interesting vertices and create abstrac-

are becoming central issues of visualization research, our ressarc ns for further interactions in 3D

an appllcatlon drlvgn ur_ldertakl_ng that bu'|d§ upon the kno_wledge anaUnlike popular datasets studied in most previous works, the range

expertise of domain scientists in systems biology. Our primary focui dge weights in our datafs 1. 0, 1. 0] . In addition, to Ie’t USers

IS to comprehensively study the_ exponential problem_spa(_:e e_mbed e@ide about uncertainty issues .wé w-ould. like to avoid taking a thresh-

in a real world gene co-expression dataset through visualization. '

Much previous research and applications have been develo olg at this stage of processing due to possible information loss. This
viuch previous rese _applications have VeloRRlkes it hard to directly leverage existing vertex reordering algorithms
which utilize visualization to facilitate biological insight. For in- i

stance, a method to navigate proteomics datasets obtained usi g those surveyed by Mueller [25] or Henry et al. [16].

T - lock tridiagonalization (BTD) is a mature numerical algorithm
liquid-chromatography/mass-spectrometry was reported in [24] at permutesgllrow and colu(mn e)lements of a matrix in suchga way as

comprehensive survey of five existing popular gene expression P'cluster nonzero elements in blocks along the diagonal [5]. This al-

croarray data visualization tools was provided in [31] with empirica rithm always preserves the eigenvalues of the original matrix within
evaluations. Methods used include heat map, clustering and graph e ys p 9 9

. . ; specified error tolerance. It iterates until the following criteria are
derings, parallel coordinates, scatterplots, bar charts, and hlstsgra%g: (1) the final matrix has small bandwidth relative to the size of the

While users preferred to have more analysis capabilities such as clu Strix, and (2) any off-diagonal blocks in the final matrix have either
tering integrated with the interactive visualizations [31], those too W dimension or are close to a low-rank matrix.

focused on providing high quality visual representations and interac- - )
tion with the data. Throughout the literature, we are not aware of an The BTD algo_nthm was deyelo_ped to improve both performance
d storage efficiency for solving eigen problems. The smaller a block

previous works that aimed at supporting visualization and analysis 0. - " !
a large combinatorial space with a tolerance of uncertainty. iS'in a matrix, the lower the corresponding rank in most cases. Thus,
the optimization goal of BTD is to minimize block sizes on the diago-

nal, and correspondingly reduce block sizes off-diagonal as well.
The result of BTD is often characterized as minimization of band-

Our goal is to develop a visualization system in which a human expevidth, because non-zero entries are clustered around the diagasal. It

discerns uncertainties in the data and guides the system to segmeregrg significant to our research. In our application, the minimization

3 APPROACH
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@ Fig. 3. A BTD belt, with magnified views, from a real-world mammalian
gene co-expression study of brain development involving 7,443 genes.
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Fig. 2. lllustration of a permuted adjacency matrix with common graph
patterns (top), and extraction of the BTD belt for qualitative selection
(bottom).
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of diagonal block sizes through global optimization provides a rel
able means to abstract a large graph into a set of minimal basic “bui
ing blocks,” each of which represents a densely correlated suhgra : f
The vertices in these sgbgraphs appear in contiguous segments a “o@@ O o
the diagonal. The off-diagonal blocks determine how these “buildir
block” subgraphs are interconnected. In this way, we can convenier
reassemble the original graph using the minimized diagonal blocl
and show more appreciable structures with significantly less clutter

