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Abstract


While a variety of checkpointing techniques and systems
have been documented for long-running programs, they are
typically not available for programmers that are non sys-
tems experts. This paper details a project that integrates
three technologies, NetSolve, Starfish, and IBP, for the
seamless integration of fault-tolerance into long-running
applications. We discuss the design and implementation of
this project, and present performance results executing on
both local and wide-area networks.


1 Introduction


Checkpointing and rollback recovery is a well-studied
research area for enabling long-running applications to be
fault-tolerant. Many basic checkpointing algorithms [6, 11]
and optimization techniques [12] have been developed for
uniprocessor and parallel computing systems, and sev-
eral checkpointing libraries and systems have been imple-
mented [1, 5, 8, 10, 14, 17, 18, 20, 22]. However, for the
typical scientific user, actually using a checkpointing sys-
tem is a difficult task. All systems require the user to port
a library and recompile or relink their code subject to a
number of restrictions imposed by the library. These re-
strictions range from strong typing of the source code [17]
to restricted file I/O [5, 14] to static linking of runtime li-
braries [1], to restricted communication patterns [5]. One
restriction shared by all checkpointers is that no connec-
tions to the outside world may be open while checkpointing
is underway.


Because of all of these factors, few scientific users ac-
tually employ checkpointing in their applications. This
paper describes a research project whose goal is to em-
bed checkpointing seamlessly into long-running applica-
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Figure 1. The structure of NetSolve applica-
tions


tions for scientific programmers. To achieve this goal, we
combine three software systems, NetSolve [2], Starfish [1],
and IBP [13]. In this experience report, we describe each
software piece and how the pieces are integrated, focusing
on the important design decisions. These are:


A user interface with few complexities.


An efficient checkpoint library that is fairly simple to
embed into server code, and whose restrictions do not
limit the user’s application.


A checkpointing storage substrate that facilitates
restart and migration across administrative domains,
and automatic garbage collection.


We close with a few performance studies in a variety of lo-
cal and wide area settings.
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2 The Components


The system is based on three components: NetSolve,
Starfish, and IBP. We first describe these components.


2.1 NetSolve [2]


NetSolve is a brokered remote procedure call (RPC) en-
vironment as depicted in Figure 1. The user is termed a
client, and is typically executing code on a PC or laptop.
When the client wishes to perform a computationally com-
plex task, he or she makes a NetSolve client call, specifying
the name of the task, plus the arguments. The NetSolve
client software (linked to the client in the form of a library)
manages the completion of this task, which we will refer to
as a “service.”


First an agent is contacted with a query (step 1), spec-
ifying the service name and the size of the arguments.
The agent maintains information on a collection of com-
putational servers, which may be uniprocessors, multipro-
cessors, massively parallel machines, Condor workstation
pools [20], etc. This information consists of machine pa-
rameters (speed, memory, available software), plus current
load information. The agent returns an ordered list of can-
didate servers to the client (step 2), who then picks a server
(typically the first on the list) and initiates a RPC to that
server (step 3). The server performs the service, and com-
pletes the RPC, returning the results to the client (step 4).


Although not depicted in Figure 1, there may be multiple
agents managing overlapping server pools. Additionally,
servers may span multiple geographic and administrative
domains, of which the clients may or may not be a part. One
of NetSolve’s strengths is the wide variety of clients that it
supports. The NetSolve client code may be linked with C,
C++ and Fortran, running on both Unix and Windows plat-
forms. Additionally, it may be used from within the pop-
ular scientific toolkits Matlab and Mathematica, and from
Microsoft Excel. The NetSolve release contains server soft-
ware for dense and sparse linear algebra routines and other
commonly-used scientific codes (e.g. ARPACK, FitPack,
ItPack, MinPack, FFTPACK, LAPACK, QMR, etc.). Users
may configure servers to run custom code as well with the
aid of some Java tools [3].


2.2 Starfish [1]


Starfish is a transparent checkpointing library originally
developed to embed fault-tolerance and migration into MPI
applications. The Starfish checkpointing mechanism is a
standard core dump mechanism that has served as the basis
for many checkpointers (see papers by Tannenbaum [20]
and Plank [14] for throrough discussions of these types of


checkpointers). Starfish checkpoints periodically, trigger-
ing checkpoints by timer interrupts.


This checkpointer is a library to be linked with Solaris-
based programs. No recompilation of any source code is
required. Starfish implements the copy-on-write optimiza-
tion [7, 14] so that the act of checkpointing may be over-
lapped with the execution of server code. Like most check-
pointers, Starfish imposes restrictions on file I/O, requires
static linking of shared libraries, and prohibits the use of
interprocess communication.


