Small Parity-Check Erasure Codes - Exploration and Observéons

James S. Plank
Adam L. Buchsbaum
Rebecca L. Collins
Michael G. Thomason

Technical Report UT-CS-04-537
Department of Computer Science
University of Tennessee

Knoxville, TN 37996

November, 2004

http://www.cs.utk.edu/"plank/plank/papers/CS-04-528 html

This paper has been submitted for publication. Please sesbtbve web site for up-to-date

information about the publication status of the paper.



Small Parity-Check Erasure Codes -

Exploration and Observations

James S. Plank Adam L. Buchsbaum Rebecca L. Colling
Michael G. Thomaso#*

Abstract

Erasure codes have profound uses in wide- and medium-anmegetapplications. While infinite-size codes have been
developed with optimal properties, there remains a neeéveldp small codes with optimal properties. In this paper, w
provide a framework for exploring very small codes, and we tiés framework to derive optimal and near-optimal ones
for discrete numbers of data bits and coding bits. Thesescloaiee heretofore been unknown and unpublished, and should
be useful in practice. We also use our exploration to makerobtions about upper bounds for these codes, in order to

gain a better understanding of them and to lead the way fardiderivations of larger, optimal and near-optimal codes.

1 Introduction

Erasure codes have been gaining in popularity, as wide-&med, and peer-to-peer file systems need to provide fault-
tolerance and caching that works more efficiently and essily than by replication [FM$04, GWGRO04, PT04, RWED1,
ZL02]. In a typical erasure code setting, a file is decompasid: equal sizedlatablocks, and from thesep additional
codingblocks of the same size are calculated. The suite #fm blocks is distributed among the servers of a wide-area
file system, and a client desiring to access the file need aaly £, of these blocks in order to recalculate the file. In this
setting,f is termed theverhead factgrand has one as its lower bound.

Reed-Solomon codes [Pla97, PD04, Riz97] are a class ofrerasdes that have ideal overhead factgrs (1). How-
ever, their computational overhead grows quadraticalth wiandm, severely limiting their use. Low-Density Parity-
Check (LDPC) codes [LM$97, RU03, WKO03] have arisen as important alternatives tadR&glomon codes. Although
their overhead factors are suboptimally greater than dves; tomputational overheads are very low. Thus, the tfideo
between a client having to download more thablocks of data is mitigated by the fact that recalculatirgtitocks of the

data is extremely fast, and in particular much faster thagdR&olomon codes.

*This material is based upon work supported by the Nation@n®8e Foundation under grants CNS-0437508, ACI-020400;0%22945, and EIA-
9972889. 1 Department of Computer Science, University of Tennesseextdille, TN, 37996 [plank,rcollins,thomason]@cs.utk.edu
1 AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham Piikp7932 alb@research.att.com



The theory for LDPC codes has been developed for asymptetiosing that as: goes to infinity, the overhead factor
of codes approaches its optimal value of one. For small gadire andm (less than 1000), there is little theory, and recent
work has shown that the techniques developed for asympiticiot fare well for smalk andm [PT04].

The purpose of this paper is to start closing this hole in treoty. Rather than concentrate on large values of
andm, we concentrate on very small values, using enumeratiorhandstics to derive either optimal codes for these
small values, or codes that are not yet provably optimalréptesent the lowest known upper bounds. We present these
codes as they should be useful to the community. Additignat demonstrate some properties of small codes and present
observations about the codes that we have derived. We lbay@dof/disproof of these observations as open questions t
the community.

The significance of this work is the following:

1. To present optimal, small codes to the community. To ttieaag’ knowledge, this is the first such presentation of

codes.

2. To present upper bounds on larger codes to the commurotyherauthors’ knowledge, this is also the first such

presentation of codes.

3. To present evaluation, enumeration and pruning teclesitjuat apply to small codes, and have not been used on

LDPC codes previously.

4. To stimulate thought on small codes in hope of proving progs of codes in general that do not rely upon classical

asymptotic, probabilistic arguments.

2 LDPC Basics

The material in this section is all well-known and has beasented elsewhere. See [WKO03] for more detail.
Although wide-area file systems use LDPC codes to operatdamkdof data, the specification of LDPC codes is

typically on bits of data. Blocks are simply composed of ripldt bits. In this work, we use the following terminology:

e The number of data bits is.

The number of coding bits is.

The total number of data and coding bits\'s= n + m.

Therate R of a code is]ﬂv.

Theoverhead of a code is the average number bits that must be presentodeed the bits of the data.

Theoverhead factoyf of a code io/n.



LDPC codes are based on bipartite graphs known as “Tanreghgt These graphs haVvenoded, . .., [y ontheir left
side, sometimes termed the “message” nodespanddes-, . .., r,, on their right side, termed “check” or “constraint”

nodes. Edges only connect message and check nodes. An exgnayph is depicted in Figure 1.

| 11| 12+14+15+17=0

r2 | 11+12+13+17=0

r3| 12+13+14+16=0

Figure 1: An example Tanner graph for= 4 andm = 3.

The left-hand nodes hold the bits that are to be stored byppkcation. The edges and the right-hand nodes specify
constraints that the left-hand nodes must satisfy. The steaightforward codes are “systematic” codes, where th& da
bits are stored im of the left-hand nodes, and the coding bits in the remaininigft-hand nodes are calculated from the
data bits and the constraints in the right-hand nodes usiciggve-or.

For example the code in Figure 1 is a systematic one, whosébitatmay be stored in nodésthroughi4. The coding

bits are calculated as follows:
e Bit /4 is the exclusive-or of;, I3 andl, (from constraint-s).
e Bit [; is the exclusive-or of;, I> andl3 (from constraint:s).
e Bit /5 is the exclusive-or of;, I, andl; (from constraint-;).

We present decoding as an act in a storage system. Supposereveach of theV bits on a different storage server.
Then we download bits from the storage server at random wethave downloaded enough bits to reconstruct the data.
To decode in this manner, we start with the Tanner graph Bctide, placing values of zero in each right-hand node, and
leaving the left-hand nodes empty. When we download a bitpwigts value into its corresponding left-hand hand node
l;. Then, for each right-hand node to which it is connected, we update the value stored;ito be the exclusive-or of
that value and the value . We then remove the eddé, r;), from the graph. At the end of this process, if there is
any right-hand node with only one incident edge, then it aimstthe decoded value of the left-hand node to which it is
connected, and we can set the value of this left-hand nodediogly, and then remove its edges from the graph in the
same manner as if it had been downloaded. Obviously, thisiteeative process.

