
Small Parity-Check Erasure Codes - Exploration and Observations

James S. Plank

Adam L. Buchsbaum

Rebecca L. Collins

Michael G. Thomason

Technical Report UT-CS-04-537

Department of Computer Science

University of Tennessee

Knoxville, TN 37996

November, 2004

http://www.cs.utk.edu/˜plank/plank/papers/CS-04-528 .html

This paper has been submitted for publication. Please see the above web site for up-to-date

information about the publication status of the paper.

1

Small Parity-Check Erasure Codes -

Exploration and Observations

James S. Plank† Adam L. Buchsbaum‡ Rebecca L. Collins†

Michael G. Thomason†∗

Abstract

Erasure codes have profound uses in wide- and medium-area storage applications. While infinite-size codes have been

developed with optimal properties, there remains a need to develop small codes with optimal properties. In this paper, we

provide a framework for exploring very small codes, and we use this framework to derive optimal and near-optimal ones

for discrete numbers of data bits and coding bits. These codes have heretofore been unknown and unpublished, and should

be useful in practice. We also use our exploration to make observations about upper bounds for these codes, in order to

gain a better understanding of them and to lead the way for future derivations of larger, optimal and near-optimal codes.

1 Introduction

Erasure codes have been gaining in popularity, as wide-area, Grid, and peer-to-peer file systems need to provide fault-

tolerance and caching that works more efficiently and resiliently than by replication [FMS+04, GWGR04, PT04, RWE+01,

ZL02]. In a typical erasure code setting, a file is decomposedinto n equal sizeddatablocks, and from these,m additional

codingblocks of the same size are calculated. The suite ofn + m blocks is distributed among the servers of a wide-area

file system, and a client desiring to access the file need only grabfn of these blocks in order to recalculate the file. In this

setting,f is termed theoverhead factor, and has one as its lower bound.

Reed-Solomon codes [Pla97, PD04, Riz97] are a class of erasure codes that have ideal overhead factors (f = 1). How-

ever, their computational overhead grows quadratically with n andm, severely limiting their use. Low-Density Parity-

Check (LDPC) codes [LMS+97, RU03, WK03] have arisen as important alternatives to Reed-Solomon codes. Although

their overhead factors are suboptimally greater than one, their computational overheads are very low. Thus, the tradeoff

between a client having to download more thann blocks of data is mitigated by the fact that recalculating the blocks of the

data is extremely fast, and in particular much faster than Reed-Solomon codes.

∗This material is based upon work supported by the National Science Foundation under grants CNS-0437508, ACI-0204007, ANI-0222945, and EIA-

9972889.† Department of Computer Science, University of Tennessee, Knoxville, TN, 37996,[plank,rcollins,thomason]@cs.utk.edu ;

‡ AT&T Labs, Shannon Laboratory, 180 Park Ave., Florham Park,NJ 07932,alb@research.att.com .

1

The theory for LDPC codes has been developed for asymptotics, proving that asn goes to infinity, the overhead factor

of codes approaches its optimal value of one. For small values ofn andm (less than 1000), there is little theory, and recent

work has shown that the techniques developed for asymptotics do not fare well for smalln andm [PT04].

The purpose of this paper is to start closing this hole in the theory. Rather than concentrate on large values ofn

andm, we concentrate on very small values, using enumeration andheuristics to derive either optimal codes for these

small values, or codes that are not yet provably optimal, butrepresent the lowest known upper bounds. We present these

codes as they should be useful to the community. Additionally, we demonstrate some properties of small codes and present

observations about the codes that we have derived. We leave the proof/disproof of these observations as open questions to

the community.

The significance of this work is the following:

1. To present optimal, small codes to the community. To the authors’ knowledge, this is the first such presentation of

codes.

2. To present upper bounds on larger codes to the community. To the authors’ knowledge, this is also the first such

presentation of codes.

3. To present evaluation, enumeration and pruning techniques that apply to small codes, and have not been used on

LDPC codes previously.

4. To stimulate thought on small codes in hope of proving properties of codes in general that do not rely upon classical

asymptotic, probabilistic arguments.

2 LDPC Basics

The material in this section is all well-known and has been presented elsewhere. See [WK03] for more detail.

Although wide-area file systems use LDPC codes to operate on blocks of data, the specification of LDPC codes is

typically on bits of data. Blocks are simply composed of multiple bits. In this work, we use the following terminology:

• The number of data bits isn.

• The number of coding bits ism.

• The total number of data and coding bits isN = n + m.

• TherateR of a code isn
N

.

• Theoverheado of a code is the average number bits that must be present to decode all the bits of the data.

• Theoverhead factorf of a code iso/n.

2

LDPC codes are based on bipartite graphs known as “Tanner” graphs. These graphs haveN nodesl1, . . . , lN on their left

side, sometimes termed the “message” nodes, andm nodesr1, . . . , rm on their right side, termed “check” or “constraint”

nodes. Edges only connect message and check nodes. An example graph is depicted in Figure 1.

l1+l2+l3+l7=0

l2+l3+l4+l6=0

l2+l4+l5+l7=0 r1

r2

r3

l4

l2

l3

l1

l5

l6

l7

Figure 1: An example Tanner graph forn = 4 andm = 3.

The left-hand nodes hold the bits that are to be stored by the application. The edges and the right-hand nodes specify

constraints that the left-hand nodes must satisfy. The moststraightforward codes are “systematic” codes, where the data

bits are stored inn of the left-hand nodes, and the coding bits in the remainingm left-hand nodes are calculated from the

data bits and the constraints in the right-hand nodes using exclusive-or.

For example the code in Figure 1 is a systematic one, whose data bits may be stored in nodesl1 throughl4. The coding

bits are calculated as follows:

• Bit l6 is the exclusive-or ofl2, l3 andl4 (from constraintr3).

• Bit l7 is the exclusive-or ofl1, l2 andl3 (from constraintr2).

• Bit l5 is the exclusive-or ofl2, l4 andl7 (from constraintr1).

We present decoding as an act in a storage system. Suppose we store each of theN bits on a different storage server.

Then we download bits from the storage server at random untilwe have downloaded enough bits to reconstruct the data.

To decode in this manner, we start with the Tanner graph for the code, placing values of zero in each right-hand node, and

leaving the left-hand nodes empty. When we download a bit, weput its value into its corresponding left-hand hand node

li. Then, for each right-hand noderj to which it is connected, we update the value stored inrj to be the exclusive-or of

that value and the value inli. We then remove the edge(li, rj), from the graph. At the end of this process, if there is

any right-hand node with only one incident edge, then it contains the decoded value of the left-hand node to which it is

connected, and we can set the value of this left-hand node accordingly, and then remove its edges from the graph in the

same manner as if it had been downloaded. Obviously, this is an iterative process.