2.3 IBP [13]


The Internet Backplane Protocol (IBP) is a mechanism
for managing storage on the wide area. IBP servers are
daemons that provide local storage (disk, tape and physi-
cal memory) to remote clients that link the IBP client li-
brary. IBP is useful for checkpointing applications because
it allows programs to store their checkpoints into a remote
storage entity, perhaps one in a different administrative do-
main. Therefore if the machine executing the program fails
and remains inoperative for a long period of time, the pro-
gram may be restored on a separate machine, again perhaps
in a different administrative domain.


IBP has two features that enable it to serve storage on the
wide area as a networking resource:


There are no user-defined names. IBP clients allo-
cate storage, and if the allocation is successful, then it
returns three capabilities to the client — one each for
reading, writing, and management. These capabilities
are text strings, and may be viewed as server-defined
names for the storage. The elimination of user-defined
names facilitates scalability, since no global names-
pace needs to be maintained. To make an IBP client
call for reading, writing or management, the client
must present the server with the proper capability.


Storage may be constrained to be volatile or time-
limited. An important issue when serving local storage
to remote clients is being able to reclaim the storage.
IBP servers may be configured so that the storage allo-
cated to IBP clients is volatile, meaning it can go away
at any time, or time-limited, meaning that it goes away
after a specified time period.


The transient nature of IBP storage leads us to refer to
the units of IBP storage as buffers.


3 Putting it all Together


The structure of NetSolve with checkpointing is depicted
in Figure 2. In a nutshell, the NetSolve servers are linked
with Starfish and store their checkpoints in IBP buffers.
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Figure 2. NetSolve with checkpointing


When a server fails, the computation is rolled back to the
most recent checkpoint and restored on a new server. The
client receives results from whichever server completes the
computation. In such a way, the client ends up executing
fault-tolerant and migratable code by simply linking with
the NetSolve client library.


There is much more detail in the implementation. We
first describe the exact client-agent-server interaction. The
agent must be aware of server architectures, and whether the
server code for a particular computational service has been
linked with the Stafish library. This information is returned
to the client as part of the response to the client’s initial
query. Figure 3 illustrates a skeleton of the service code,
emphasizing the flow of control for checkpointing and re-
covery. As part of the service code initiation, the server al-
locates an IBP buffer on a nearby server. We call this buffer
the “naming buffer.” The capabilities of the naming buffer
are returned to the client.


main(int argc, char **argv) 
{
   ...
   initialization(&comm, &pd, ...);


   if (chkptState == restart) {
     chkpt_init(argc, argv);      /* Does not return */


   } else if (chkptState == enable) {
     namingBuffer = chkpt_init(argc, argv);
     sendString(comm, namingBuffer); /* Send to client */
     endTransaction(comm);
   }


   /* Perform Service */
   solved = solve(pd, pd->input_objects, pd->output_objects);


   comm = acceptTransaction(sock);
   sendOutputObjects(comm, pd, client_major);
   endTransaction(comm);
}


Figure 3. Relevant server source code


When the server initiates both checkpoint and recov-
ery by calling chkpt init(), illustrated in Figure 4.


Chkpt init() sets up periodic checkpointing and the
naming buffer, and returns the naming buffer to the server.
When it is time to checkpoint, the signal handler calls
chkpt(), which allocates an IBP buffer for the check-
point. This is a time-limited allocation for some fixed pe-
riod of time greater than the checkpoint interval. When the
checkpoint is stored in the IBP buffer, the capabilities of this
buffer are stored in the naming buffer, and if necessary, the
previous checkpoint buffer is deleted.


char *chkpt_init(int argc, char **argv)
{
  initialization();
  obtainChkptParams();


  /* Restarts do not return */
  if (chkptState == restart) restartFromIBP(namingBuffer);


  installChkptSignalHandler(chkptInterval);


  /* Allocate the naming buffer */
  namingBuffer = IBP_allocate(ibpMachine, 4*MAXPATHLEN, &ibpAttr);


  return namingBuffer;
}


int chkpt()
{
  if (fork() > 0) {  /* Parent returns while child checkpoints */
    if (chkptSystemInitiated) alarm(chkptInterval);
    return;
  }


  newChkptCap = IBP_allocate(ibpMachine, IBP_CHKPT_SIZE, &ibpAttr);
  rc = ibpWriteChkptData(newChkptCap->write, .....);
  if (rc == CHECKPOINT) {
    removeoldCap(newChkptCap->write, namingBuffer);
  }
}