When all nodes’ values have been either downloaded or ddctiteedecoding process is finished. If a code is system-
atic, then the data bits are held+inof the left-hand nodes. The number of exclusive-or/copyaipens required equals

the number of edges in the graph.



Encoding with a systematic graph is straightforward — singj@icode using the data bits.

2.1 Determining Whether A Graph Is Systematic
The following algorithm determines whether or a not a graggresents a systematic code. The algorithm iteratéses:

e Select a left-hand node that has exactly one edge to a cortsicale. If there are no such left-hand nodes, then
the graph does not represent a systematic code. Let thideft-node beode (for i equals 1 tan), and let the

constraint node be namednst.
e Removeconst and all edges incident to it.

If this algorithm iteratesn times, then the graph represents a systematic code, with tle&-hand nodes holding the
coding bits, and the remaining left-hand nodes holding the data bits. Althodghgroof of correctness of this algorithm
is not presented here, it should be noted that when tth@ta nodes are downloaded, constraint noatest,, will have one
edge to it, and this edge is from nodede,. Therefore, nodeode,, may be decoded. Wherode,, is decoded, and all
its other edges are removed from the graph, then wodst,,_, has only edge to it, and this edge is from ncdels,, ;.

Decoding completes in this manner.

3 Three Ways of Computing Overhead

3.1 Brute-Force Enumeration

One can compute overhead in a brute-force fashion, by eraimgall N'! download sequences of bits, and averaging the
number of bits requred to decode the data in each sequene@®Bly, this process becomes computationally intraetibl
for rather smalh andm. One may use Monte-Carlo simulation to approximate thelmasd, as in [PT04]. However, there

are alternative ways of computing overhead.

3.2 Recursive Overhead Calculation

In this section, we specify a technique to compute overheaarsively. Before making this specification, we give a more
precise specification of the decoding process. We are givianaer graply with N = n + m left-hand nodes angh
right-hand nodes, each of which may hold a bit. We assumeathtite right-hand nodes have either zero incident edges
or more than one incident edge. If a left-hand node has zeyeszdhen we assume that we know its value as a result of a
previous decoding phase, but that we have not downloaded it.

When we start, we set the value of all right-hand nodes to aeddeave the values of all left-hand nodes blank.

To decode, we define two operations on gra@ssigninga value to a node, artbwnloadinga node. Both operations
are defined only on left-hand nodes. We start with the forn@&ven a left-hand nod&, when the value of that node

becomes known, it should mssigned When it is assigned, for each right-hand nedeo which!; is connectedy;’s



value is set to the exclusive-or of its previous value &fedvalue, and then the eddg, r;) is removed from the graph.
If there is any right-hand nodg which now has only one incident edge, then the value of thienkefid node to which;

is connected may now be assigned to be the valug.dBefore assigning the value, however, the edge betweemdiukt
andr; should be removed, and should also be removed from the graph. Note: assigning ode’siwalue can therefore
result in assigning many other nodes’ values.

To downloada node, if the node’s value has already been assigned, teerotte is simply removed from the graph.
Otherwise, the value of the node is assigned to its downbbadtkeie, and it is then removed from the graph.

When the values of all left-hand nodes have been assignedgettoding process is finished.

Recursively computing the overheadl7) of graphG proceeds as follows. If all nodes have zero edges, then the
overhead is zero. Otherwise, we simulate downloading edth&nd node of the graph and compute the average overhead
as the average of all simulations. When we simulate dowigeainodd;, we assign its value (if unassigned), potentially
decoding other nodes in the graph, and remove the node fregréph. We are then left withrasidualgraph,R(G, [;).

We can recursively determin®(G, [;)'s overhead. Then, the equation for determining a grapteéstwead (if not zero), is:
N
o(G) = (Zu + o(R(G, zi)))> /N.

i=1
We give several examples of computing overhead in this dewsini Appendix 1.

3.3 Computing Overhead Using Residual Graphs

A third way to compute overhead is to look at a variation ofb&idual graph, presented above. KgtG) be the set of
all subsets of the left-hand nodes@fthat contain exactly. nodes. LetS € S,,(G). We define the residual gragtys to
be the graph that remains when all the nodeS§ and their accompanying edges are removed féanNote that unlike
the residual graph in Section 3.2 above, we do not perforrodieg when we remove nodes from the grapy simply
contains the nodes ¥ that are not inS.

We may calculate the overhead®f in either of the two manners described above. Let that oeetheo( Rs). Note:
the first step in doing so will be to decode right-hand nodatdhe incident to only one left-hand node, and this overhead
may well be zero (for example(Ry;, ;,,.,3) = 0 for the graph in Figure 1).

Now, the overhead of a gragh may be defined as plus the average overhead of the residual graphs that kelsatt
every subset of, nodes is removed fro@. Formally:

o(G) =n + <—ZSES”(S§)) O(RS)> |

Note that this use of residual graphs is similar to usitupping set§DPT+02] for overhead analysis.

4 Special Casesm =1andn =1

Whenm = 1, there is one coding node te data nodes, and the optimal code is a straight parity cade: ; =

{l, .yl ) {1,m1), - ooy (Ing1,71)}). One may easily prove using residual graphs tfat”,_,) = n. When-



evern nodes are removed from”

m=1"

the residual graph contains one node with one edge.t€learly, the overhead of
that graph is zero, and therefore the overhea@f , is the optimal value:.

Whenn = 1, there is one data node ta coding nodes, and the optimal code is a replication co@g= =
sy lng 1,1y oy T}, BT, whereE= = {(1,r)[1 < i <mP U {(Li+ 1,m)[]1 <i < m}.

Itis straightforward to prove tha{G”=!) = 1. Again, we use residual graphs. Supphsgnd all its edges are removed
from the graph. Then the residual graph has exactly one edgeety right-hand node, and it may be decoded completely.
Suppose instead that:; and its one edge is removed from the graph. The residual drapkexactly one edge 61,
which is connected th . Therefore]; and subsequently all other nodes may be decoded. Sincedhgead of all residual

graphsis zerom(Gn=1) = 1.

