Compiler-Assisted Memory Exclusion

for Fast Checkpointing

James S. Plank
Micah Beck
Gerry Kingsley
Department of Computer Science
University of Tennessee

Knoxville, TN 37996
[plank,beck,kingsley]l@cs.utk.edu

Appearing in:
IEEE Technical Committee on Operating Systems and Application Environments
Special Issue on Fault-Tolerance
Winter, 1995
See: http://www.cs.purdue.edu/homes/helal/tcos/arch/winter95/winter95.html

or
http://www.cs.utk.edu/ "plank/plank/papers/IEEETCOS95. html

Compiler-Assisted Memory Exclusion for Fast Checkpointing

James S. Plank*

Abstract

Memory exclusion is a powerful tool for optimizing the
performance of checkpointing, however it has not been
automated completely with low enough overhead. In
this paper we present compiler-assisted memory exclu-
sion (CAME), a technique that uses static program
analysis to optimize the performance of checkpoint-
ing. With the assistance of user-placed directives, the
compiler can perform data flow analyses for dead and
read-only regions of memory that can be omitted from
checkpoints. The result can be a significant reduction
in the size of checkpoints, thereby reducing the over-
head of checkpointing.

1 Introduction

Checkpointing has become an increasingly important
tool for both uniprocessor and multiprocessor systems.
It provides the backbone for fault-tolerant systems,
migration systems, load-balancing systems, playback
debuggers and many other functionalities [14]. A ma-
jor concern with checkpointing is overhead, defined as
the amount of time added to a program due to check-
pointing. Experimental research has shown that the
main source of overhead in all checkpointing systems
is the time required to save a checkpoint to stable
storage, and larger programming platforms with more
processing elements and more memory simply exacer-
bate the problem [3, 12].

Many techniques have been studied to reduce the
overhead of saving checkpoints. These can be divided
into two classes. Latency hiding techniques, like main-
memory [12], copy-on-write [3, 8] and diskless check-
pointing [11] attempt to reduce or hide the overhead
of disk writes, and size reduction techniques, like in-
cremental checkpointing [4, 15], compression [12] and
compiler-assisted full checkpointing [7], attempt to

*Department of Computer Science, University of Tennessee,
107 Ayres Hall, Knoxville, TN 37996. [plank,beck,kings-
leyl@cs.utk.edu, http://www.cs.utk.edu/"plank. This ma-
terial is based upon work supported by the National Science
Foundation under Grant CCR-9409496, and by the ORAU Ju-

nior Faculty Enhancement Award.

Micah Beck

Gerry Kingsley

minimize the amount of data that gets stored per
checkpoint.

An important concept in size reduction is that of
memory exclusion. With memory exclusion, regions
of a process’s memory are excluded from a checkpoint
because they are either read-only, meaning their val-
ues have not changed since the previous checkpoint, or
dead, meaning their values are not necessary for the
successful completion of the program. Memory exclu-
sion can be a powerful tool for checkpoint optimiza-
tion, however there are no transparent checkpointing
techniques that perform optimal or near optimal mem-
ory exclusion without either penalizing performance
drastically or relying on the user for correctness.

This paper gives an overview of compiler-assisted
memory exclusion (CAME), a technique for automat-
ing memory exclusion for both read-only and dead
memory. CAME combines user directives with static
data flow analysis to optimize memory exclusion in
checkpointing systems. After providing more detail
on memory exclusion as a checkpointing optimization,
we describe the user directives and compiler analyses
comprising the CAME technique. We then present re-
sults of performing CAME manually on three example
applications. The purpose of this was to test the effec-
tiveness of CAME by hand before attempting to im-
plement it in a real compiler. As result of these tests,
we are implementing CAME in a real compiler using
the SUIF toolkit [16]. We briefly detail the progress

of this implementation.

2 Memory Exclusion

Incremental checkpointing [4, 15] is an example of
read-only memory exclusion. With incremental check-
pointing, page-protection hardware is employed to
keep track of non-read-only (i.e. dirty) pages between
checkpoints. Each checkpoint is composed solely of
these dirty pages. For programs that exhibit signif-
icant locality, incremental checkpointing is an effec-
tive checkpointing optimization. However, there are
programs that write their entire data space at fairly
fine-grained intervals. For these, incremental check-
pointing increases overhead because of the extra time

required to process the page faults [3, 4, 10].