Let us consider the illustration in Figure 2 from a biological per-
spective. In this example, we show four graph patterns that are ofigg 4. A 2D level-of-detail graph created from brushed BTD belt selec-
of interest to geneticists. Since every data entry in an adjacency Mans to show correlations among BTD structures.
trix represents an edge, selections made in adjacency matrices are on
edges and only indirectly on vertices. The green subgraph is a clique
of highly correlated genes that potentially operate as a unit. The or- ) )
ange subgraph is a bipartite graph, used in gene-phenotype mappindfrom the BTD beJt interface, a user can select diagonal blocks that
in which the trait is correlated with a number of related genes whi@{€ Perceived to be “highly correlated”. Letting a human expert decide
would be of experimental interest. The blue subgraph is a perféltéff'at can be considered as “highly correlated” is our way of handling
matching graph which functions as bridges between subgraphs. i@ uncertainty. We note that the functionality of detecting high cor-
red subgraph is a star containing a “hub” gene which could be targef&#tion in a general setting is a hard problem, particularly when the
for knock-out and affect expression in many structures. acceptab_le tolerances of error can only be qualitatively determined in

For our real world datasets, BTD has been able to consistently gér=ubjective manner.
erate permutations that compress the majority of non-zero to the di-In this regard, BTD can be considered as a computational tool for
agonal. This enabled us to crop a stripe along the diagonal and rofeating data abstraction. Figure 4 shows a simple example in which
that stripe to a horizontal position, as shown in Figure 2, bottom. Wen subgraphs have been selected using diamond shaped bounding
refer to the horizontal stripe as the BTD belt. boxes. Each subgraph is abstracted as a supernode in the LoD graph.

BTD belt is a more efficient use of precious screen resources. duem the much simplified graph, the interconnections among the graph
datasets typically contain several thousand genes so the adjacencyages are clearly discernable. As expected from the BTD representa-
trix is typically very large. Although it is possible to downsample th&ion, a-c andg-i form cliques with high edge weights. Interestingly,
matrix for on-screen viewing, the essential high frequency details i¢dea has a strong negative correlation (as indicated by the dark line
the matrix could be hard to distinguish. color) with subgraphsl, g, and j. LoD visualization of BTD selec-

We show an example of the BTD belt computed from a gene cions complements BTD in the sense that while these multiple sepa-
expression study of brain development in Figure 3. There are 7,4#ded clusters may not share many edges (and thus may not be readily
genes in this dataset. In an adjacency matrix, one can make selectijgile in the BTD belt), the edges that do exist have strong negative
with square shaped bounding boxes. In BTD belt, these square bougeirelations. The LoD representation implies that subgesjsha po-
ing boxes become diamond shaped. Ten sample diamond shaped&#ial down-regulator for these three major networks.
lections have been specified in Figure 3 and magnified to show detailsSince the BTD-belt is a permuted and rotated adjacency matrix,




much information is visible along the diagonals which correspond through the entire dataset and thus specifying the feature they think
an individual vertex. Therefore, the BTD belt immediately shows thiey are seeing in an overly rigorous manner. It is desirable to have
major graph structures in which each vertex participates. These prapproper level of fuzziness into this iterative feedback loop. While
erties can be used to quickly determine the role of specific geneseliaborate agents can take a long time to develop and are too complex
varying numbers and types of networks. to train in realtime, we have implemented a simpler Al system which

At a higher level of abstraction, several large structures share marsers can train at run-time.
edges where their diagonals cross as seen in Figure 4 where subgrapin our system, we use a feedforward, multilayer, back-propagation
g-i form a bipartite-like structure withy. To be specific, the bipartite neural network capable of quickly learning items of interest and dis-
structure visually represents the edges induced by the intersectiorplafying similar items to the user. From this perspective, qualitative se-
each graph’s vertex set. The striping pattern of the bigraph structleetion allows users to visually perceive uncertainties and decide how
implies it is typically the case that a single vertexginis connected to to best guide the computational process, while quantitative queries
many vertices inj and not vice versa. This allows biologists to get grovide an exact means to request a subset of data. With all datasets,
view of how multiple structures may interact, or be regulated, throughe neural network classifier can be trained with subsecond efficiency.
genes that they have in common. )

