Topcoder SRM 639, D1, 250-Pointer "AliceGame"

James S. Plank
EECS Department
University of Tennessee

> CS494/594 Class
> August 28, 2017

The problem

- Alice and Harvey are playing a coin-flip game.
- There are r rounds.
- Alice wins on heads, Harvey wins on tails.
- The first round is worth 1 point.
- Each subsequent round is worth 2 more points than the previous round.

The problem, continued

- You are given two numbers:
- Alice's total score
- Harvey's total score
- Return the minimum number of rounds that Alice could have won.
- Return - 1 if the scores are impossible.

Example 0:

17

Answer is 2.
(Pictured on the last slide)
5 total rounds.
Alice wins rounds 2 and 3 .

Prototype and Constraints

- Class name: AliceGame
- Method: findMinimumValue()
- Parameters:

a	long long	Alice's Total Score
b	long long	Harvey's Total Score

- Return Value: long long
- Constraints: a and b are between 0 and 10^{12}.
- Which is 2^{40}, in case you've forgotten.

Observation \#1

- $(a+b)$ must be a perfect square. Why?

$$
\begin{aligned}
a+b & =1+3+5+\ldots+2 r-1=\sum_{i=1}^{r}(2 i-1) \\
& =\sum_{i=1}^{r} 2 i-\sum_{i=1}^{r} 1 \\
& =\frac{2 r(r+1)}{2}-r=r^{2} .
\end{aligned}
$$

Observation \#2

- Since a and b are limited by 10^{12}, and
- Since $r^{2}=a+b$,
- Then: r is on the order of 10^{6}.

A solution that is linear in r will be fast enough.

Observation \#3

- Let r be the number of rounds.
$-r^{2}=(a+b)$
- $a=2$ is unattainable
$-a=r^{2}-2(b=2)$ is unattainable
- Everything else is attainable.

Example where $(a+b)=16$

$$
(r=4 \text { rounds })
$$

1	1
2	Impossible
3	3
4	$3+1$
5	5
6	$5+1$
7	7
8	$7+1$
9	$5+3+1$
10	$7+3$
11	$7+3+1$
12	$7+5$
13	$7+5+1$
14	Impossible
15	$7+5+3$
16	$7+5+3+1$

Approach Using Recursion

\longleftarrow Possible values of a from 0 through r^{2}

This approach is $O(r)$.
You'll note: if $a=r^{2}$, then $a-(2 r-1)=(r-1)^{2}$

Base Case - Solving $a \leq 2 r$

- Remember, the round scores are:

$$
-1,3,5, \ldots, 2 r-1
$$

If a is odd

The answer is one

1	1
2	Impossible
3	3
4	$3+1$
5	5
6	$5+1$
7	7
8	7+1
	$(r=4)$
2	
WSW	
No	

How about $a>2 r$?

- Let's give round r to Alice, and then solve the problem recursively.
- Makes sense, because subtracting ($2 r-1$) will remove the most from Alice's score.

$$
\begin{gathered}
\text { findMinimum }(a, r) \\
= \\
1+\text { findMinimum }(a-(2 r-1), r-1)
\end{gathered}
$$

- Does it work?

How about $a>2 r$?

How about $a>2 r$?

How about $a>2 r$?

findMinimum (a, r)
 $1+$ findMinimum (a-(2r-1), $r-1$)

Works in all cases but this one!

So, let's fix that case

- When $a \leq 2 r+1$, and $r>3$, the answer is three:
- Rounds 1, 2 and $r-1$.
- Scores 1, 3 and $2 r-3$
- Whose sum is $2 r+1$.

The Algorithm:

- If $(a+b)$ is not a perfect square, then return -1 .
- $\operatorname{Set} r=\operatorname{sqrt}(a+b)$.
- If $a=2$ or $b=2$, return -1.
- If $a=0$, return 0 .

- If $a<2 r$ and a is odd, return 1 .
- If $a \leq 2 r$ and a is even, return 2 .
- If $a=2 r+1$, return 3 .
- Otherwise, solve for $a=a-(2 r-1)$ and $r=(r-1)$ and add one to the answer.

Running Time:

- This iterates at most r times, so it is $O(r)$.
- Because $r \leq 10^{6}$, this runs fast enough to complete within Topcoder's limits.
- Recursion will fail, because nesting is $O(r)$ too.
- (Fails at $a=16,900,000,000)$

MacBook Pro
2.4 GHz

No optimization

Continuing in that vein:

- You can solve that algebraically if you want.
- However, when values get really large (think 2^{63}), can you rely on procedures like sqrt ()?
- Think about it.

Making it faster:

- You can do this in $O(\log (r))$.
- Suppose the last h rounds go to Alice, but that the previous round goes to Harvey.
- Then $r^{2}-(r-h)^{2}=\left(2 r h-h^{2}\right)$ points go to Alice, and you can solve the remaining problem instantly.
- Use binary search to find the largest legal value of h.

How did the Topcoders Do?

- This one was tricky:
- 534 Topcoders opened the problem.
- 496 (93\%) submitted a solution.
- 138 (28\%) of the submissions were correct.
- That's an overall percentage of 25.8%.
- Best time was 4:22
- Average correct time was 29:32.
- I suspect the $2 r+1$ part tripped people up.

Topcoder SRM 639, D1, 250-Pointer "AliceGame"

James S. Plank
EECS Department
University of Tennessee

> CS494 Class
> August 28,2018