When all nodes’ values have been either downloaded or decoded, the decoding process is finished. If a code is system-

atic, then the data bits are held inn of the left-hand nodes. The number of exclusive-or/copy operations required equals

the number of edges in the graph.

3

Encoding with a systematic graph is straightforward – simply decode using then data bits.

2.1 Determining Whether A Graph Is Systematic

The following algorithm determines whether or a not a graph represents a systematic code. The algorithm iteratesm times:

• Select a left-hand node that has exactly one edge to a constraint node. If there are no such left-hand nodes, then

the graph does not represent a systematic code. Let the left-hand node becodei (for i equals 1 tom), and let the

constraint node be namedconsti.

• Removeconsti and all edges incident to it.

If this algorithm iteratesm times, then the graph represents a systematic code, with them left-hand nodes holding the

coding bits, and then remaining left-hand nodes holding the data bits. Although the proof of correctness of this algorithm

is not presented here, it should be noted that when then data nodes are downloaded, constraint nodeconstm will have one

edge to it, and this edge is from nodecodem. Therefore, nodecodem may be decoded. Whencodem is decoded, and all

its other edges are removed from the graph, then nodeconstm−1 has only edge to it, and this edge is from nodecodem−1.

Decoding completes in this manner.

3 Three Ways of Computing Overhead

3.1 Brute-Force Enumeration

One can compute overhead in a brute-force fashion, by enumerating allN ! download sequences of bits, and averaging the

number of bits requred to decode the data in each sequence. Obviously, this process becomes computationally intractible

for rather smalln andm. One may use Monte-Carlo simulation to approximate the overhead, as in [PT04]. However, there

are alternative ways of computing overhead.

3.2 Recursive Overhead Calculation

In this section, we specify a technique to compute overhead recursively. Before making this specification, we give a more

precise specification of the decoding process. We are given aTanner graphG with N = n + m left-hand nodes andm

right-hand nodes, each of which may hold a bit. We assume thatall the right-hand nodes have either zero incident edges

or more than one incident edge. If a left-hand node has zero edges, then we assume that we know its value as a result of a

previous decoding phase, but that we have not downloaded it.

When we start, we set the value of all right-hand nodes to zeroand leave the values of all left-hand nodes blank.

To decode, we define two operations on graphs:assigninga value to a node, anddownloadinga node. Both operations

are defined only on left-hand nodes. We start with the former.Given a left-hand nodeli, when the value of that node

becomes known, it should beassigned. When it is assigned, for each right-hand noderj to which li is connected,rj ’s

4

value is set to the exclusive-or of its previous value andli’s value, and then the edge(li, rj) is removed from the graph.

If there is any right-hand noderj which now has only one incident edge, then the value of the left-hand node to whichrj

is connected may now be assigned to be the value ofrj . Before assigning the value, however, the edge between thatnode

andrj should be removed, andrj should also be removed from the graph. Note: assigning one node’s value can therefore

result in assigning many other nodes’ values.

To downloada node, if the node’s value has already been assigned, then the node is simply removed from the graph.

Otherwise, the value of the node is assigned to its downloaded value, and it is then removed from the graph.

When the values of all left-hand nodes have been assigned, the decoding process is finished.

Recursively computing the overheado(G) of graphG proceeds as follows. If all nodes have zero edges, then the

overhead is zero. Otherwise, we simulate downloading each left-hand node of the graph and compute the average overhead

as the average of all simulations. When we simulate downloading a nodeli, we assign its value (if unassigned), potentially

decoding other nodes in the graph, and remove the node from the graph. We are then left with aresidualgraph,R(G, li).

We can recursively determineR(G, li)’s overhead. Then, the equation for determining a graph’s overhead (if not zero), is:

o(G) =

(

N
∑

i=1

(1 + o(R(G, li)))

)

/N.

We give several examples of computing overhead in this fashion in Appendix 1.

3.3 Computing Overhead Using Residual Graphs

A third way to compute overhead is to look at a variation of theresidual graph, presented above. LetSn(G) be the set of

all subsets of the left-hand nodes ofG that contain exactlyn nodes. LetS ∈ Sn(G). We define the residual graphRS to

be the graph that remains when all the nodes inS and their accompanying edges are removed fromG. Note that unlike

the residual graph in Section 3.2 above, we do not perform decoding when we remove nodes from the graph.RS simply

contains the nodes inG that are not inS.

We may calculate the overhead ofRS in either of the two manners described above. Let that overhead beo(RS). Note:

the first step in doing so will be to decode right-hand nodes that are incident to only one left-hand node, and this overhead

may well be zero (for example,o(R{l1,l2,l3,l4}) = 0 for the graph in Figure 1).

Now, the overhead of a graphG may be defined asn plus the average overhead of the residual graphs that resultwhen

every subset ofn nodes is removed fromG. Formally:

o(G) = n +

(
∑

S∈Sn(G) o(RS)
(

N
n

)

)

.

Note that this use of residual graphs is similar to usingstopping sets[DPT+02] for overhead analysis.

4 Special Cases:m = 1 and n = 1

When m = 1, there is one coding node ton data nodes, and the optimal code is a straight parity code:Gn
m=1 =

({l1, . . . , ln+1, r1}, {(l1, r1), . . . , (ln+1, r1)}). One may easily prove using residual graphs thato(Gn
m=1) = n. When-

5

evern nodes are removed fromGn
m=1, the residual graph contains one node with one edge tor1. Clearly, the overhead of

that graph is zero, and therefore the overhead ofGn
m=1 is the optimal valuen.

When n = 1, there is one data node tom coding nodes, and the optimal code is a replication code:Gn=1
m =

({l1, . . . , lm+1, r1, . . . , rm}, En=1
m), whereEn=1

m = {(l1, ri)|1 ≤ i ≤ m} ∪ {(li + 1, ri)|1 ≤ i ≤ m}.

It is straightforward to prove thato(Gn=1
m) = 1. Again, we use residual graphs. Supposel1 and all its edges are removed

from the graph. Then the residual graph has exactly one edge to every right-hand node, and it may be decoded completely.

Suppose instead thatli6=1 and its one edge is removed from the graph. The residual graphhas exactly one edge tori=1,

which is connected tol1. Therefore,l1 and subsequently all other nodes may be decoded. Since the overhead of all residual

graphs is zero,o(Gn=1
m) = 1.