To allow further data abstraction, users are able to dynamically g¢h® Graph Properties
erate level-of-detail (LoD) representations that facilitate simultaneowghile our neural network treats input attributes indifferently, the
operation across multiple levels of scale. At any point in our systemhoice of which properties to feed into the classifier is quite impor-
the current working graph can be saved and is rendered, along witht. Besides domain-specific database variables, one may also em-
all other saved subgraphs, in the background of the current workipy several integrated graph properties for graph similarity classifi-
graph. The LoD graph can be generated by taking all user-definegtion. Those include: degree of vertex, transitive closure, corthecte
subgraphs and treating them as supernodes. By default, the edge ¢omponents, edge expansion, and shortest path.
necting two supernodes has a weight defined as the average of all edgeach of these properties has a unique biological interpretation. De-
weights between vertices within the two corresponding subgraplggee is one of the simplest useful metrics that can be calculated and al-
Optionally, feature vectors of topological metrics can be calculated @wws biologists to determine statistical correlation between genes and
each subgraph for querying and graph pattern matching, using mejbne networks as there are often many loosely connected genes and
ods described in Sections 3.3 through 3.5, to find similar graph stridew highly-related genes. Transitive closure minimizes the longest dis-
tures rather than similar data items. This LoD graph can subsequen#yice to all other nodes and can be used to find the core of a genetic
be treated as a normal graph and all provided analytics tools in atfucture. Connected components allow biologists to visualize only
system can be used to perform increasingly complex analysis at highglated data within a given subgraph. Edge expansion shows relation-

levels of abstraction. ships within a given subgraph without regard to threshold. Shortest
o . path allows biologists to see how specific genes most directly regu-
3.3 Quantitative Queries late one another. It could also be used to further investigate a favorite

Information contained in relational tables (Figure 1) needs to be stUgcation in the graph and gather only the local correlates view of the
ied in an integral fashion with gene networks. A common comprépecific gene(s) under study.
hensive tool for accessing information in those formats is compound These properties may be used as extra variables in the feature vector
boolean range queries. Unfortunately, it is a difficult process to effised for training a neural network. By adding these to the relational
ciently integrate a commercial database management system withdata that are queried, we provide more information to be leveraged for
altime visualization systems. For this application, we have extendftgzy classification.
the functionality of a recent visualization data server to provide essen-
tial data management functionalities. The core of that data serveidis SYSTEM IMPLEMENTATION
a simplified B-tree that is optimized assuming no run-time insertidn this section, we describe details of our system that may be of interest
or deletion in the B-tree [12]. Using this B-tree, the database in o readers who would like to implement a similar system. Several per-
system, with compound boolean range queries over 8 features, cardyance numbers for our system may be found in Table 1. The num-
queried in Olog n) time at a rate of 10 million vertices per second on &er of vertices, edges, and range of absolute values of edge weights
2.2Ghz Athlon64. This results in interactive, sub-millisecond respongge shown, respectively, along with performance metrics refedeince
to sets of dynamic queries even for large graphs. the sections below. The columns of “2D” and “3D” show the running
The effect of querying is data filtering and thereby complexity reimes (in seconds) of Fruchterman and Reingold’s [10] method oper-
duction. One of the most common data filtering operations for biolating in 2D and 3D, respectively. The column of “BTD” shows the
gists is thresholding. With visualization, this threshold choice can higning results of the BTD permutation process in seconds. The time
applied to a graph interactively and result in both visual and statistical complete neural network training from a few examples and coun-
testing for proper threshold selection. Besides thresholding, we atedexamples along with classification of the entire dataset is recorded
provide more power by also allowing multiple, dynamic, quantitativin number of milliseconds (ms) in the column “NN”.
queries over any computable attributes of a vertex or edge. SampleSince this discussion is not restricted to one of only gene expression
queries include all genes within a 100-megabases distance to a tagggilications, we use four test datasets detailed in Table 1 to indicate
QTL, or all genes in the current subgraph that are significantly relatéte scalability of the system. The datasets include genotype correla-
to a paraclique of interest. tion datasets used to study human lung cancer, medical bibliographic
The queried genes also form a subgraph, no different from thoggferences, mouse behavior, and web architecture made available by
qualitatively selected via the BTD belt interface. Our querying systethe developers of GeNetViz [42].
attains realtime performance, making it feasible to visually evaluate The primary dataset, which we use throughout the rest of this pa-
the effects or sensitivity of key parameters, such as what thresheler, for our driving application involves regulation of 7,443 genes for
value to use. research of mammalian brain and behavior [7]. Visualization results
) o concerning complex traits in this dataset are shown in Section 5.
3.4 Dynamic Fuzzy Classification
When interacting with complex data, it is often useful to provide aftl Graph Layout
automated arbitrator between the user and the data so that repetiue system attempts to load any pre-processed data available or sub-
tasks are off-loaded from the human user. One such important taglquently generates the files if they are not available. Upon startup
is to exhaustively search for genes that match a certain pattern avith a valid weighted-edge graph, the system inspects the graph to de-
classify the data accordingly while handling the innate uncertainty. &rmine specific properties which would necessitate a special layout,
key motivation is to alleviate users from the need to manually browss in the case of a bipartite graph. Otherwise, it generates 2D and