Checkpointing the stack is a primitive example of
dead memory exclusion. When taking a checkpoint,
most checkpointing systems (e.g. [7, 10, 13]) do not
save the memory addresses directly below the stack
(this is assuming that the stack grows downward), be-
cause their current values will never be used. Some-
times the savings from this technique can be signifi-
cant if the checkpoints are taken in the right places [7].

Incremental checkpointing is largely successful as
an automatic technique for excluding read-only mem-
ory. However, there are significant savings available to
a checkpointer by excluding dead memory apart from
the stack [10], yet no automatic techniques exist for
finding such memory at a low cost. Netzer and Weaver
have used variable-level monitoring to find read-only
and dead memory, but at a cost of 1.7 to 7 times
the running time of the program [9]. Li, Stewart and
Fuchs have used compiler analysis to checkpoint when
the stack size is small, thereby maximizing dead mem-
ory exclusion in the stack [7]. Their techniques do not
address finding dead variables elsewhere in the address
space, but could be combined with the CAME tech-
nique to maximize dead memory exclusion throughout
a process’s address space.

Finally, the libckpt transparent checkpointing li-
brary [10] allows users to exclude and include bytes
in a process’s memory space with the procedures
exclude bytes () and include bytes (), and then check-
point at specific code locations using the procedure
checkpoint here(). This enables the user to force
checkpoints at code locations where memory exclusion
can be maximized!. Libckpt differentiates between
read-only and dead memory exclusion, because they
require differing semantics. Libckpt has been shown
to be a powerful tool with a great capacity for improv-
ing the performance of checkpointing [10]. However,
it depends on the user to specify the memory exclu-
sion correctly. If the user errs, the program will not
recover to a correct state, leading to arbitrary errors
in the execution of the program. This is a serious
problem.

It is the mission of the CAME technique to provide
an automatic method of performing both read-only
and dead memory exclusion of all program variables
in a safe and efficient manner.

I There is a settable runtime parameter mintime that controls
the minimum time between checkpoints. Mintime can be used to
assure that too many checkpoints are not taken over a given pe-
riod of time because of closely placed checkpoint here() calls.

3 The CAME Technique

The CAME technique combines standard data flow
analysis with user directives, enabling the compiler
to insert memory exclusion procedure calls that are
guaranteed to be safe into a user’s program. Although
the compiler cannot find all variables to exclude from
checkpoints, it will exclude as many as it can find, and
will never generate an incorrect checkpoint.

There are two directives that the user can place into
the program: CHECKPOINT HERE and EXCLUDE HERE. The
CHECKPOINT HERE directive specifies the program loca-
tions at which to checkpoint. The compiler emits a
checkpoint here() procedure call at each of these loca-
tions, and uses them in its analysis. The EXCLUDE HERE
directive is more subtle. It tells the compiler where to
insert memory exclusion procedure calls. In the sim-
plest case, one would put an EXCLUDE_HERE directive im-
mediately before each CHECKPOINT HERE directive. How-
ever, the placement of EXCLUDE HERE directives can af-
fect the amount of memory exclusion and it can af-
fect the performance of checkpointing. For example,
if a CHECKPOINT HERE directive is placed inside a nested
loop, it would be wise to place the EXCLUDE HERE di-
rective before the loop so that memory exclusion calls
are made only once and not during every iteration of
the loop.

Note that a bad placement of these directives may
lead to excess overhead in checkpointing or not enough
memory exclusion. However, the program will still
checkpoint and recover correctly. This is a major
difference between CAME techniques and having the
user insert memory exclusion calls directly.

Compiler Analysis

We first detail our program model. A control flow
graph (CFG) is a directed graph G = (N, E) where
N 1is a set of nodes representing statements and £ C
N x N is a set of directed edges representing the pos-
sible flow of control between statements [1]. The com-
piler first divides G into subgraphs G’, where each
subgraph is rooted by an EXCLUDE HERE directive and
contains all paths reachable from that directive that
do not pass through another EXCLUDE HERE directive.
Note that this does not necessarily partition the graph,
but merely defines a collection of subgraphs.