5 Optimal and Near-Optimal Codes form ∈ {2, 3, 4, 5}

In this section, we use residual graphs to derive closed-form expressions for the overhead of a graphG which hasm right-

hand nodes, andm is small (≤ 5). We introduce a new nomenclature for this derivation. We note that theN left-hand

nodes of any graph may be partitioned into2m − 1 sets, depending on the right-hand nodes to which they are connected.

We label these setsC1, . . . , C2m−1, and specify thatli ∈ Cj if and only if:

j =
m
∑

k=1

2k−1E(i, k),

whereE(i, k) = 1 if (li, rk) is an edge inG, andE(i, k) = 0 otherwise. Therefore, nodel1 in Figure 1 is an element of

C2, l2 ∈ C7, andl7 ∈ C3.

Let ci = |Ci|. Then, one may uniquely specify a graphG by the values of eachci, rather than by nodes and edges. For

example, the graph in Figure 1 may be specified as (1, 1, 1, 1, 1,1, 1), since there is one of each of the seven different

kinds of left-hand nodes.

For later discussion, we will also define the functione(i) to equal the number of one bits in the binary representation

of the integeri. Therefore, if a nodel ∈ Ci, thenl has exactlye(i) edges. Finally, we define anEdge Class, Ej to be the

union of allCi such thate(i) = j. We can then discuss the collection of nodes that have the same number of edges as the

nodes in the same edge class. We will also group together all counts of nodes in edge classj as allci ∈ Ej .

5.1 Optimal Codes form = 2

Whenm = 2, there are only three different types of left-hand nodes – those inC1, C2, andC3. Whenn nodes are

downloaded, only two remain, and there are only six possibleresidual graphs, which we specify by their values ofci: (1,

1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0), (0, 2, 0), and (0, 0, 2). Thefirst three of these contain one right-hand node with exactly

one edge, which means each of these three may be completely decoded. The remaining three cannot be decoded until one

of the two left-hand nodes is downloaded. Therefore, the overhead of the first three graphs is zero, and the overhead of the

remaining three graphs is one.

6

Let G = (c1, c2, c3). To calculate overhead, we note that there are
(

c1

2

)

ways to downloadn nodes and have (2, 0, 0) as

a residual graph. Likewise, there are
(

c2

2

)

ways to have (0, 2, 0) as a residual graph, and
(

c3

2

)

ways to have (0, 0, 2) as a

residual graph. Therefore, the overhead ofG is:

o(G) = n +

(

(

c1

2

)

+
(

c2

2

)

+
(

c3

2

)

(

N

n

)

)

.

SinceN = n + 2, we note that
(

N
n

)

=
(

n+2
2

)

, and we may simplifyo(G) as follows:

o(G) = n +

(

c1(c1−1)
2 + c2(c2−1)

2 + c3(c3−1)
2

(n+2)(n+1)
2

)

= n +
c2
1 + c2

2 + c2
3 − (c1 + c2 + c3)

(n + 2)(n + 1)

= n +
c2
1 + c2

2 + c2
3 − (n + 2)

(n + 2)(n + 1)
.

Sincen is a constant, in order to minimize the overhead, a graph mustminimizec2
1 + c2

2 + c2
3. It is easy to prove that

this quantity is minimized when the differences among theci are minimized. Therefore, any graphG of the form (x,y,z),

wherex, y, z ∈ {bN
3 c, d

N
3 e} andx + y + z = N , is an optimal graph for that value ofN .

Table 1 lists the optimal graphs form = 2, and1 ≤ n ≤ 10, plus their overheads and overhead factors.

n c1 c2 c3 o f

1 1 1 1 1.0000 1.0000

2 2 1 1 2.1667 1.0833

3 2 2 1 3.2000 1.0667

4 2 2 2 4.2000 1.0500

5 3 2 2 5.2381 1.0476

6 3 3 2 6.2500 1.0417

7 3 3 3 7.2500 1.0357

8 4 3 3 8.2667 1.0333

9 4 4 3 9.2727 1.0303

10 4 4 4 10.2727 1.0273

Table 1: Optimal codes form = 2, 1 ≤ n ≤ 10, plus overheads and overhead factors.

5.2 Computing Overhead form = 3

Whenm = 3, there are seven potential types of left-hand nodes, denoted byC1, . . . , C7, and a graphG may be uniquely

specified by its values ofc1 throughc7. Supposen nodes are removed fromG, leaving a residual with just three left-hand

nodes. There are 59 residuals that may result that cannot be decoded completely. We enumerate them, their overheads, and

the number of ways that they may be generated fromG’s values ofci, below:

7

• Residuals with three identical left-hand nodes:An example is (3,0,0,0,0,0,0). Clearly there are seven types of

these, one for eachCi, and the overhead of decoding this type of residual is 2. Given G, the number of these types

of residual is
∑7

i=1

(

ci

3

)

.

• Residuals with exactly two identical left-hand nodes:Examples are (2,1,0,0,0,0,0) and (0,1,0,2,0,0,0). There are

42 types of these, six for eachCi, and the overhead of decoding this type of residual is 4/3. GivenG, the number of

these types of residual is:

7
∑

i=1

7
∑

j=1,j 6=i

(

ci

2

)

cj =
7
∑

i=1

(

ci

2

)

(N − ci).

• (0,0,1,0,1,1,0):This graph has exactly two edges entering each right-hand node. Its overhead is one, and the number

of these graphs isc3c5c6.

• (1,0,0,0,0,1,1), (0,1,0,0,1,0,1) and (0,0,1,1,0,0,1): As above, these graphs have exactly two edges entering each

right-hand node. Their overhead is one, and the number of these graphs isc1c6c7 + c2c5c7 + c4c3c7.

• (1,1,1,0,0,0,0), (1,0,0,1,1,0,0) and (0,1,0,1,0,1,0): These graphs have two right-hand nodes with two edges and one

with zero. Their overhead is one, and the number of these graphs isc1c2c3 + c1c4c5 + c2c4c6.

• (0,0,1,0,1,0,1), (0,0,1,0,0,1,1) and (0,0,0,0,1,1,1): These graphs have two right-hand nodes with three edges andone

with two. Their overhead is one, and the number of these graphs isc3c5c7 + c3c6c7 + c5c6c7.

Therefore, the overhead of a graph withm = 3 is given by the following rather tedious equation:

o(G) = n +
2
∑7

i=1

(

ci

3

)

+ 4
3

∑7
i=1

(

ci

2

)

(N − ci)
(

N
3

) +

c3c5c6 + c1c6c7 + c2c5c7 + c4c3c7 + c1c2c3 + c1c4c5 + c2c4c6 + c3c5c7 + c3c6c7 + c5c6c7
(

N

3

) .