5 Optimal and Near-Optimal Codes form € {2,3,4,5}

In this section, we use residual graphs to derive closear-xpressions for the overhead of a graptwvhich hasmn right-
hand nodes, anth is small € 5). We introduce a new nomenclature for this derivation. Weeribat theN left-hand
nodes of any graph may be partitioned i2td — 1 sets, depending on the right-hand nodes to which they aneected.
We label these sets,, ..., Com _1, and specify thal; € C; if and only if:

m

j=Y 2"EB(i,k),

k=1
whereE(i, k) = 1if (I;,r) is an edge inG, andE(i, k) = 0 otherwise. Therefore, node in Figure 1 is an element of
Cs, 1y € Cr, andl; € Cs.

Let¢; = |C;]. Then, one may uniquely specify a gra@tby the values of eacty, rather than by nodes and edges. For
example, the graph in Figure 1 may be specified as (1, 1, 1, 1, 1), since there is one of each of the seven different
kinds of left-hand nodes.

For later discussion, we will also define the functigm) to equal the number of one bits in the binary representation
of the integeti. Therefore, if a nodé € C;, then! has exacthe(:) edges. Finally, we define dfdge ClassE; to be the
union of allC; such thak(i) = j. We can then discuss the collection of nodes that have the samber of edges as the

nodes in the same edge class. We will also group togethenatits of nodes in edge clagss allc; € E;.

5.1 Optimal Codes form = 2

Whenm = 2, there are only three different types of left-hand nodesos¢hinC,, C3, andCs5. Whenn nodes are
downloaded, only two remain, and there are only six possdsaual graphs, which we specify by their valueg:;0f(1,
1,0),(,0,1),(0,1,1),(2,0,0), (0, 2,0), and (0, 0, 2). Tinst three of these contain one right-hand node with exactly
one edge, which means each of these three may be completelgete The remaining three cannot be decoded until one
of the two left-hand nodes is downloaded. Therefore, thetmad of the first three graphs is zero, and the overhead of the

remaining three graphs is one.



LetG = (c1, ¢, c3). To calculate overhead, we note that there(éﬁe ways to downloadh nodes and have (2, 0, 0) as
a residual graph. Likewise, there &) ways to have (0, 2, 0) as a residual graph, &fjd ways to have (0, 0, 2) as a

residual graph. Therefore, the overhead-dt:

o(C) = + ((3) (5 + ()
(%)
SinceN = n + 2, we note tha(” ) = ("1?), and we may simplify)(G) as follows:

c1(c1—1) co(ca—1) c3(cz—1)
n+< 1 5 4 e ; 4 s ; )
(n+2)(n+1)
2

(@)

A+cE+ck—(c1+ca+cs)
n+2)(n+1)
d+c+cg—(n+2)
(n+2)(n+1)

Sincen is a constant, in order to minimize the overhead, a graph mirstnizec? + 3 + c2. Itis easy to prove that

this quantity is minimized when the differences amongdhare minimized. Therefore, any graghof the form @,y,2),
wherez,y,z € {|§],[§1} andz + y + z = N, is an optimal graph for that value of.

Table 1 lists the optimal graphs fet = 2, and1l < n < 10, plus their overheads and overhead factors.

n|c c2 c3 0 f

171 1 1) 1.0000| 1.0000
212 1 1| 21667 1.0833
312 2 1| 3.2000 | 1.0667
4 | 2 2 2| 4.2000 | 1.0500
5|3 2 2] 52381 | 1.0476
6 | 3 3 2| 6.2500 | 1.0417
713 3 3| 7.2500 | 1.0357
8|4 3 3| 82667 | 1.0333
914 4 3| 92727 1.0303
10| 4 4 4 10.2727| 1.0273

Table 1: Optimal codes fon = 2,1 < n < 10, plus overheads and overhead factors.

5.2 Computing Overhead form = 3

Whenm = 3, there are seven potential types of left-hand nodes, démgté’;, . .., C;, and a grapliz may be uniquely
specified by its values af; throughc;. Suppose: nodes are removed fro, leaving a residual with just three left-hand
nodes. There are 59 residuals that may result that cann@doeldd completely. We enumerate them, their overheads, and

the number of ways that they may be generated fé8swalues ofc;, below:



e Residuals with three identical left-hand nodes:An example is (3,0,0,0,0,0,0). Clearly there are sevenstygfe
these, one for eaafi;, and the overhead of decoding this type of residual is 2. iivethe number of these types

of residual isy7_, (%).

e Residuals with exactly two identical left-hand nodesExamples are (2,1,0,0,0,0,0) and (0,1,0,2,0,0,0). There a
42 types of these, six for eacty, and the overhead of decoding this type of residual is 4/8ei&r, the number of
these types of residual is:

! C; 7 C;
2,2, = Z0)ew
i=1 j=1,j#i i=1
¢ (0,0,1,0,1,1,0)This graph has exactly two edges entering each right-hade.rts overhead is one, and the number

of these graphs igcscg.

e (1,0,0,0,0,1,1), (0,1,0,0,1,0,1) and (0,0,1,1,0,0,A% above, these graphs have exactly two edges entering each

right-hand node. Their overhead is one, and the number eéthmphs ig,cscr + cacser + cacser.

e (1,1,1,0,0,0,0),(1,0,0,1,1,0,0) and (0,1,0,1,0,1Tese graphs have two right-hand nodes with two edges amd on

with zero. Their overhead is one, and the number of thesehgriap; cocs + ¢1cqcs + cacqce.

¢ (0,0,1,0,1,0,1),(0,0,1,0,0,1,1) and (0,0,0,0,1,1ThHese graphs have two right-hand nodes with three edgesrand

with two. Their overhead is one, and the number of these gregalycscr + cscger + escger.

Therefore, the overhead of a graph with= 3 is given by the following rather tedious equation:

221':1 (63) + % Zi:l (‘;)(N —¢i) i
(5)
3
C3C5C6 + C1C6C7 + C2C5C7 + C4C3C7 + C1C2C3 + C1C4C5 + C2C4C6 + C3C5C7 + C3C6C7 + C5C6CT
~ .
(3)

Unlike for m = 2, minimizing this equation is not straightforward. We dissinow we enumerate graphs to determine

oG) = n+

the optimal ones below in Section 5.4.