ing mechanism is adaptive and can optionally adjust properties such
as the number of subdivisions in the quadrics based upon the cur-
rent frame rate. Semi-transparent vertex halos [38] are rendesred

Table 1. Datasets and Timing Results (in Seconds)

2‘\5/“1 f)‘l [(J\év;z'g'gis] 02'2303 30D282 BTDO - NN(mS)16 ing splatting for enhanced depth perception. Intuitive click-and-drag
21% 6471 [087.00] 1620 1v18 61 5 interaction and continuous rotation during manipulation circumvents

7443 695122 [0.851.00] 3360 3183 509 141 problems with 3D occ_lusion and aids perceptual reconstruction of the
12343 28.338 [1,74] 8833 9127 2347 172 topolo_gy thr_ough motion pa_rf_illax. The system also has dozens of mi-
nor utilities including the ability to change the color table used by all
elements of the program, take a screenshot, create video, print statisti-
cal information for the current graph, and output gene lists.

3D layouts using either Kamada-Kawai [20] energy minimization &f 3 Neural Network
Fruchterman and Reingold’s [10] force-directed placement. Both la

out algorithms are the standard implementations which use simula%&@ use amultilayer, feedforward, back-propagation, online neetal n

annealing to slowly freeze the layout in place. The layout is said y¥ork for realtime classification which is able to learn while in use by
converge when it reaches a maximum number of iterations, reach loying stochastic gradient descent. Our implementation closely

small percentage of the initial system temperature, or does not chan\f@ ws the description in [30]. Results are given for a neural net-
significantly between iterations. ork with the number of input nodes corresponding to the number of

Like most regular layout algorithms, in our implementation the veprowded attributes, 30 hidden nodes, 2 output nodes, a learning rate

tices are initially placed randomly and then iterated through four maff; 04+ @ sigmoid threshold function, and a hard max used to simply

phases until convergence: random impulse, impulse away from gﬁlect the most likely output. The unusually large number of hidden

other vertices to keep them from overlapping, impulse toward the cdides provides sufficient degrees of freedom for any problematom
ter to keep the system from continuously expanding, and per-ver Qd could be reduced if training speed or overflttln_g b_ecome issues.
impulse toward or away from its connected neighbors in proporti ach of the two output nodes corresponds to the likelihood that the
to the edge weight to preserve graph topology. The entire proces§?§r does or does not want to see the object.