Unlike for m = 2, minimizing this equation is not straightforward. We discuss how we enumerate graphs to determine

the optimal ones below in Section 5.4.

5.3 Calculating Overhead For Arbitrary m

Whenm > 3, there are far too many residual graphs with non-zero overhead to enumerate by hand. Instead, we may

enumerate them electronically and calculate their overheads. Using such an enumeration, we may calculate the overhead

of any graphG = (c1, . . . , c2m−1) as follows. Given a residual graphR = (r1, . . . , r2m−1), the number of ways thatR

may result from downloadingn bits fromG is:
2m−1
∏

i=1

(

ci

ri

)

This will be the product of at mostm terms, since
∑2m−1

i=1 ri = m.

8

Thus, ifRm is the set of all residual graphs with non-zero overhead, then the overhead of a graphG is:

o(G) = n +

∑

R∈Rm

(

o(R)
∏2m−1

i=1

(

ci

ri

)

)

(

N
m

)

 .

Of course, the size ofRm increases exponentially, so this technique is only practical for smallm. Whenm = 4, there

are 2,617 residual graphs with non-zero overhead, and calculating the overhead of a graph takes roughly 2 milliseconds

on a Dell Precision 330. Whenm = 5, there are 295,351 residual graphs with non-zero overhead,and calculating the

overhead of a graph takes roughly 128 milliseconds. Whenm = 6, there are 105,671,841 residual graphs with non-zero

overhead, and calculating the overhead of a graph is too expensive for an exhaustive exploration of the type that we are

pursuing. Thus, in the data that follows, we limitm to be less than or equal to 5.

5.4 Finding Optimal and UBp Codes form ∈ {3, 4, 5}

Whenm > 2, minimizingo(G) mathematically is not straightforward and remains an interesting open problem. Here we

use enumeration and heuristics to find the best codes. Unfortunately, graph enumeration is also exponential inn andm;

therefore, for all but the smallest values ofn andm, we prune the search using a heuristic that we callperturbationby p

elements. We take the best code forn−1 and generate all codes forn that can be derived from then−1 code by subtracting

up top elements from the variousci, and adding up top + 1 elements to the otherci. For example, the optimal code for

m = 3 andn = 32 is (6,6,5,6,4,4,4). The optimal code forn = 33, (6,6,5,6,5,5,3), is derived from the code forn = 32 by

subtracting one fromc7, and adding one toc5 andc6 - a perturbation withp = 1. We use this technique to generate what

we call UBp codes, which stands forUpper Bound, perturbed byp.

We generated optimal and UBp codes for the values ofm andn listed in Table 2. The total CPU time to generate these

2910 codes is 681 days. Fortunately, however, the enumerations and perturbations are easily parallelizable, and we were

able to enlist 89 machines of varying flavors and speeds to cutthat time by a factor of 20.

m Optimal Codes UBp Codes p CPU time per UBp code

3 n ≤ 50 n ≤ 1750 6 10s

4 n ≤ 10 n ≤ 1000 4 3h 49m

5 n ≤ 3 n ≤ 160 2 78h 13m

Table 2: Range of optimal and UBp codes generated

The UBp codes are not provably optimal. We believe that for each value ofm, there is a minimum value ofp for which

all UBp codes will be provably optimal, and thatp will grow with m. For example, form = 3 in our tests, the maximum

value ofp for which UBp 6=UBp−1 is two. Form = 4, that value is 3, and only occurs in one case (derivingn = 137

from n = 138). Proving what this value is for a given value ofm is an open question. We are confident that form ≤ 4 in

our tests, our UBp codes are optimal. We doubt that the UB2 codes form = 5 are (in fact, a counterexample is given in

9

Section 6 below). Unfortunately, we cannot call them optimal until optimality is proved, and thus they represent the upper

bounds of the best codes known.

The 2910 codes that we derived are too numerous to present in their entirety here. However, since they are important,

we have published them in Technical Report form in [Pla04]. We also list the best codes for1 ≤ n ≤ 10 in Tables 4

through 6 in Appendix 2.

6 Observations

We discuss some of the collective characteristics of our UBp codes here. This discussion is in the form of questions that

arise naturally when one explores these codes.

What are the overheads of the optimal and UBp codes?To answer this question, we plot the overhead factors of the

best codes forn ≤ 100 in Figure 2. For each value ofm, the best overhead factor reaches its high point atn = 2, and then

descends to approach 1 asn grows. In general, the overhead factor for each value ofn is higher whenm is larger. This is

not strictly true, however. For example, whenn = 4 the optimal overhead factor is 1.0955 whenm = 4, whereas the UB2

code form = 5 has an overhead factor of 1.0952.

1 10 100
n

1.00

1.05

1.10

1.15

O
ve

rh
ea

d
F

ac
to

r m = 5
m = 4
m = 3
m = 2

Figure 2: Overhead factors of optimal and UBp codes form ∈ {2, 3, 4, 5} andn ≤ 100.

There are other interesting features of Figure 2. First, each curve is composed of three segments: (1) A rising from an

overhead factor of 1 whenn = 1 to a maximum value, which in each case is whenn = 2; (2) A period where the factor

follows no particular pattern; and (3) A gradual descendingof the overhead factor back down to one asn grows further. It

is an open problem to provide a better characterization of the optimal overhead. Note that the curve form = 4 rises and

falls three distinct times.

Are the best graphs regular?Regularity in LDPC’s is discussed in Lubyet al’s seminal paper on Tornado codes [LMS+97]

and thereafter separated into left-regularity and right-regularity [RU03, Sho99]. A graph isleft-regular if each left-hand

node has the same number of incident edges. We define a relaxedproperty, calledloose left-regularity(LLR) to be when

each left-hand node of a graph has eitheri or i + 1 edges for some value ofi. Right-regularity and loose right-regularity

(LRR) are defined similarly, except for right-hand nodes rather than left-hand nodes.

Of the 2910 best graphs form ∈ {3, 4, 5}, none are left-regular, and only one is LLR. This is the code for n = 6,

10

m = 4, which has four nodes inC1, and six inC2. The remaining 2909 graphs are not LLR. Left-regularity as aproperty

for optimality was dismissed early on in [LMS+97], so these results do not come as a surprise.

0 20 40 60 80 100
n

0

20

40

60

A
ve

ra
ge

 #
 o

f e
dg

es
in

to
 r

ig
ht

-h
an

d
no

de
s

m = 2
m = 3
m = 4
m = 5

Figure 3: Average number of incoming edges for each right-hand node.