Figure 4. Relevant Starfish source code


The original NetSolve distribution has failure detection
and primitive fault-tolerance. Server failures (which may
be defined as excessive load) are detected by the NetSolve
clients and/or the agent as a result of TCP connection fail-
ure. When a failure is detected, the client is reconnected to
a new server, which starts the service from scratch. With
checkpointing, the client can select a server with the same
architecture as the failed server, which can then roll the
computation back to the most recent checkpoint. The client
presents this new server with the capabilities of the naming
buffer, which allow the new server to find the checkpoint
buffer and restart the computation. Obviously, this new
server may continue checkpointing as well. If there is no
server that can restart the computation from the checkpoint,
then the client selects the best available server to restart the
computation from the beginning.


When the computation completes, the server returns the
results to the client and deletes all IBP buffers. Note, how-
ever, that if other errors occur, such as NetSolve agent fail-
ure, client failure, or NetSolve system shutdown, the time-
limited nature of the IBP buffer allocation will make sure
that spare checkpoint files are eventually deleted.


As stated above in section 2.2, Starfish places restric-
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tions on the programs that it checkpoints. The only restric-
tion that is a potential problem for NetSolve server code is
the prohibition on external connections. While performing
a computation, a server only needs to have an open con-
nection to the client when performing the initial RPC in-
teractions and when delivering the results. Thus, Starfish
does not start checkpointing until the initial RPC interations
are over, and it stops once the server starts delivering re-
sults. Typically, NetSolve server codes perform only basic
file I/O operations, which are checkpointable by standard
means [14].


The selection of checkpointing interval and checkpoint-
ing IBP servers is performed by the agent. The opti-
mal checkpoint interval may be approximated by a simple
function of checkpoint overhead and failure rate [15, 21],
which are both parameters that the agent can estimate. IBP
server proximity currently estimated using static metrics.
A test implementation of NetSolve integrates the Network
Weather Service [23] into the NetSolve system so that the
agent can make more accurate predictions of computation
server performance and IBP server proximity.


4 Benefits of This Architecture


There are several benefits that this design has in terms of
performance, functionality and deployability:


The user is insulated from checkpointing details. In
the best case, the user is employing NetSolve to per-
form common computations such as dense linear alge-
bra. In this case, the NetSolve server setup is trivial,
and the user can unknowingly receive the benefits of
remote computation and checkpointing even while us-
ing Excel on a Windows-based laptop. This is a level
of deployability that is typically unheard of in scien-
tific programming.


The user’s program can have outside connections.
All checkpointing systems restrict connections outside
the scope of the programming environment. In other
words, while checkpointing systems typically work
when all processors are part of the same program-
ming system (for example through the use of PVM
or MPI [1, 4, 18]), they only allow programs to in-
teract with the outside world by checkpointing (or log-
ging) before each interaction [6, 9]. With NetSolve,
the client may initiate a service while maintaining
other external connections. This service can check-
point, fail, rollback, and continue to operate correctly
irrespective of the state of the client and its connec-
tions to other processing elements. This even works if
the client starts the service asynchronously (i.e. in the
background while it performs other tasks). Thus, Net-
Solve’s restricted programming model achieves a clean


separation of client and server that allows the server to
checkpoint while the client does other things.


Migration can occur across the wide area. NetSolve
and IBP both manage resources from different admin-
istrative domains, serving cycles and storage to poten-
tially unrelated users and applications. With check-
pointing to IBP, it is possible to migrate these services
from one domain to another, so long as the server ma-
chine architectures are identical.


It will work in a lent-resource environment. Sim-
ilarly to the above, NetSolve and IBP are both able
to manage spare resources (computation and storage)
that have limits on their usage. In particular, proces-
sors may be revoked due to ownership, and storage
may impose time limits on allocation. The inclusion
of checkpointing into the NetSolve system means that
these resources may be employed by remote computa-
tions. This funcationality is similar to that provided by
the Condor project [20].


Storage ownership is separated from the computa-
tion. Pruyne and Livny have noted that strategic place-
ment of checkpoints at locations external to the com-
putation processors can improve performance [16].
The use of IBP in NetSolve is identical to the use of
checkpointing servers in [16] and should improve per-
formance similarly.