O(M|V|?) where|V/ is the number of vertices arid is the number Neural r]etwork interac_tion involves only a _few easy steps. The
of iterations §~/|V| but varies significantly). Through experimentsuSer left-clicks on an arbitrary number of vertices to select them as
mples. Similarly, right clicking on a vertex adds the vertex as a

we found that the performance differences between 2D and 3D gr, L )
ounter-example. The user may use any filtering or processing tech-

layout algorithms are quite minor as shown in Table 1. ) X : . L S
fues previously mentioned to aid the process of defining the training

The software has been designed to easily incorporate other gr%t o " | d ; les h b lected. th
layout algorithms, such as the fast multipole multilevel method: nce all examples and counter-examples nave been selected, he

(FM3) [14] or LinLog [27]. Such layout algorithms have differententire dataset is proc_essed to only_show items like the examples or to
strengths and weaknesses in conveying specific properties in the¥: ment the data using co[or: Training the neural netwo_rk and clas-
sulting topology. Custom algorithms can be easily incorporated in ogify\nd all other data items is in the order of dozens of milliseconds,
application either procedurally or by simply loading a graph layo own In Table 1, and is tra_ns_parent t_o the_ user. .

file. By default, a single layout is computed for a graph and its ap- Deciding the proper training set is critical when attempting to
pearance is modified at run-time but the user may also switch inter hieve accurate classification for multivariate data due to the high-

tively between multiple layouts. Additionally, the user may dyna dimensional decision space. In our system, we provide two alternative

ically swap between the customary 2D view and the 3D view whi proaches for the user definition of large training sets. First, we al-
tends to convey more relationship information. ow selection of the training set using supernodes in the LoD graph.

Itis also noteworthy that clustering is another term often used by zach supernode represents a network Of. genes, typically segmented
ologists in their research. Although in our work “cluster” and “dens rough BTD selections or database queries, su_c_h that a few gxample
subgraph” have similar meanings, the goal of our approach is qu gpernodes can corr_espon(_:i to hundreds of |nd|V|dL_JaI d"%ta pomts. |
different from the basic goal of popular clustering algorithms. O IS way, USErs can V|su_ally interact with the data while quickly select-
goal is to adequately handle uncertainty in the pursuit of co-regulat entire groups of vertices as examples or counterexamples. Second
(putatively cooperating) genes forming a network, and the nature BE application allows the import/export of vertex data for the current

the interconnections among those networks. We use BTD belt, quer%%rking g“%ph using ASCII files. This can be used to _analyze the
rresponding data with much more sophisticated statistical packages

and neural network to computationally assist the discovery and re&f 9 ! S X

. s : h as Statistical Analysis Software (SAS) or statistics programming

%Tl]ye ;wgrgjgmg;ga?glsgeofﬁﬁ;esStg?g\rlzgﬁ g;ggiﬁi:éy:e do not SO'%%guages such as R. These analytics tools or their batch programs can
' be called during run-time to either fully segment or partially classify

the data. The result can be stored in a vertex list file and then utilized

as a training set.

Vertices are rendered after the edges without the depth buffer to pre-

vent edges from occluding data points. We support the option of rem- ResuLTS AND DISCUSSIONS

dering vertices as splats (also known as billboards or impostors) or L

quadrics which can take arbitrary shape (usually spherical). The spl§1l Overview: Data and Workflow

ting implementation is the typical geometry-based primitive schenwhile early microarray studies emphasized differential expression and

using pre-classification and thus results in slightly blurry vertices babmparative analyses, modern applications [18] emphasize correlatio

has the advantage that it is typically fast. While both options rendef gene expression across large sets of conditions, including environ-

in realtime on most single computers, framerate tests were conduateehts, time points and tissues. Increasingly, this data is being col-

for the 7,443-node graph at several resolutions on a powerwal usiected in a context of natural genetic variation [7], where it can be in-

Chromium. This resulted in 16 fps quads vs. 246 fps splats on tegrated with multiple data sources such as genome sequencing, QTL

800x600 viewport, and 5 fps quads vs 17 fps splats at 3840x30724®alysis, and disease relevant phenotypic data. For this application

monitors). we focus on gene expression analysis conducted with a particular em-
There are many interactive rendering options such as color talpleasis on those traits related to brain and behavior in the laboratory

generation and weight-mapping mechanisms for coloring edges. n#ouse.

default set of these has been provided to express differentiation beA primary source of covariation in gene expression are single nu-

tween solely positive and negative edges (up and down regulation)oteotide polymorphisms (SNPs). Studies in genetical genomics [18]

to enhance contrast between edges with similar weights. The rendstribute variation and covariation in gene expression to the influence