Right-regularity, however, is a different story.Everyone of the 2910 best graphs is either right-regular or LRR. As

plotted in Figure 3, the average number of edges into each right-hand node follows a linear trend for each value ofm.

Fitting the data to a line, we get that the average number of edges into each right hand node is0.67n for m = 2, 0.54n

for m = 3, 0.47n for m = 4, and0.46n for m = 5.

Do the variousci for best graphs roughly equal each other?Whenm = 2, we proved that in an optimal graph, noci

could differ fromcj by more than one. It is logical to see if this trend extrapolates to largerm. The answer is that it does

not. The first graph to exhibit this property form = 3 is whenn = 18, and the optimal graph is (4,3,3,3,3,3,2) with an

overhead factor of 1.0326 as compared to (3,3,3,3,3,3,3), with an overhead factor of 1.0329. Asn increases for all values

of m > 2, this trend becomes more pronounced. For example, the best graph form = 3 andn = 1750 hasc1 = 289,

andc7 = 188. Form = 4 andn = 200, the best graph hasc1 = 20, andc15 = 6. Looking at the equation for overhead in

Section 5.2, it is easy to see whyc7 would have a lower value than the rest, as it is present in six of the terms in the bottom

fraction, whereas the counts inE2 are present in five terms each, and the counts inE1 are present in only three each.

A different property that we define here isEdge Class Equivalence: If e(i) = e(j), thenci andcj differ by at most one.

In other words, the counts of distinct nodes in each edge class are roughly equal. For example, the UB6 graph form = 3

andn = 1001 is (166,165,133,165,133,134,108). This graph has edge class equivalence, since the counts of nodes inE1

is equal to 165 or 166, the counts of nodes inE2 is equal to 133 or 134, and the count of nodes inE3 is 108. As with loose

right-regularity,everyone of the 2910 best graphs has edge class equivalence.

Since each graph has edge class equivalence, it makes sense to look at the sizes of the variousEi. Borrowing from the

classical definition of Tornado Codes [LMS+97], we can define a vectorΛ of graphG to be(Λ1, Λ2, . . . , Λm), whereΛj

is the probability that a node inG is an element ofEj . We plot the values ofΛ for the 2910 best graphs below in Figure 4.

In the graphs form = 3 andm = 4, theΛ vectors clearly converge to constants asn grows. Them = 5 graph may

exhibit this trend as well, but without looking at higher values ofn, we can only speculate. We explore this trend a little

further below.

Do the values ofci or |Ei| grow monotonically with n? Form = 2, they do. However, for the other values ofm, they

11

0 500 1000 1500
n

0.0

0.2

0.4

0.6

P
ro

ba
bi

lit
ie

s

m = 3

Lambda-1 Lambda-2

0 200 400 600 800 1000
n

0.0

0.2

0.4

0.6

m = 4

Lambda-3

0 50 100 150
n

0.0

0.2

0.4

0.6

m = 5

Lambda-4 Lambda-5

Figure 4: Values of theΛ vectors for best graphs.

do not. Otherwise, UB0 graphs would all be optimal. As an example, considerm = 3 andn = 1470, whose best graph is

(243,243,195,243,195,195,159). The best graph forn = 1471 is (243,243,196,242,196,196,158) – bothc4 andc7 are less

than their values forn = 1470. Even more striking, whenm = 4 andn = 141, the best graph hasc15 = 5. Forn = 142,

c15 = 4, and forn = 143, c15 = 3.

For a givenm, is the optimal graph for n a subgraph of the optimal graph for n+1? Form = 2, the answer is yes,

which may be seen easily by looking at how the variousci grow. However, form > 2, in general, the answer is no. This

is because theci do not grow monotonically. However, in many specific instances, the answer is yes. Quantifying this, of

the 1,749 optimal graphs form = 3 (with n > 1), 1,741 of them are supersets of the optimal graphs forn− 1. Form = 4,

900 of the 999 graphs are supersets, and form = 5, the number is only 114 of 159.

Can anything be learned by modeling theci as continuous variables?Suppose we make the assumption that theci

are continuous variables, and that allci in the same edge class are equal to each other. Moreover, as implied by the graphs

in Figure 4, we assume that the values ofΛ converge to constants asn → ∞. Then, using the last 200 values ofn in each

case, we average the values ofΛ and display them in Table 3. Form = 2 andm = 3, we used the Maple software package

to corroborate theΛ values directly from their overhead equations. With the corroboration, we were also able to prove

thato(G) has a local minimum value when the graphs are edge class equivalent. Form = 4 andm = 5, the equations

(fourth and fifth degree polynomials with three and four variables respectively) were too complex for Maple to minimize.

We can use theΛ vectors in Table 3 as a second heuristic to compute graphs. Wedo this by multiplying eachΛj by N ,

and rounding to the nearest integer to yield the various|Ej |. If t =
∑m

j=1 |Ej | 6= N , then we can sortNΛj − |Ej |, and

either add one to the biggestN − t counts or subtract one from the smallestt − N counts. Then we enumerate all graphs

that exhibit both loose right-regularity and edge class equivalence, and keep track of the best graph. This results in far

fewer graphs being generated than by perturbation.

For example, whenm = 5 andn = 402, the |Ej | are (131,159,90,25,2). Since there are 10 values each ofci ∈ E3,

12

m Λ1 Λ2 Λ3 Λ4 Λ5

2 0.6667 0.3333

3 0.4940 0.3983 0.1077

4 0.3879 0.4030 0.1820 0.0271

5 0.3210 0.3909 0.2215 0.0620 0.0047

Table 3: Values of theΛ vectors when theci are continuous variables and display edge class equivalence.

each of them will equal 90. Similarly, each of the five values of ci ∈ E4 will equal 5, andc31 = 2. The only values that

require enumeration are the 5 combinations ofci ∈ E1 where four equal 26 and one equals 27, and the 10 combinations

of ci ∈ E2 where nine equal 16, and one equals 15. That makes 50 graphs, of which only 20 are LRR. The maximum

number of graphs that we enumerated in this way was 59,940, for m = 5 andn = 290. The average number of graphs

generated for alln ≤ 1, 000 was 4,007. This is as compared to over 2 million graphs per value ofn when generating UB2.

1 10 100 1000
n

1.0

1.1

1.2

O
ve

rh
ea

d
F

ac
to

r m = 3 UB_6
m = 3 using Lambdas

1 10 100 1000
n

1.0

1.1

1.2 m = 4 UB_4
m = 4 using Lambdas

1 10 100 1000
n

1.0

1.1

1.2 m = 5 UB_2
m = 5 using Lambdas

Figure 5: Overhead factors of codes created with theΛ vectors from Table 3 as compared to the UBp codes.