5.3 Calculating Overhead For Arbitrary m

Whenm > 3, there are far too many residual graphs with non-zero oeethe enumerate by hand. Instead, we may
enumerate them electronically and calculate their ovathiedsing such an enumeration, we may calculate the overhead

of any graphG = (¢1,...,com_1) as follows. Given a residual gragh = (r1,...,r2m_1), the number of ways tha®

2m 1

H (Cl)
r

i=1 v

This will be the product of at most terms, sincer:l_1 r; = m.

may result from downloading bits fromG is:



Thus, if R,, is the set of all residual graphs with non-zero overhead the overhead of a grapgh is:

Sren, (BT ()
()

Of course, the size ak,, increases exponentially, so this technique is only praktar smallm. Whenm = 4, there

o(G) =n+

are 2,617 residual graphs with non-zero overhead, andladtuy the overhead of a graph takes roughly 2 milliseconds
on a Dell Precision 330. Whem = 5, there are 295,351 residual graphs with non-zero overteaticalculating the

overhead of a graph takes roughly 128 milliseconds. Whes 6, there are 105,671,841 residual graphs with non-zero
overhead, and calculating the overhead of a graph is toonsimefor an exhaustive exploration of the type that we are

pursuing. Thus, in the data that follows, we limitto be less than or equal to 5.

5.4 Finding Optimal and UB, Codes form € {3,4,5}

Whenm > 2, minimizing o(G) mathematically is not straightforward and remains an @gtng open problem. Here we
use enumeration and heuristics to find the best codes. Wnfely, graph enumeration is also exponential iandm;
therefore, for all but the smallest valuesroindm, we prune the search using a heuristic that we patturbationby p
elements. We take the best coderior 1 and generate all codes foithat can be derived from the— 1 code by subtracting
up top elements from the various, and adding up t@ + 1 elements to the othes. For example, the optimal code for
m = 3 andn = 32 is (6,6,5,6,4,4,4). The optimal code for= 33, (6,6,5,6,5,5,3), is derived from the code foe= 32 by
subtracting one from;, and adding one te; andcg - a perturbation witlp = 1. We use this technique to generate what
we call UB, codes, which stands fafpper Bound, perturbed by.

We generated optimal and |JBodes for the values of. andn listed in Table 2. The total CPU time to generate these
2910 codes is 681 days. Fortunately, however, the enurorsatind perturbations are easily parallelizable, and we wer

able to enlist 89 machines of varying flavors and speeds tthatitime by a factor of 20.

m | Optimal Codes| UB, Codes| p | CPU time per UB code
3 n < 50 n <1750 | 6 10s

4 n <10 n <1000 | 4 3h49m

5 n<3 n < 160 2 78h 13m

Table 2: Range of optimal and YRodes generated

The UB, codes are not provably optimal. We believe that for eachevafur, there is a minimum value gf for which
all UB,, codes will be provably optimal, and thatvill grow with m. For example, forn = 3 in our tests, the maximum
value ofp for which UB, #UB,_; is two. Form = 4, that value is 3, and only occurs in one case (deriving 137
fromn = 138). Proving what this value is for a given valuesafis an open question. We are confident thatfoK 4 in

our tests, our UB codes are optimal. We doubt that the JJ&des form = 5 are (in fact, a counterexample is given in



Section 6 below). Unfortunately, we cannot call them optiardil optimality is proved, and thus they represent thearpp
bounds of the best codes known.

The 2910 codes that we derived are too humerous to presdrgimentirety here. However, since they are important,
we have published them in Technical Report form in [Pla04k &ls0 list the best codes for< n < 10 in Tables 4

through 6 in Appendix 2.

6 Observations

We discuss some of the collective characteristics of ouy biles here. This discussion is in the form of questions that
arise naturally when one explores these codes.

What are the overheads of the optimal and UB codes?To answer this question, we plot the overhead factors of the
best codes fon < 100 in Figure 2. For each value of,, the best overhead factor reaches its high point-at2, and then
descends to approach lagrows. In general, the overhead factor for each value isthigher whenn is larger. This is
not strictly true, however. For example, whenr= 4 the optimal overhead factor is 1.0955 when= 4, whereas the UB

code form = 5 has an overhead factor of 1.0952.

Overhead Factor

Figure 2: Overhead factors of optimal and PJ&des form € {2,3,4,5} andn < 100.

There are other interesting features of Figure 2. Firsth eacve is composed of three segments: (1) A rising from an
overhead factor of 1 when = 1 to a maximum value, which in each case is whegs 2; (2) A period where the factor
follows no particular pattern; and (3) A gradual descendifithe overhead factor back down to onenagrows further. It
is an open problem to provide a better characterizationebittimal overhead. Note that the curve for= 4 rises and
falls three distinct times.

Are the best graphs regular?Regularity in LDPC's is discussed in Luleyal's seminal paper on Tornado codes [LNV$V]
and thereafter separated into left-regularity and rigigatarity [RU03, Sho99]. A graph igft-regularif each left-hand
node has the same number of incident edges. We define a rgdeqgetity, calledoose left-regularitf LLR) to be when
each left-hand node of a graph has either i + 1 edges for some value of Right-regularity and loose right-regularity
(LRR) are defined similarly, except for right-hand nodekeathan left-hand nodes.

Of the 2910 best graphs fon € {3,4,5}, none are left-regular, and only one is LLR. This is the caatenf = 6,

10



m = 4, which has four nodes i@’;, and six inCs. The remaining 2909 graphs are not LLR. Left-regularity @saperty

for optimality was dismissed early on in [LM97], so these results do not come as a surprise.

———m=2 -

N o
.9

Average # of edges
into right-hand nodes
N
o

o

100

o
N
o
LN
o
2]
o
o]
o

Figure 3: Average number of incoming edges for each rigindhreode.

Right-regularity, however, is a different storfveryone of the 2910 best graphs is either right-regular or LRR. As
plotted in Figure 3, the average number of edges into eatit-hignd node follows a linear trend for each valuerof
Fitting the data to a line, we get that the average number gégthto each right hand node($7n for m = 2, 0.54n
form = 3, 0.47n for m = 4, and0.46n for m = 5.