4.2 Rendering
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Fig. 5. BTD selections (bottom) qualitatively extract gene networks (sides), are rendered using dynamic level-of-detail (center left), and used for
template-based classification of entire subgraphs in the original data (center right) for other regulatory mechanisms.

of these differences in DNA sequence. The use of recombinant ifhe associated database in our system is used for querying, interac-
bred strains allows biologists to study replicate populations of mitiwe neural network training, and constructing dynamic level-of-detail
with identical genomes. These populations allow indefinite aggreg@-oD) graph features; it contains information relating to typical sys-
tion of data across studies as new technologies for characterizatiorieshs genetic analyses for each gene such as: the chromosome, position
mice become available. When traits are assessed across geneti¢allynegabases), paracligue membership and connectivity, broseé-se
identical individuals, the correlations among traits are assumed to leritability indices, and QTL mapping [41] locations with p-values
due to common genetic regulation. By finding and analyzing statisfrom QTL Reaper (sourceforge.net/projects/qtireaper).

cal correlations between genotypes and phenotypes, geneticists hope

to discover and interpret the network of causal genotype-phenotyp@ Discovery of Novel Networks

relationships that Qetermlne aftrait of interest. ~ Typical biologists bring a large amount of domain-specific knowledge
Systems genetics research often follows a workflow of finding @ their investigative process, for which many tools exist but are usu-
gene network, finding regulators of that network, and then performatiy challenged by purely data driven investigation of networks. One
ing a focused gene perturbation experiment to determine the fOleaﬁb}E)roach to discovery of novel systems genetics networks is the use of
the associated network on gene expression or function. To begirggnputational tools which allow extraction of highly connected sub-
“large” gene correlation graph must be sifted through, to find a highitaphs in a qualitative fashion. By providing block tridiagonalization
connected subgraph which corresponds biologically to a gene netwgikyhich clusters around the diagonal constitute highly related genes,
in which genes are expressed together, presumably to regulate or $iflogists can easily select potentially novel gene networks. Indeed,
serve a common function. They must then find a small set of causatjugs O(V/|?) algorithm quickly extracts dense subgraphs and can be
genes, highly correlated with the subgraph and likely to regulate c@eated as a rough approximation to the NP-complete problem of par-
expression, to be used as targets of focused investigation. By ragtique enumeration in this context.
nipulating the expression of these genes, the function of the gene netyy Figure 5, the user has selected four BTD regions and dynami-
work can be determined through observation of expressed phesotyR@ly generated a level-of-detail graph. As is expected, the selection
Proof of causality occurs when the gene manipulations recapitulatgs most unrelated to the rightmost selections and therefore placed
network relations. It should be noted that while standards of “largear away from the other selections with a negative correlation to selec-
are highly application dependent, even graphs with less than 10k vigén 3. By selecting LoD vertices 2-4 as examples and 1 as a coun-
tices exhibit a combinatorial space that is overwhelming and, indeggyexample, neural network training on entire subgraphs is used to
presents a rather large and unique problem unlike dealing with volumggrform template-based search for similar genes in the original data.
datasets. The resulting classification from the database information is the graph
In this section, we showcase results for publicly available biologin the right center which has been extracted through the application
cal data which has been the subject of several previous studies. Whaflelomain-specific knowledge in combination with several compu-
brain mMRNA gene expression data was obtained using the Affymettational tools (BTD selection, LoD graphs, and NN template match-
U74Av2 microarray for each of the strains in the BXD mouse popunrg). This highly-connected subgraph contains genes which are simi-
lation and subsequently processed using Robust Multi-Array (RMA@r to cliques 2 and 3 and bipartite structure 4 selected from the BTD
normalization [7]. Throughout the paper, we use Pearson’s cori@nd gives biologists a potentially novel network of two highly-related
lation over 7,443 genes of this dataset as our driving applicatiothense subgraphs to inspect for related function(s). This is currestly b
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qualitatively search across multiple levels of detail has given biologis
several tools for which they can not only solve current problems b 4
also find new ways to address more difficult problems. }
The central motivation of our system is to enable more in-depth a .
flexible expert-driven analysis by providing a diverse set of compi s
tational tools. However, there are other more established algorithn
tools, such as graph analysis, that are of value to scientific reseal
Those tools can be leveraged from within our system through our int =
nal B-tree based data structure which allows queries from algorithn
solutions at a rate that facilitates realtime rendering and interaction.
the section below, we present a significant use case that demonstr
parts of our system to discover network interface genes.
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5.3 Use Case: Discovery of Network Interface Genes