In Figure 5, we compare the overheads of the codes created using theseΛ vectors with the UBp codes. All three graphs

are similar — for very smalln (less than 10), the codes created with theΛ vectors have significantly higher overheads than

their optimal counterparts. However, asn grows, the two techniques produce similarly performing codes. Interestingly, in

one case (m = 5, n = 57), theΛ-generated code has a lower overhead factor (1.022258) thanthe UB2 code (1.022263).

This proves that as suspected, the UB2 codes are not optimal form = 5. Certainly, given the computational complexity

of generating UB2 codes form = 5, for moderate to large values ofn, the technique using theΛ vector is preferable. We

include the graphs so generated forn ≤ 1000 in Technical Report [Pla04].

7 Optimal Graphs for n = 2

We switch our focus now from fixedm to fixed n. While the graphs forn = 2 have greater variety than form = 2,

they have one practical limitation — the values of the codingbits are constrained to three distinct values — the value of

the first data bit, the value of the second data bit, or the exclusive-or of the two data bits. When downloading, it is only

13

necessary to download two of these distinct values, after which the data bits (and therefore the rest of the coding bits) may

be determined.

A graph that mirrors this line of thinking has the two data bits in l1 andl2. The remaining left-hand nodes are coding

nodes, and each has exactly one edge fromli to ri−2. The constraint nodes are partitioned into three sets — those whose

coding bits equall1, those whose coding bits equall2, and those whose coding bits equall1⊕ l2. Nodel1 will have an edge

to every constraint node in the first and third groups, and node l2 will have an edge to every constraint node in the second

and third groups. The left-hand nodes whose values equall1 compose a setD1, and consist ofl1 itself plus the coding

nodes that equall1. There ared1 nodes in this set.D2 andd2 are defined similarly, includingl2 and all coding nodes that

equall2. Finally,D3 is composed of the coding nodes that equall1 ⊕ l2, and there ared3 of these nodes. Figure 6 depicts

such a graph forn = 2 andm = 4 whered1 = d2 = d3 = 2.

l2

l1

r4

l2

l3

l4

l5

l6

r1

r2

r3

l1

Figure 6: A graph wheren = 2, m = 4, andd1 = d2 = d3 = 2.

Suppose we downloadx bits, and all bits are from the same set (D1, D2, orD3). Then the graph will remain undecoded,

since only nodes that belong in that group will be determined. For example, in Figure 6 above, if we only download the

two nodes connected to the first constraint, then those will be the only nodes that we may remove from the graph. As soon

as we have downloaded nodes from two different sets, we may decode the entire graph.

Let us focus solely on downloading bits in order. Definepd1,i to be the probability that the firsti bits downloaded come

from nodes inD1, and that thei + 1-st bit does not come from nodes inD1. Eachpd1,i for 1 ≤ i ≤ d1 is equal to:

pd1,i =

(

d1

m + 2

)(

d1 − 1

m + 2 − 1

)

...

(

d1 − (i − 1)

m + 2 − (i − 1)

)(

m + 2 − d1

m + 2 − i

)

=

(

m+2−i
d1−i

)

(m + 2 − d1)
(

m+2
d1

)

(m + 2 − i)

=

(

m+1−i
d1−i

)

(

m+2
d1

) .

We may usepdx,i for each1 ≤ i ≤ dx to calculate the expected value of the overhead:

o =

d1
∑

i=1

(i + 1)pd1,i +

d2
∑

i=1

(i + 1)pd2,i +

d3
∑

i=1

(i + 1)pd3,i

=
m + 3

m + 3 − d1
+

m + 3

m + 3 − d2
+

m + 3

m + 3 − d3
− 2.

14

Simple math yields that this equation is minimized whend1, d2, andd3 differ by at most one. Figure 7 plots the overhead

of these graphs as a function ofm. Note that although the rate of these codes approaches zero as m → ∞, the overhead

factors appear to approach 1.25. Indeed, if we setd1 = d2 = d3 = m+2
3 , the equation for overhead becomes:

0 20 40 60 80 100
m

1.00

1.05

1.10

1.15

1.20

1.25

O
ve

rh
ea

d
F

ac
to

r

Figure 7: The overhead factors of optimal graphs whenn = 2.

o =
3(m + 3)

m + 3 − m+2
3

− 2

=
3(m + 3)

3m+9−m−2
3

− 2

=
9m + 27

2m + 7
− 2

=
5m + 13

2m + 7

The limit of this asm → ∞ is 5
2 = 2.5, yielding an overhead factor of2.5

2 = 1.25.

8 Graphs for n = 3: A limitation of having only m constraints

Extrapolating from the previous section, supposen = 3, and our three data bits are labeledb1, b2 andb3. Now, there are

only seven possible values for a node:b1, b2, (b1 ⊕ b2), b3, (b1 ⊕ b3), (b2 ⊕ b3), and(b1 ⊕ b2 ⊕ b3). Of the
(

7
3

)

= 35

combinations of three distinct values, there are seven thatcannot decode the three data bits:

1. b1, b2 and(b1 ⊕ b2).

2. b1, b3 and(b1 ⊕ b3).

3. b2, b3 and(b2 ⊕ b3).

4. b1, (b2 ⊕ b3) and(b1 ⊕ b2 ⊕ b3).

5. b2, (b1 ⊕ b3) and(b1 ⊕ b2 ⊕ b3).

6. b3, (b1 ⊕ b2) and(b1 ⊕ b2 ⊕ b3).

15

7. (b1 ⊕ b2), (b1 ⊕ b3), and(b2 ⊕ b3).

Any combination of four distinct values will allow one to decode the three data bits. Therefore, if we haven = 3

andm = 4, and we encode by having each of the seven bits contain a distinct value, then we can always decode with

three bits when we do not receive one of the 3-bit combinations listed above. Otherwise, we will decode in four bits. The

overhead of such a decoding scheme is28∗3+7∗4
35 = 112

35 = 13
5 = 3.2.

Unfortunately, the optimal graph forn = 3 andm = 4 has an overhead of11335 = 3.2286, meaning that the optimal

graph does not decode optimally! To see why this is true, consider the graph in Figure 8. This graph’s overhead is 3.2286.