For each subgraph G’, we will compute two sets of
memory locations:

e DE((G') is the set of memory locations that are
dead at every CHECKPOINT HERE directive in G’.

| Set |

Update Function

DEAD | Fs(X) = {

if S is END
otherwise

N DEAD(S)

DE Fs(X) = { L

L
X UMUSTDEF(S) — MAY_REF(S)
X

if S is CHECKPOINT HERE
if S is EXCLUDE HERE or END

X otherwise
L if S is EXCLUDE_HERE or END
RO Fs(X) = { X — MAY_REF(S) otherwise

Table 1: Data Flow Equations for DEAD, DE and RO

e RO(G') is the set of memory locations that are
read-only throughout G”.

At each EXCLUDE HERE directive, memory exclusion calls
are inserted to exclude variables in DE(G’) and RO (G),
and to include all others.

Thus, our analysis focuses on finding the two sets
DE(G’) and RO(G'). We use data flow techniques to
perform this analysis. The former (finding DE(G'))
employs standard liveness analysis and the latter
(finding RO(G")) is a form of dependence analysis.

In order to make use of data flow techniques, we
characterize the memory accesses of each statement S
in the program with reference and definition sets:

e Every location that may be referenced by some
execution of S is in MAY_REF(S).

e Every location that may be defined by some exe-
cution of S is in MAY_DEF(S).

e Every location that must be defined by every ex-
ecution of S is in MUST_DEF(S).

These sets can be determined by local syntactic anal-
ysis while making the CFG.
Given these basic sets, we can give a definition of

DE(G') and RO(G'):

1. A memory location [is live at a statement S if
there is a path from S to another statement S’
such that | € MAY_REF(S’) and for every S” on
that path | € MUsT_DEF(S”). A location [is an
element of DE(G') if { is dead (i.e. not live) at all
CHECKPOINT HERE statements in G'.

2. A memory location [is read-only at a statement
S if | ¢ MAY_DEF(S). Therefore | € RO(G') if and
only if I ¢ MAY_DEF(S) for all S in G'.

These definitions are conservative, since they look
at all possible paths through the control flow graph,

when some of these can never be taken by an execu-
tion of the program. Exact analysis of liveness and
dirtiness are undecidable problems.

Data Flow Equations

The analysis of liveness is usually expressed as a set of
data flow equations, one for each statement in the pro-
gram. We will give data flow equations which enable
us to determine DE(G’) and Ro(G”) for each subgraph
G’ of the program. Each of these equations can be
solved by a general iterative technique.

For the purposes of this paper, a data flow equation
is characterized by its update function Fs. This is a
function associated with each statement S. The func-
tion maps sets of memory locations to sets of mem-
ory locations, and characterizes the effect of executing
statement S.

We illustrate the framework using the analysis of
liveness as an example. We will calculate a set
DEAD(S) for each statement S, which represents the
set of memory locations that are dead just before ex-
ecuting S.

The locations that are dead just before statement
S are those that are dead after statement S plus those
that must be written by statement S, minus any that
may be read by statement S. Thus, the update func-
tion at node S is denoted:

Fs(X) = X UMUST_DEF(S) — MAY_REF(S)

The iterative algorithm for solving equations for
DEAD proceeds as follows:

1. Initially, set DEAD(S) = L for all S.

2. For every statement S, compute X =
(s DEAD(S’), the intersection of DEAD(S") for all
statements S’ that are successors of S in G. Then
set DEAD(S) = Fs(X) = X UMUSTDEF(S) —
MAY_REF(S).

3. Iterate until a fixed point is reached for all sets
DEAD(S).

There are three sets of data flow equations in
CAME analysis: DEAD, DE and RO. DEAD(S) rep-
resents dead data at statement S as described above.
DE(S) represents the intersection of DEAD(S’) for all
statements S’ that are CHECKPOINT HERE statements
reachable from S in the same subgraph as S. DE(S)
is used to propagate deadness information from the
CHECKPOINT HERE statements to the EXCLUDE HERE state-
ments. Finally, Ro(S) represents data that is read-
only in all paths from S to the end of S’s subgraph.