5 Performance Case Studies


We briefly detail three performance case studies. In each
of these, we have a NetSolve client running Matlab, a Net-
Solve agent, two NetSolve servers and one IBP server all
running on different machines. The Matlab client makes a
NetSolve call to the dmatmul service (matrix multiplica-
tion), which gets serviced by one of the NetSolve servers.
The server checkpoints to the IBP server, and either it com-
pletes without failure, or it fails. When the failure is de-
tected, the second server takes over the service, reading
from the checkpoint, and completes the service.


We report results from three separate computing envi-
ronments: CLUSTER, LOCAL and WIDE. CLUSTER is a
tightly-coupled cluster computing environment. The ma-
chines are all dual-processor Sun UltraSPARC-2’s with 256
Mbytes of RAM, connected by a 155 Mbps ATM net-
work. LOCAL is a department-wide environment, where
the NetSolve client and agent are Sun UltraSPARC-1’s, and
the other machines are lower-end SparcStation-5’s. All
machines are connected by the Computer Science depart-
ment’s backbone network at the University of Tennessee.
Finally WIDE is a wide-area, multi-institutional environ-
ment where the client, agent and IBP server are running on
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Figure 6. Performance of dmatmul on the LO-
CAL environment.


UltraSPARC-1’s at Tennessee, while the NetSolve servers
are running on two UltraSPARC-1’s at Princeton Univer-
sity. Communication between the two institutions is done
over the standard Internet. In the CLUSTER test, the ma-
chines are dedicated to the experiment. In all other tests,
the machines are undedicated.


Results from the CLUSTER environment are displayed in
Figure 5. In this and other graphs, The light shaded areas
are the server times only. The dark areas add the client inter-
action times. As expected, the CLUSTER environment ex-
hibits high performance. The ATM network, large physical
memories, and copy-on-write optimization combine for ex-
tremely high performance. For example, on the
run, the overhead of checkpointing every ten seconds on the
total client/server transaction is 9.7 percent, and the over-
head of checkpointing every ten seconds and absorbing one
failure is 26 percent.


Results from the LOCAL environment are displayed in
Figure 6. As would be expected, the performance of the
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Figure 7. Performance of dmatmul on the
WIDE environment.


service is slower due to the slower processors. Likewise,
the performance of checkpointing, recovery, and the contact
with the client are all worse due to the slower interconnec-
tion network. However, in all cases, rolling back from the
checkpoint improves performance over restarting from the
beginning.


Finally, results from the WIDE environment are dis-
played in Figure 7. In these graphs, the black boxes are
much larger due to the fact that the input and output ma-
trices are being passed across the Internet. Interestingly,
even though the checkpoints too are being passed across the
Internet, the checkpoint overhead is negligible in compar-
ison to the fluctuation due to non-dedicated access. Once
again, this is due to the copy-on-write optimization. How-
ever, when a recovery is required, the checkpoint file must
be moved across the Internet before recovery may begin, re-
sulting in a severe performance penalty. In this instance, a
restart from the beginning would perform better than restart-
ing from the checkpoint. This experiment serves to un-
derscore that it is more important to select the recovering
server to be close to the checkpoints than it is to select the
checkpointing server to be close to the checkpoints. This
is because checkpoints are taken asyncronously, while state
restoration is by nature synchronous.


6 Conclusion, Limitations and Deployment


In this paper, we have described a system architecture
that brings fault-tolerance and migration to scientific users
who need not be computer systems experts. There are two
main limitations to this system. First, if a user is not making
use of the core NetSolve system services (e.g. linear algebra
subroutines) listed in section 2.1, then the “not an expert”
label applies less forcefully, as the user must learn how to
configure the NetSolve servers. Although this task is made
easier by Java-based tools [3], it is a level of complexity
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higher than simply using NetSolve from Matlab or Excel.
The second limitation is the restriction that the check-


pointing and recovering machine must be of the same ar-
chitecture. This limitation arises from the fact that Starfish
is a core-dump style checkpointer. The architecture of the
system could easily be extended to use more portable check-
pointing substrates, such as applications that implement
their own checkpointing and rollback recovery with the help
of libraries such as libft [10], or a toolkit that embeds
portable checkpoints into arbitrary programs [17]. We are
exploring using the Porch toolkit [19] to add portable check-
pointing to the core NetSolve services.


As described above, this checkpointing system has
been implemented and tested. It is anticipated that it
will be included as part of the official NetSolve distribu-
tion (http://www.cs.utk.edu/netsolve) in the year
2000. Starfish and IBP are available from http://dsl.


cs.technion.ac.il/Starfish and http://www.cs.


utk.edu/ p̃lank/IBP respectively.
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