Do the variousc; for best graphs roughly equal each otheraWhenm = 2, we proved that in an optimal graph, np
could differ fromc; by more than one. It is logical to see if this trend extrapddb largern. The answer is that it does
not. The first graph to exhibit this property for = 3 is whenn = 18, and the optimal graph is (4,3,3,3,3,3,2) with an
overhead factor of 1.0326 as compared to (3,3,3,3,3,3i8),am overhead factor of 1.0329. Asincreases for all values
of m > 2, this trend becomes more pronounced. For example, the egsh form = 3 andn = 1750 hasc; = 289,
andc; = 188. Form = 4 andn = 200, the best graph has = 20, andc;5 = 6. Looking at the equation for overhead in
Section 5.2, it is easy to see whywould have a lower value than the rest, as it is present infdixeoterms in the bottom
fraction, whereas the counts iy are present in five terms each, and the counfsimre presentin only three each.

A different property that we define herelislge Class Equivalenc e(i) = e(j), thenc; andc; differ by at most one.
In other words, the counts of distinct nodes in each edgs desroughly equal. For example, the Jg@aph form = 3
andn = 1001 is (166,165,133,165,133,134,108). This graph has edgs elguivalence, since the counts of nodeBiin
is equal to 165 or 166, the counts of nodeginis equal to 133 or 134, and the count of nodegins 108. As with loose
right-regularity,everyone of the 2910 best graphs has edge class equivalence.

Since each graph has edge class equivalence, it makes sdogk at the sizes of the various. Borrowing from the
classical definition of Tornado Codes [LM87], we can define a vectdr of graphG to be(A1, As, ..., Ay,), WhereA,
is the probability that a node i¥ is an element of;. We plot the values ah for the 2910 best graphs below in Figure 4.

In the graphs form = 3 andm = 4, the A vectors clearly converge to constantsiagrows. Them = 5 graph may
exhibit this trend as well, but without looking at higher wat ofn, we can only speculate. We explore this trend a little
further below.

Do the values ofc; or | E;| grow monotonically with n? Form = 2, they do. However, for the other valuesrof they

11



——— Lambda-1 — Lambda-2 @~ - Lambda-3 Lambda-4 ----Lambda-5

0.6
]
o
= 04
QO
S WA N e
<)
® 02 o
0.0+ T T T 0.0 x: T T T T , 0.0 i T L=t =
0 500 1000 1500 0 200 400 600 800 10000 50 100 150
n n n
m=3 m=4 m=5

Figure 4: Values of thé vectors for best graphs.

do not. Otherwise, UBgraphs would all be optimal. As an example, consiges 3 andn = 1470, whose best graph is
(243,243,195,243,195,195,159). The best graphfer1471 is (243,243,196,242,196,196,158) — bottandc; are less
than their values fon = 1470. Even more striking, whem = 4 andn = 141, the best graph hass = 5. Forn = 142,
c15 = 4, and forn = 143, ¢15 = 3.

For a givenm, is the optimal graph for n a subgraph of the optimal graph forn + 1? Form = 2, the answer is yes,
which may be seen easily by looking at how the variougrow. However, form > 2, in general, the answer is no. This
is because the; do not grow monotonically. However, in many specific inseg)dhe answer is yes. Quantifying this, of
the 1,749 optimal graphs fer, = 3 (with n > 1), 1,741 of them are supersets of the optimal graphs ferl. Form = 4,
900 of the 999 graphs are supersets, andrfor 5, the number is only 114 of 159.

Can anything be learned by modeling thez; as continuous variables?Suppose we make the assumption thatthe
are continuous variables, and thatalin the same edge class are equal to each other. Moreoverphsdrhy the graphs
in Figure 4, we assume that the values\afonverge to constants as— oo. Then, using the last 200 valuesrofn each
case, we average the values\oénd display them in Table 3. Fot = 2 andm = 3, we used the Maple software package
to corroborate theé\ values directly from their overhead equations. With the@ooration, we were also able to prove
thato(G) has a local minimum value when the graphs are edge classadepiiv Form = 4 andm = 5, the equations
(fourth and fifth degree polynomials with three and four ahles respectively) were too complex for Maple to minimize.

We can use thd vectors in Table 3 as a second heuristic to compute graphslowts by multiplying eact ; by N,
and rounding to the nearest integer to yield the varidys. If t = 3°7", |E;| # N, then we can soVA; — |E;|, and
either add one to the biggest — ¢ counts or subtract one from the smallest N counts. Then we enumerate all graphs
that exhibit both loose right-regularity and edge classivadence, and keep track of the best graph. This resultsrin fa
fewer graphs being generated than by perturbation.

For example, whem = 5 andn = 402, the|E;| are (131,159,90,25,2). Since there are 10 values each®fEs,

12



m Ay Ao As Ay As

2 || 0.6667| 0.3333

3 || 0.4940| 0.3983| 0.1077

4 | 0.3879| 0.4030| 0.1820| 0.0271

5 || 0.3210| 0.3909| 0.2215| 0.0620| 0.0047

Table 3: Values of thé vectors when the; are continuous variables and display edge class equivalenc

each of them will equal 90. Similarly, each of the five valués;oc E, will equal 5, andcs; = 2. The only values that

require enumeration are the 5 combinations;0€ E; where four equal 26 and one equals 27, and the 10 combinations

of ¢; € E> where nine equal 16, and one equals 15. That makes 50 grdplkjob only 20 are LRR. The maximum

number of graphs that we enumerated in this way was 59,94@pfe- 5 andn = 290. The average number of graphs

generated for alh < 1,000 was 4,007. This is as compared to over 2 million graphs perevaln when generating UB

1.2+

ez m =3 UB_6 L2y m=4UB4 129 | ... m=5UB_2
S —— m = 3 using Lambdas —— m = 4 using Lambdas —— m = 5 using Lambdas
&
L )
T 1.1 1.1] 1] §
() H
< :
(5]
>
o ; ;
10 T T 1 10 T T 1 10 T T 1
1 10 100 1000 1 10 100 1000 1 10 100 1000
n n n

Figure 5: Overhead factors of codes created with Aheectors from Table 3 as compared to the JU®des.