Suppose we download nodes D, E, and G. Since(b1 ⊕ b2) ⊕ (b1 ⊕ b3) ⊕ (b1 ⊕ b2 ⊕ b3) is equal tob1, we should be able

to decode all the bits from these three values. However, whenwe remove nodes D, E, and G from the graph, all constraint

nodes have more than one edge still incident to them, and we cannot decode. This is where the extra135 of overhead comes

from, and there isnograph with seven left-hand nodes and four right-hand nodes that avoids this problem.

b1+b3

b1+b2+b3

b1
b1+b2

b2+b3 b2

b3

AG

E

F B

C

D

Figure 8: An optimal graph forn = 3 andm = 4.

To fix this, suppose we add a fifth constraint to the graph, which is connected to nodes D, E, and G. Now, although the

graph no longer fits the standard Tanner Graph description (nor does it fit our definition of a Systematic graph), it does

decode optimally. We do not explore this fact or these codes further; however, we present it here as a curiosity, and as a

seed of future work on graph-based coding.

9 Related Work and Brief Discussion

Since the landmark Tornado Code paper in 1997 [LMS+97], the focus of most LDPC researchers has been achieving

asymptotic optimality. There are rare exceptions, such as apaper analyzing certain classes of finite codes [DPT+02], a

paper defining classes of sub-optimal codes that perform well in practice [RN04], and our previous foray into Monte-Carlo

generation and analysis of finite-length codes [PT04].

16

The exceptions are rare, because the asymptotic is an easiercase in which to succeed. To illustrate this, consider

Figure 4. Whereas the simple graph construction using theΛ vectors fails to produce graphs that perform nearly optimally

for small n, asn grows this graph construction method performs very well. Itwould not be too difficult to prove that

the overhead factors of these graphs indeed approach one asn → ∞, meaning that they are asymptotically optimal.

Determining true optimality for finiten remains an open question, one that we will continue to address.

An important question to ask, however, is:How important is optimality? For example, whenm = 4 andn = 100, the

overhead of the UB4 code is 101.01073, and the overhead of the code generated by theΛ vector is 101.01088. Are there

any scenarios in which that extra 0.00015 is significant? Likely not. However, consider the case wherem = 4 andn = 4,

and a 1 GB file is broken up into 256 sets of eight blocks (4 data and 4 coding) that are distributed among faulty servers

in the wide-area. When a client tries to download this file, the difference between the optimal overhead of 4.382 and the

suboptimal overhead of 4.471 (generated by theΛ vector) will be significant indeed. Until true optimality isdetermined,

suboptimal constructions such as the UBp andΛ codes in this paper will be extremely useful. However, untiloptimal, finite

codes are fully understood, the field of LDPC codes will continue to be an open research area.

10 Conclusion

We have performed an exploration of optimal and nearly-optimal LDPC erasure codes for small values ofn andm. We have

detailed three mechanisms for determining the overhead of acode exactly, and used these determinations, plus enumeration

techniques to generate optimal codes form = 2 andn = 2. For m ∈ {3, 4, 5}, we have generated codes with the best

known upper bounds forn less than or equal to 1750, 1000, and 1000 respectively.

As part of our exploration, we have made the following observations, which should be an aid to others who need to

explore these codes:

• Optimal codes are not left-regular.

• However, the best codes appear to be loosely right regular.

• They also appear to have a property that we calledge class equivalence. Using the above two properties can be a

great aid in pruning enumerations in order to discover good codes.

• The various counts of distinct types of left-hand nodes do not have to equal each other for a graph to be optimal.

• In the best graphs with a fixedm, theΛ vector of edge count probabilities, which is the backbone ofclassic LDPC

coding theory [LMS+97, RU03, WK03], appears to converge to a constant asn → ∞. This vector may also be used

to generate graphs that perform very close to optimal asn grows.

• For n > 2, the iterative decoding technique of LDPC’s cannot decode optimally. It is an open question of how to

modify the standard definition of LDPC’s so that they can decode better.

17

The quantification of optimal parity check codes for arbitrary values ofn andm remains an open question. In this paper,

we have defined uppoer bounds, and we have helped to narrow therange ofn andm for which we don’t know optimality.

We will continue work to narrow this range by trying to understand the properties and structure of optimal codes, and using

them to prune the search so that it is a tractable endeavor.

References

[DPT+02] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R.L. Urbanke. Finite-length analysis of low-density

parity-check codes on the binary erasure channel.IEEE Transactions on Information Theory, 48:1570–1579,

June 2002.

[FMS+04] S. Frolund, A. Merchant, Y. Saito, S. Spence, and A. Veitch. A decentralized algorithm for erasure-coded

virtual disks. InDSN-04: International Conference on Dependable Systems and Networks, Florence, Italy,

2004. IEEE.

[GWGR04] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter. Efficient byzantine-tolerant erasure-coded storage.

In DSN-04: International Conference on Dependable Systems and Networks, Florence, Italy, 2004. IEEE.

[LMS+97] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. Practical loss-resilient codes. In

29th Annual ACM Symposium on Theory of Computing,, pages 150–159, El Paso, TX, 1997. ACM.

[PD04] J. S. Plank and Y. Ding. Note: Correction to the 1997 tutorial on Reed-Solomon coding.Software – Practice

& Experience, to appear, 2004.

[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems.Software – Practice

& Experience, 27(9):995–1012, September 1997.

[Pla04] J. S. Plank. Enumeration of small, optimal and near-optimal parity-check erasure codes. Technical Report

UT-CS-04-535, Department of Computer Science, Universityof Tennessee, November 2004.

[PT04] J. S. Plank and M. G. Thomason. A practical analysis oflow-density parity-check erasure codes for wide-area

storage applications. InDSN-2004: The International Conference on Dependable Systems and Networks,

pages 115–124, Florence, Italy, June 2004. IEEE.

[Riz97] L. Rizzo. Effective erasure codes for reliable computer communication protocols.ACM SIGCOMM Computer

Communication Review, 27(2):24–36, 1997.

[RN04] V. Roca and C. Neumann. Design, evaluation and comparison of four large FEC Codecs, LDPC, LDGM,

LDGM staircase and LDGM triangle, plus a Reed-Solomon smallblock FEC Codec. Technical Report RR-

5225, INRIA Rhone-Alpes, June 2004.

18

[RU03] T. Richardson and R. Urbanke. Modern coding theory. Draft from lthcwww.epfl.ch/papers/ics.ps ,

August 2003.

[RWE+01] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz. Maintenance-free

global data storage.IEEE Internet Computing, 5(5):40–49, 2001.

[Sho99] M. A. Shokrollahi. New sequences of linear time erasure codes approaching the channel capacity. InPro-

ceedings of AAECC-13, Lecture Notes in CS 1719, pages 65–76, New York, 1999. Springer-Verlag.