The data flow equations for DEAD, DE and RO are
given in Table 1. The iterative algorithm defined for
DEAD applies to computing DE and Roas well.

Each EXCLUDE HERE directive defines a new subgraph
G'. The sets DE(G’) and RO(G’) are defined to be
DE(S) and RoO(S), where S is the statement directly
following the EXCLUDE HERE directive.

4 Results of CAME By Hand

To test the feasibility of the CAME technique, we
performed the technique by hand on three FOR-
TRAN programs: CELL, a cellular automata pro-
gram, SEIVE a standard prime number generator,
and CONTOUR, a program that finds map altitude
contours. In each case, we judiciously inserted one
CHECKPOINTHERE and one to three EXCLUDE_HERE direc-
tives into the program. We then calculated the CFG
and the sets MAY_REF, MAY_DEF and MUST_DEF, and
determined the sets DE and RO for each EXCLUDE_HERE
directive. Finally, we placed the proper memory ex-
clusion calls at the EXCLUDE HERE directives and tested
the performance using libckpt [10].

Program Run- | Address Ckpt. #
ing Space Interval of
Time Size (min) ckpts
(sec) (MB)
CELL 857 8.1 2.5 6
SIEVE 1445 0.2 2.0 12
CONTOUR 1072 6.3 3.0 5

Table 2: Application program information

The experiments were performed on a dedicated
Sparcstation 2 running SunOS 4.1.3, and writing to a
Hewlett Packard HP6000 disk via NFS. The speed of
disk writes in this configuration is 160 Kbytes/second.

Il No optimization
Incremental

[CAME
Inc. & CAME

8 —
6 -

- j

W 4

o 4
2
04

0.2

L

>

L

@)

o

2

O

l_

Z

O

©)

Checkpoint Size
(Mbytes)

Overhead per
Checkpoint (sec)

Figure 1: Results of CAME by hand

All results are averages of three or more runs of each
program.

Information about each application is displayed in
Table 2, and the results of checkpointing are displayed
in Figure 1. A more complete analysis of this experi-
ment is contained in [2].

The most interesting of these results is for CELL,
which writes its entire address space between check-
points, rendering incremental checkpointing ineffec-
tive. However, at certain points in the program, half
of its memory is dead. This memory is discovered by
CAME, and is excluded from the checkpoint files for
a savings of almost 50% in checkpoint overhead.

In the SEIVE program, the main program array
is dead at first, and once an element is initialized
it becomes read-only. The CAME technique recog-
nizes this, excluding an average of 110 KB per check-
point. Incremental checkpointing saves another 53 KB
by excluding read-only pages allocated to system data
structures such as buffers in the standard I/0 library.

Like the CELL program, the CONTOUR. pro-
gram does not lend itself to large performance im-
provements due to incremental checkpointing. This

is because the granularity of page updates is small.
If just one grid point is updated in a page, then the
whole page must be included in an incremental check-
point. CAME traces read-only data at the variable
level, which allows for a 64% improvement in check-
point size over sequential checkpointing, as opposed to
a 23% improvement due to incremental checkpointing.

Note that the overhead of checkpointing is only im-
proved by 44%. This is because exclude bytes() and
include bytes () are called a total of 237,741 times
during the course of the program. Thus the calls them-
selves add a non-trivial amount of overhead to check-
pointing. However, this is more than offset by the
savings of writing a smaller checkpoint file to disk.

The conclusion that we draw from this by-hand im-
plementation is that CAME has the potential to be a
powerful technique for checkpoint optimization, and is
worth the work required to implement in a real com-
piler.