In Figure 5, we compare the overheads of the codes creategl thsise\ vectors with the UB codes. All three graphs
are similar — for very smalh (less than 10), the codes created with Aheectors have significantly higher overheads than
their optimal counterparts. However,agrows, the two techniques produce similarly performingednterestingly, in
one caseri = 5, n = 57), the A-generated code has a lower overhead factor (1.022258}HleddB, code (1.022263).
This proves that as suspected, the,Uddes are not optimal fon = 5. Certainly, given the computational complexity
of generating UB codes form = 5, for moderate to large values of the technique using the vector is preferable. We

include the graphs so generatedfox 1000 in Technical Report [Pla04].

7 Optimal Graphs for n = 2

We switch our focus now from fixegh to fixed n. While the graphs forn = 2 have greater variety than fen = 2,
they have one practical limitation — the values of the coditg are constrained to three distinct values — the value of

the first data bit, the value of the second data bit, or theuska-or of the two data bits. When downloading, it is only

13



necessary to download two of these distinct values, aftéctwthe data bits (and therefore the rest of the coding bits) m
be determined.

A graph that mirrors this line of thinking has the two datasliit/, andl,. The remaining left-hand nodes are coding
nodes, and each has exactly one edge ftoimr; _». The constraint nodes are partitioned into three sets —ethdmse
coding bits equal;, those whose coding bits equa) and those whose coding bits eqlab I>. Nodel; will have an edge
to every constraint node in the first and third groups, anceriediill have an edge to every constraint node in the second
and third groups. The left-hand nodes whose values dguaimpose a seb,, and consist of; itself plus the coding
nodes that equad|{. There arel; nodes in this setD; andd, are defined similarly, including and all coding nodes that
equall,. Finally, D3 is composed of the coding nodes that equab >, and there aré; of these nodes. Figure 6 depicts

such a graph fon = 2 andm = 4 whered; = dy = d3 = 2.

" rl—— :)
r2
> r3— :)
r4

Figure 6: A graphwhere = 2, m = 4, andd; = dy = d3 = 2.

Suppose we downloadbits, and all bits are from the same sBX,( D», or D3). Then the graph will remain undecoded,
since only nodes that belong in that group will be determirfemt example, in Figure 6 above, if we only download the
two nodes connected to the first constraint, then those withe only nodes that we may remove from the graph. As soon
as we have downloaded nodes from two different sets, we maydeéethe entire graph.

Let us focus solely on downloading bits in order. Defige; to be the probability that the firgtbits downloaded come

from nodes inD;, and that the + 1-st bit does not come from nodesin . Eachpg, ; for 1 <i < d; is equal to:

e = () (i) - (o) ()
mE2N(m+2—d
e
("
Rl

We may use,, ; for eachl < i < d, to calculate the expected value of the overhead:

dy da ds
o = Z(Z+1)pd1,l+2(l+1)pd2Z+Z(’L+ 1)pd3.,i
=1 =1 1=1
m+3 m—+ 3 m+ 3
= + + 2.

m+3—d1 m—|—3—d2 m+3—d3_

14



Simple math yields that this equation is minimized wlgnd,, andds differ by at most one. Figure 7 plots the overhead
of these graphs as a functionnf. Note that although the rate of these codes approacheszetro-a oo, the overhead

factors appear to approach 1.25. Indeed, if weiset dy = ds = WT” the equation for overhead becomes:

1.25
1.20
1.15
1.10
1.05

Overhead Factor

1.00 | T T T T 1
0 20 40 60 80 100

Figure 7: The overhead factors of optimal graphs when2.

3(m+3)
0 = — g 2
m+ 3 — mi2

3(m+3)
= Bmto—m-2 2

3
9m + 27

2m+ 7 B
5m + 13

2m+7

The limit of this asm — oo is 2 = 2.5, yielding an overhead factor §2 = 1.25.

8 Graphs for n = 3: A limitation of having only m constraints

Extrapolating from the previous section, suppese 3, and our three data bits are labelad b, andbs. Now, there are
only seven possible values for a nodg; b2, (b @ b2), b3, (b1 & b3), (b2 P b3), and(by & by P b3). Of the (;) =35

combinations of three distinct values, there are severcdratot decode the three data bits:
1. by, by and(by & b2).
2. by, b and(by @ bs).
3. b, bs and(by @ b3).
4. by, (be @ bs) and(by @ by @ b3).
5. ba, (b1 @ b3) and(by & ba B b3).

6. b3, (bl D bg) and(bl @ by bg)

15



7. (1@ bg), (b1 @ b3), and(bs @ bs).

Any combination of four distinct values will allow one to dmte the three data bits. Therefore, if we have- 3
andm = 4, and we encode by having each of the seven bits contain adistklue, then we can always decode with
three bits when we do not receive one of the 3-bit combinatisted above. Otherwise, we will decode in four bits. The
overhead of such a decoding schemégt™t — 112 — 13 — 3 9,

Unfortunately, the optimal graph far = 3 andm = 4 has an overhead dg% = 3.2286, meaning that the optimal
graph does not decode optimally! To see why this is true,idenshe graph in Figure 8. This graph’s overhead is 3.2286.
Suppose we download nodes D, E, and G. Sihged bs) © (b1 @ bs) © (b1 @ by @ bs) is equal tob;, we should be able
to decode all the bits from these three values. However, wigeremove nodes D, E, and G from the graph, all constraint
nodes have more than one edge still incident to them, and mreotdecode. This is where the exg}gaof overhead comes

from, and there imo graph with seven left-hand nodes and four right-hand ndusavoids this problem.

@ @ bl b1+b2

bl+b2+b3
@bm (B) b2

b1+b3 b3

Figure 8: An optimal graph for = 3 andm = 4.

To fix this, suppose we add a fifth constraint to the graph, lvliconnected to nodes D, E, and G. Now, although the
graph no longer fits the standard Tanner Graph descriptiondoes it fit our definition of a Systematic graph), it does
decode optimally. We do not explore this fact or these codehdr; however, we present it here as a curiosity, and as a

seed of future work on graph-based coding.

