In Class Problem #1

I have just shown you how to calculate the hash of the string "abcaa" using the ACM hash function. Your job is to tell me, in hexadecimal the ACM hash of the string "abcaaP". The ASCII value of 'P' is 0x50.

Here is the permutation table, in case you'd like a copy for yourself:

Permutation                   Second hex digit
   Table
                 0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
                -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 
             0  01 57 31 0c b0 b2 66 a6 79 c1 06 54 f9 e6 2c a3
             1  0e c5 d5 b5 a1 55 da 50 40 ef 18 e2 ec 8e 26 c8
             2  6e b1 68 67 8d fd ff 32 4d 65 51 12 2d 60 1f de
    First    3  19 6b be 46 56 ed f0 22 48 f2 14 d6 f4 e3 95 eb
     hex     4  61 ea 39 16 3c fa 52 af d0 05 7f c7 6f 3e 87 f8
    digit    5  ae a9 d3 3a 42 9a 6a c3 f5 ab 11 bb b6 b3 00 f3
             6  84 38 94 4b 80 85 9e 64 82 7e 5b 0d 99 f6 d8 db
             7  77 44 df 4e 53 58 c9 63 7a 0b 5c 20 88 72 34 0a
             8  8a 1e 30 b7 9c 23 3d 1a 8f 4a fb 5e 81 a2 3f 98
             9  aa 07 73 a7 f1 ce 03 96 37 3b 97 dc 5a 35 17 83
             a  7d ad 0f ee 4f 5f 59 10 69 89 e1 e0 d9 a0 25 7b
             b  76 49 02 9d 2e 74 09 91 86 e4 cf d4 ca d7 45 e5
             c  1b bc 43 7c a8 fc 2a 04 1d 6c 15 f7 13 cd 27 cb
             d  e9 28 ba 93 c6 c0 9b 21 a4 bf 62 cc a5 b4 75 4c
             e  8c 24 d2 ac 29 36 9f 08 b9 e8 71 c4 e7 2f 92 78
             f  33 41 1c 90 fe dd 5d bd c2 8b 70 2b 47 6d b8 d1

Here is also some detail to help you:

h_0 = 0x60
h_1 = 0x63
h_2 = 0x62
h_3 = 0x60
h_4 = 0xe5