5 Implementation in SUIF

We are completing an implementation of CAME us-
ing the Stanford University Intermediate Form (SUIF)
toolkit [16]. SUIF is a preprocessor for FORTRAN
that facilitates performing data flow analyses. We
have successfully implemented CAME for scalar vari-
ables and are nearing completion of an implementa-
tion of CAME for rectangular array regions using in-
terval analysis [1, 5, 6]. When this implementation
is finished, we will be able to draw more complete
conclusions on the effectiveness of the CAME tech-
nique, including the impact of judicious placement of
EXCLUDE HERE directives.

6 Conclusions

In this paper, we have presented a compiler-assisted
technique, CAME;, for the static analysis of safe mem-
ory exclusion in checkpointing. We have expressed
exclusion analysis as the solution of a set of data flow
equations, using a general iterative method to solve
them. We have implemented our technique by hand
and have demonstrated its effectiveness in reducing
checkpoint size and overhead in three example pro-
grams. We are near completion of an implementation
of this technique for general FORTRAN programs.
This technique is significant as the only automatic
checkpointing technique that performs dead memory
exclusion with low overhead. Moreover, it can track
memory exclusion at the variable level, outperforming

page-based checkpointing strategies like incremental
checkpointing in some cases.

The CAME technique can be combined with other
checkpointing optimizations to improve the perfor-
mance of checkpointing further. For example, the
CAME technique fits hand-in-hand with all latency-
hiding optimizations, such as copy-on-write check-
pointing, and also with incremental checkpointing,
as shown by the results with libckpt. The CAME
technique may also be combined with the compiler-
assisted full checkpointing technique of Li, Stewart
and Fuchs so that the selection of checkpoint here()
calls at which to checkpoint may also be optimized [7].

References

[1] A.V.Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

[2] M. Beck, J. S. Plank, and G. Kingsley. Compiler-Assisted
Checkpointing. Univ. of Tenn. Tech. Rep. CS-94-269, 1994.

[3] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The per-
formance of consistent checkpointing. In 11th Symposium on
Reliable Distributed Systems, pp. 39-47, Oct 1992.

[4] S. I. Feldman and C. B. Brown. Igor: A system for program
debugging via reversible execution. ACM SIGPLAN Notices,
24(1):112-123, Jan 1989.

[5] E. D. Granston and A. V. Veidenbaum. Detecting redundant
access to array data. In Supercomputing ‘91, pp. 854-865, Nov
1991.

[6] T. Gross and P. Skeenkiste. Structured dataflow analysis for
arrays and its use in an optimizing compiler. Software — Prac-
tice & Experience, 20(2):133-155, Feb 1990.

[7] C-C. J. Li, E. M. Stewart, and W. K. Fuchs. Compiler-
assisted full checkpointing. Software — Practice and Expe-
rience, 24(10):871-886, Oct 1994.

[8] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concur-
rent checkpointing for parallel programs. IEEE Transactions
on Parallel and Distributed Systems, 5(8):874-879, Aug 1994.

[9] R. H. B. Netzer and M. H. Weaver. Optimal tracing and incre-
mental reexecution for debugging long-running programs. In
ACM SIGPLAN PLDI, pp. 313-325, June 1994.

[10] J.S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Trans-
parent checkpointing under unix. In Useniz Winter 1995
Technical Conference, pp. 213-223, Jan 1995.

[11] J. S. Plank and K. Li. Faster checkpointing with N + 1 parity.
In 24th Int. Symp. on Fault-Tol. Comp., pp. 288-297, June
1994.

[12] J. S. Plank and K. Li. Ickp — a consistent checkpointer for
multicomputers. IEEE Par. & Dist. Tech., 2(2):62-67, 1994.

[13] T. Tannenbaum and M. Litzkow. The Condor distributed pro-
cessing system. Dr. Dobb’s Journal, #227:40-48, Feb 1995.

[14] Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala.
Checkpointing and its applications. In 25th Int. Symp. on
Fault-Tol. Comp., pp. 22-31, June 1995.

[15] P. R. Wilson and T. G Moher. Demonic memory for process
histories. In ACM SIGPLAN PLDI, pp. 330-343, June 1989.

[16] R.P. Wilson et al. SUIF: An infrastructure for research on par-
allelizing and optimizing compilers. ACM SIGPLAN Notices,
29(12):31-37, Dec 1994