9 Related Work and Brief Discussion

Since the landmark Tornado Code paper in 1997 [M9], the focus of most LDPC researchers has been achieving
asymptotic optimality. There are rare exceptions, such paper analyzing certain classes of finite codes [D@72], a
paper defining classes of sub-optimal codes that perforirinvetactice [RN04], and our previous foray into Monte-Qarl

generation and analysis of finite-length codes [PT04].

16



The exceptions are rare, because the asymptotic is an €asierin which to succeed. To illustrate this, consider
Figure 4. Whereas the simple graph construction using\thectors fails to produce graphs that perform nearly optymal
for smalln, asn grows this graph construction method performs very wellwduld not be too difficult to prove that
the overhead factors of these graphs indeed approach one-asco, meaning that they are asymptotically optimal.
Determining true optimality for finitee remains an open question, one that we will continue to addres

An important question to ask, however, Bow important is optimality? For example, whem = 4 andn = 100, the
overhead of the UBcode is 101.01073, and the overhead of the code generatée hyvector is 101.01088. Are there
any scenarios in which that extra 0.00015 is significant2lyikot. However, consider the case where= 4 andn = 4,
and a 1 GB file is broken up into 256 sets of eight blocks (4 dath4acoding) that are distributed among faulty servers
in the wide-area. When a client tries to download this file, difference between the optimal overhead of 4.382 and the
suboptimal overhead of 4.471 (generated byAheector) will be significant indeed. Until true optimality éetermined,
suboptimal constructions such as the J#idA codes in this paper will be extremely useful. However, wgiimal, finite

codes are fully understood, the field of LDPC codes will comi to be an open research area.

10 Conclusion

We have performed an exploration of optimal and nearlyrmatLDPC erasure codes for small values@ndm. We have
detailed three mechanisms for determining the overheadada exactly, and used these determinations, plus enuorerat
techniques to generate optimal codessfor= 2 andn = 2. Form € {3,4,5}, we have generated codes with the best
known upper bounds fot less than or equal to 1750, 1000, and 1000 respectively.

As part of our exploration, we have made the following obagons, which should be an aid to others who need to

explore these codes:

e Optimal codes are not left-regular.
e However, the best codes appear to be loosely right regular.

e They also appear to have a property that we edtie class equivalencéJsing the above two properties can be a

great aid in pruning enumerations in order to discover gamtbs.
e The various counts of distinct types of left-hand nodes ddawe to equal each other for a graph to be optimal.

e In the best graphs with a fixed, the A vector of edge count probabilities, which is the backbonelagsic LDPC
coding theory [LM$ 97, RUO3, WKO03], appears to converge to a constant as co. This vector may also be used

to generate graphs that perform very close to optimal gows.

e Forn > 2, the iterative decoding technique of LDPC’s cannot decqatemlly. It is an open question of how to

modify the standard definition of LDPC'’s so that they can diecoetter.

17



The quantification of optimal parity check codes for arlritnealues ofn andm remains an open question. In this paper,

we have defined uppoer bounds, and we have helped to narreartge ofn andm for which we don’t know optimality.

We will continue work to narrow this range by trying to undarsd the properties and structure of optimal codes, andjusin

them to prune the search so that it is a tractable endeavor.

References

[DPT+02]

[FMS*04]

[GWGRO04]

[LMS+97]

[PD04]

[Plag7]

[Pla04]

[PT04]

[Riz97]

[RNO4]

C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, andLRUrbanke. Finite-length analysis of low-density
parity-check codes on the binary erasure chani#E Transactions on Information Theg®8:1570-1579,
June 2002.

S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veit& decentralized algorithm for erasure-coded
virtual disks. INDSN-04: International Conference on Dependable Systerdd\mtworks Florence, Italy,
2004. IEEE.

G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. Ktd&Rekfficient byzantine-tolerant erasure-coded storage.
In DSN-04: International Conference on Dependable SystemdNatworks Florence, Italy, 2004. IEEE.

M. Luby, M. Mitzenmacher, A. Shokrollahi, D. SpielmamdaV. Stemann. Practical loss-resilient codes. In

29th Annual ACM Symposium on Theory of Computipages 150-159, El Paso, TX, 1997. ACM.

J. S. Plank and Y. Ding. Note: Correction to the 199@rial on Reed-Solomon codingoftware — Practice

& Experienceto appear, 2004.

J. S. Plank. A tutorial on Reed-Solomon coding faittfiolerance in RAID-like systems$oftware — Practice
& Experience 27(9):995-1012, September 1997.

J. S. Plank. Enumeration of small, optimal and regdimal parity-check erasure codes. Technical Report

UT-CS-04-535, Department of Computer Science, Univerdifflennessee, November 2004.

J. S. Plank and M. G. Thomason. A practical analysiewfdensity parity-check erasure codes for wide-area
storage applications. IBDSN-2004: The International Conference on DependableeBystand Networks
pages 115-124, Florence, Italy, June 2004. IEEE.

L. Rizzo. Effective erasure codes for reliable carrgs communication protocol&CM SIGCOMM Computer

Communication Reviev7(2):24-36, 1997.

V. Roca and C. Neumann. Design, evaluation and coisgaiof four large FEC Codecs, LDPC, LDGM,
LDGM staircase and LDGM triangle, plus a Reed-Solomon stilattk FEC Codec. Technical Report RR-
5225, INRIA Rhone-Alpes, June 2004.

18



[RUO3] T. Richardson and R. Urbanke. Modern coding theoryaffrom Ithcwww.epfl.ch/papers/ics.ps ,
August 2003.

[RWET01] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Wegtbers, and J. Kubiatowicz. Maintenance-free
global data storageEEE Internet Computings(5):40—49, 2001.

[Sho99] M. A. Shokrollahi. New sequences of linear time arasodes approaching the channel capacityPrin

ceedings of AAECC-13, Lecture Notes in CS 1 pHges 65-76, New York, 1999. Springer-Verlag.

[WKO03] S. B. Wicker and S. Kim. Fundamentals of Codes, Graphs, and Iterative Decodikguwer Academic
Publishers, Norwell, MA, 2003.

[ZL02] Z. Zhang and Q. Lian. Reperasure: Replication protasing erasure-code in peer-to-peer storage network.