We now demonstrate our application with a biologically significar
use case. Once gene networks have been extracted, it is of prim__ "™ ™" oo e o S 20 Verons 122 B 7753
interest to determine the identity of the gene products that regulate
these networks. Using either qualitative BTD selection or algorithmitig. 6. In this screenshot, two gene networks (bottom left and right)
network extraction, the total decomposition of a genetic correlatiqfave been discovered with a single putatively co-regulating gene as a
matrix into disjoint subgraphs can be achieved. With each disjoipbtential target of knock-out study (center) with proximity information for
subgraph treated as a structure, finding mRNA transcripts with stroo@er potential regulatory genes (top left) undergoing further study. This
correlations to multiple structures would lead to the discovery of “irilustrates the discovery of candidate genes which can affect expression
terface genes”. These mRNA transcripts regulate expression of geniseveral genes throughout the genome that play a role in the locomotor
in those structures, and thereby couple multiple networks and biologsponse of mice exposed to methamphetamine and cocaine.
ical processes. The detection of these transcripts and the analysis of
their gene’s regulatory polymorphisms could lead to the discovery of
major genetic modifiers of large biological networks. sized that the paracliques are related to neuronal activity. Further test-
Our domain experts have found paraclique extraction to be tirgy was then accomplished through data export and communication
most useful and general algorithmic technique. Although choosirgpabilities to specialized bioinformatic pathway analysis tools. By
the proper threshold is a hard problem in general, by way of repefirther analysis of expression for the gene of interest, using GeneNet-
tive experimentation, statistical and combinatorial analysis, 0.85 ismrk.org, it was revealed that its transcript abundance is correlated
preferred threshold for extracting paraclique in the dataset at hiind [@ith stereotyped locomotor behavior induced in BXD mice by drugs
Paracliques with more than ten vertices were extracted, resultingsinch as cocaine [19] or methamphetamine [13].
thirty-seven dense subgraphs, and stored in the systems database. We next stage in the workflow is to enumerate candidate genes
show the largest and third largest paracliques corresponding to gevteich reside at chromosomal locations nearby the gene of interest’s
networks ready for further study in Figure 6. regulatory QTLs. To do this, we must first run an analysis of genotype
In this use case, the challenge is to identify candidate genes thasociations to the expression of interface gene Prl in order to iden-
may be the common regulators of expression for a large numbertidy QTLs that regulate its expression. This analysis, which we have
other genes, and to determine which functional biological characterfgerformed using GeneNetwork.org and linear modeling in SAS v9.1,
tics or disease related traits the network may be involved with. Sorr@veals putative regulatory loci at specific locations on chromosomes
facts are known about this situation: 1) each gene’s physical locatitn2, 6 and 14. By using our tool's integrated data query capability,
within the genome is near the location of one of the genotype mark&ve can then highlight co-expressed genes that reside in regions pro-
associated with the gene expression level; 2) the interface gene naled by the other tools. The candidate genes may help regulate the
be a member of one of the dense subgraphs, but it must be highBtworks since they are located in close physical proximity to one an-
connected to members of both dense subgraphs; and 3) the biologathkr, their transcripts are highly correlated to many paracligue mem-
regulator is likely to be in the same pathway as the genes it regulatégers, and the QTL that regulates them also regulates many members of
By creating a level-of-detail graph in which the edge weight for siboth paracliques. This leads to the identification of a limited number
pernodes is defined as the percent of connectivity to the adjacent gefieandidate regulators including Pax3, Lama5, Mkrn2, and Dhrs4.
or supernode, we can use the hot-cold coloring scheme to visually elu\We have now derived testable hypotheses regarding the mechanisms
cidate the correlation between multiple structures. This allows for &y which the networks are co-regulated and can validate this new
intuitive representation of network distance which can allow biologisisiowledge with in vivo experimentation. It follows from the anal-
to identify functional modules and their relationship to each other isis of co-expression that these two paracliques are controlled by a
forming the pathways underlying specific biological processes. Tkkemmon genetic regulator. A high genetic correlation implies that the
data is then filtered via threshold to retain only the strongest correlsiomolecules represented by the connected vertices have values that
tions between individual transcripts and entire networks. Once suate determined by the same genotype. Expression of the interface gene
a network is constructed, additional queries may be posed that relBtd can also be correlated with biological function and traced back to
to additional candidate genes and their association to the genetic palyegulatory QTL. Prl1 and the two dense subgraphs have been associ-
morphisms that regulate the network. ated with specific traits measured in BXD mice. A small number of
In this use case, the technique described above was applied to visandidate regulators from positions near the regulatory QTL has also
ally identify a specific gene of interest whose transcript is connectbden identified. The resulting visualization reveals networks which
to over 99% of both the largest and third largest paracliques as shogmfrom locomotor responses to specific drugs down to the connected
in Figure 6. The gene of interest, Prl or Tmem37 (Affymetric probeolecular pathways which underly them.
set ID 95464at), has thus been implicated as part of the regulatory While Figure 6 represents only a few steps from a typical work-
pathway that co-regulates the two large networks. This gene encodéew, the result of this finding captures overwhelming complexity. As
voltage-dependent calcium channel gamma subunit-like protein whieérly forays into systems genetic analysis have demonstrated, biolog-
modulates electrical properties of neuronal cells. It can be hypotheal processes such as mammalian behavior involve a complex inter-