[WK03] S. B. Wicker and S. Kim. Fundamentals of Codes, Graphs, and Iterative Decoding. Kluwer Academic

Publishers, Norwell, MA, 2003.

[ZL02] Z. Zhang and Q. Lian. Reperasure: Replication protocol using erasure-code in peer-to-peer storage network.

In 21st IEEE Symposium on Reliable Distributed Systems (SRDS’02), pages 330–339, October 2002.

11 Appendix 1 – Example of recursive overhead calculation

r1

l1

l2 l3

r1

l2

l1

r2

r1

l2

l1

l3 l4

r1

l2

l1

l3

r2

(a): G1 (b): G2 (c): G3 (d): G4

Figure 9: Example graphs for determining overhead.

11.0.1 Example 1:G1

Let G1 be the graph withn = 1, m = 1, and edges{(l1, r1), (l2, r1)}, depicted in Figure 9(a).

This is a systematic code, where either node may be the data orcoding bit. To calculateG1’s overhead, we first simulate

downloading bitl1 by removingl1 and edge(l1, r1) from the graph. This leaves noder1 with only one incident edge,

(l2, r1) which means that we can remover2 and its edge from the graph and assign nodel2’s value. Thus,R(G1, l1) is

simply l2, whose overhead is zero.

Similarly, downloadingl2 leaves onlyl1 as a residual graph. Therefore, the overhead ofG1 is:

19

o(G1) =

(

2
∑

i=1

(1 + o(R(G1, li)))

)

/2

= ((1 + o(R(G1, l1))) + (1 + o(R(G1, l2))))/2

= ((1 + 0) + (1 + 0))/2

= 1.

11.0.2 Example 2:G2

Let G2 be the graph withn = 2, m = 1 and edges{(l1, r1), (l2, r1)}, depicted in Figure 9(b). Note, this is a graph that

represents a residual graph of a download, where we have already determinedl3’s value, but it has not been downloaded

yet. To decode, if we download either nodesl1 or l2, then we may assign the value of all nodes, and decoding is complete. If

we download nodel3, then we simply remove that node from the graph, and are left with graphG1 as a residual. Therefore,

the overhead of decodingG2 is:

o(G2) = ((1 + o(R(G2, l1))) + (1 + o(R(G2, l2))) + (1 + o(R(G2, l3))))/3

= ((1 + 0) + (1 + 0) + (1 + o(G1))/3

= (1 + 1 + 2)/3 = 4/3.

11.0.3 Example 3:G3

Let G3 be the graph withn = 1, m = 2 and edges{(l1, r1), (l1, r2), (l2, r1), (l3, r2)}, depicted in Figure 9(c). s is a simple

systematic replication code, wherel1 is the data bit, andl2 andl3 are the coding bits. To decode, when any of the three

nodes is downloaded, the values of the other two may be assigned. Therefore, the overhead ofG3 is:

o(G3) = ((1 + o(R(G3, l1))) + (1 + o(R(G3, l2))) + (1 + o(R(G3, l3))))/3

= ((1 + 0) + (1 + 0) + (1 + 0))/3

= 1.

11.0.4 Example 4:G4

Finally, let G4 be the graph withn = 2, m = 2 and edges{(l1, r1), (l1, r2), (l2, r2), (l3, r1), (l4, r2)}, depicted in Fig-

ure 9(d). This is systematic code with data bits inl1 andl2, and coding bits inl3 andl4. To decode, we look at the residual

graphs of downloading eachli. Downloadingl1 leaves us with a graph equivalent toG2. Downloadingl2 leaves us with a

20

graph equivalent toG3, and sincel4 is equivalent tol2, downloading it also leaves us withG3 as a residual graph. Finally,

downloadingl3 leaves us with a graph equivalent toG2 as a residual. Therefore, the overhead ofG4 is:

o(G4) =

(

4
∑

i=1

(1 + o(R(G4, li)))

)

/4

= ((1 + o(G2)) + (1 + o(G3)) + (1 + o(G2)) + (1 + o(G3)))/4

= ((1 + 4/3) + (1 + 1) + (1 + 4/3) + (1 + 1))/4

= (26/3)/4 = 13/6 = 2.16667.

Thus, the overhead factor ofG4 is 13/12 = 1.0833.

Appendix 2 – Optimal Codes form ∈ {3, 4, 5}

n c1 c2 c3 c4 c5 c6 c7 o f

1 1 0 1 1 0 1 0 1.0000 1.0000

2 1 1 1 1 1 0 0 2.2000 1.1000

3 1 1 1 1 1 1 0 3.2000 1.0667

4 1 1 1 1 1 1 1 4.2857 1.0714

5 2 1 1 1 1 1 1 5.3750 1.0750

6 2 2 1 1 1 1 1 6.4246 1.0708

7 2 2 1 2 1 1 1 7.4500 1.0643

8 2 2 2 2 1 1 1 8.4788 1.0598

9 2 2 2 2 2 1 1 9.4939 1.0549

10 2 2 2 2 2 2 1 10.5035 1.0503

Table 4: Optimal codes form = 3, 1 ≤ n ≤ 10, plus overheads and overhead factors.

21

n c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 o f

1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1.0000 1.0000

2 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 2.2000 1.1000

3 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 3.2286 1.0762

4 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 4.3821 1.0955

5 1 1 1 1 0 0 1 1 1 1 0 1 0 0 0 5.4603 1.0921

6 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 6.4881 1.0813

7 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 7.5061 1.0723

8 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 8.5894 1.0737

9 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 9.6350 1.0706

10 1 2 1 1 1 1 1 1 1 1 1 1 1 0 0 10.6771 1.0677

Table 5: Optimal codes form = 4, 1 ≤ n ≤ 10, plus overheads and overhead factors.

n ci, for i from 1 to 31 o f

1 10100100000100010000000100000001.0000 1.0000

2 10101000010000010001000100000002.2667 1.1333

3 00110101100000011000000000010003.3464 1.1155

4 01111001100000011000000000000104.3810 1.0952

5 01111001100001011000010000000005.5063 1.1013

6 01111001100001011000010001000006.5753 1.0959

7 01111001100001011000010001001007.6553 1.0936

8 11111001100000111000010001010008.6938 1.0867

9 11111001100000111001010101000009.7522 1.0836

10 111110011101000110010101000000110.7807 1.0781

Table 6: Optimal codes form = 5, 1 ≤ n ≤ 3, and UB2 codes form = 5, 4 ≤ n ≤ 10, plus overheads and overhead

factors.

22