In 21st IEEE Symposium on Reliable Distributed Systems (SRp$ages 330-339, October 2002.

11 Appendix 1 — Example of recursive overhead calculation

rl

I é.\/]j I 2
rl rl 2
11 12 12 3
rl r2
12 8>j 13 13 14

(a): G, (b): G4 (c): Gs (d): G4

Figure 9: Example graphs for determining overhead.

11.0.1 Example 1.G,

Let G; be the graph witm = 1, m = 1, and edge$(l1,71), (I2,71)}, depicted in Figure 9(a).

This is a systematic code, where either node may be the datalorg bit. To calculatér;’s overhead, we first simulate
downloading bit/; by removingl; and edge(l;, ;) from the graph. This leaves node with only one incident edge,
(I2, 1) which means that we can remowxgand its edge from the graph and assign nbdevalue. ThusR(G1,1;) is
simply I, whose overhead is zero.

Similarly, downloading, leaves onlyi; as a residual graph. Therefore, the overhead ofs:

19



o(G1) = (Z(l + o(R(Gl,zm)) /2

1=1

(1+0o(R(G1,11))) + (1 + o(R(G1,12))))/2
(1+0)+(1+0))/2

= 1.

(
(

11.0.2 Example 2:.G,

Let G, be the graph witm = 2, m = 1 and edgeg(l1,71), (I2,71)}, depicted in Figure 9(b). Note, this is a graph that
represents a residual graph of a download, where we havedgloetermineds;’s value, but it has not been downloaded
yet. To decode, if we download either nodgser i, then we may assign the value of all nodes, and decoding ipleden If

we download nodé;, then we simply remove that node from the graph, and are ldftgvaphG, as a residual. Therefore,

the overhead of decodir@ is:

o(G2)

(1 + o(R(G2, 1)) + (1 + o(R(G2,12))) + (1 + o(R(G2,13))))/3
(I+0)+(14+0)+(14+0(G1))/3

(1+1+2)/3=4/3.

11.0.3 Example 3.G3

Let G5 be the graph witlh = 1, m = 2 and edge$(l1, 1), (11, 72), (l2,71), (I3, 72) }, depicted in Figure 9(c). s is a simple
systematic replication code, whekeis the data bit, and, andis are the coding bits. To decode, when any of the three

nodes is downloaded, the values of the other two may be askidinerefore, the overhead@f is:

o(Gs) = ((140o(R(G3,11))) + (1+0(R(Gs,12))) + (1 + o(R(G3,13))))/3
= (140+(14+0)+(140))/3

= 1

11.0.4 Example 4.G4

Finally, let G4 be the graph witlm = 2, m = 2 and edgeq(l1,71), (l1,72), (I2,72), (I3,71), (l4,72) }, depicted in Fig-
ure 9(d). This is systematic code with data bit$,iandl,, and coding bits irdi; andl,. To decode, we look at the residual

graphs of downloading ea¢h Downloading; leaves us with a graph equivalent@s. Downloadingl, leaves us with a

20



graph equivalent t65, and sincd, is equivalent td,, downloading it also leaves us with; as a residual graph. Finally,

downloadings leaves us with a graph equivalent@ as a residual. Therefore, the overhead-gfis:

4
o(Gy) = <Z<1+0(R(G4,zi>>>> /4
=1
= ((1+0(G2)) + (1 +0(G3)) + (1 + 0(G2)) + (1 + 0(G3))) /4
(1+4/3)+(1+1)+(1+4/3)+(1+1))/4

26/3)/4 = 13/6 = 2.16667.

(
(

Thus, the overhead factor 6f; is 13/12 = 1.0833.

Appendix 2 — Optimal Codes form € {3,4,5}

0 f
1.0000 | 1.0000
2.2000 | 1.1000
3.2000 | 1.0667
4.2857 | 1.0714
5.3750 | 1.0750
6.4246 | 1.0708
7.4500 | 1.0643
8.4788 | 1.0598
9.4939 | 1.0549

10.5035| 1.0503

o
o
Q
N
Q
w
o
N
Q
ot
Q
[<)
Q
=~

© 0 N O 0 b~ W N |3
N NN N NN R R B R
N NN NN RP R R RO
N NN R R R R R R R
N N NN R R R R R R
T N e e = = =)
T N e N = T = T S = o S =Y
P P P P P P P O O O

[N
o

Table 4: Optimal codes fon = 3,1 < n < 10, plus overheads and overhead factors.

21



Q
ik
Q
N
Q
w
)
N
o
ot
Q
[=)
Q
=~
]
o)
Q
©

Cilo €11 €12 €13 Ci4 Ci5 o f

1.0000 | 1.0000
2.2000 | 1.1000
3.2286 | 1.0762
4.3821 | 1.0955
5.4603 | 1.0921
6.4881 | 1.0813
7.5061 | 1.0723
8.5894 | 1.0737
9.6350 | 1.0706
10.6771| 1.0677

© 0O N o U A W N |3
N = = = T = T S S S
N PR R R R R R R R
B P P P R P O O O O
N = = = T = T S S S =
P B P P P O O O O O
B P P P P O O O O O
B P P O O R kB kB B O
R N o = T = = T = T = B S =
R T S S N O = =}
N = = = T S e i
P O O O O O O + O
N N N = =}
B P O O O O O O O o
O O O O O O O o o o
O O P P O O O O O m

[N
o

Table 5: Optimal codes fon = 4,1 < n < 10, plus overheads and overhead factors.

c;, forifrom1to 31 0 f
101001000001000100000001000000@..0000 | 1.0000
101010000100000100010001000000@.2667 | 1.1333
0011010110000001100000000001003.3464 | 1.1155
011110011000000110000000000001@.3810 | 1.0952
011110011000010110000100000000%.5063 | 1.1013
011110011000010110000100010000®.5753 | 1.0959
0111100110000101100001000100100°.6553 | 1.0936
111110011000001110000100010100®.6938 | 1.0867
111110011000001110010101010000®.7522 | 1.0836
11111001110100011001010100000010.7807| 1.0781

© 0o N oo o M~ W N |3

(=Y
o

Table 6: Optimal codes fan = 5,1 < n < 3, and UB codes form = 5,4 < n < 10, plus overheads and overhead

factors.

22