play of expression from many hundreds of genes across multiple chro
mosomes and biological systems. For this reason, we expect similar
linked views of multiple tools to be the norm for systems genetic vi{7]
sualization. The tool presented herein allows users to retain networks
and their relationships as well as rapidly isolate genes and subgraphs
based on their connectivity. The tools demonstrated represent a flexi-
ble and dynamic approach which allows users to scale up from single
genes or traits of interest found in web based tools to results of glob
analyses such as clustering and high-performance combinatorial ana
yses.

6 CONCLUSION AND FUTURE WORK Bl
In conclusion, it has been shown that the integrated computatiofE]
tools not only provide research scientists and analysts a way to vi-
sualize their data, but it also allows complex querying and filtering for
drill-down, graphical analysis, and statistical output. Each of the
are facilitated by combinations of a 3D spring-embedded layout, efﬁ-z]
cient B-tree processing, neural networks, matrix operations, amhgr
algorithms.

While our visualization tool enables significant biological discover 5
ies, its full potential can only be leveraged when used in combination
with mature applications and data management systems for genetical
genomics datasets. For this purpose, our future work includes integia
tion with the Gaggle API [33], a web-enabled, platform-independent,
multi-application, data-sharing framework for widespread use amofig]
systems biologists available at gaggle.systemsbiology.org. In addition
to the linked viewports framework, we are also considering domain-
specific hybrid visualizations such as [15]. This tool is also current(}6]
being integrated as a correlation visualization tool to complement the
genome-phenome data integration tools in the Ontological Discovery
Environment (ODE) suite at ontologicaldiscovery.org. Ongoing woré’]
is currently being conducted with biologists to implement new func-
tionality relating to domain-specific requests for handling linkage dis-
equilibrium, QTL analysis, integration of genetic information acrose8l
multiple scales, multiple time points, and different graph types. [19]
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