
 1

Wireshark Lab 3 – TCP

The following reference answers are based on the trace files provided with the text book,
which can be downloaded from the textbook website.

TCP Basics

Answer the following questions for the TCP segments:

1. (1 point) What is the IP address and TCP port number used by your client
computer (source) to transfer the file to gaia.cs.umass.edu? What is the IP
address and port number used by gaia.cs.umass.edu to receive the file.

Solution: Client computer (source)
IP address: 192.168.1.102
TCP port number: 1161

Destination computer: gaia.cs.umass.edu
IP address: 128.119.245.12
TCP port number: 80

Figure 1: IP addresses and TCP port numbers of the client computer (source) and gaia.cs.umass.edu

 2

2. (1 point) What is the sequence number of the TCP SYN segment that is used to
initiate the TCP connection between the client computer and gaia.cs.umass.edu?
What is it in the segment that identifies the segment as a SYN segment?

Solution: Sequence number of the TCP SYN segment is used to initiate the TCP
connection between the client computer and gaia.cs.umass.edu. The value is 0 in this
trace.

The SYN flag is set to 1 and it indicates that this segment is a SYN segment.

Figure 2: Sequence number of the TCP SYN segment

3. (2 points) What is the sequence number of the SYNACK segment sent by

gaia.cs.umass.edu to the client computer in reply to the SYN? What is the value
of the ACKnowledgement field in the SYNACK segment? How did
gaia.cs.umass.edu determine that value? What is it in the segment that identifies
the segment as a SYNACK segment?

Solution: Sequence number of the SYNACK segment from gaia.cs.umass.edu to the
client computer in reply to the SYN has the value of 0 in this trace.

 3

The value of the ACKnowledgement field in the SYNACK segment is 1. The value of the
ACKnowledgement field in the SYNACK segment is determined by gaia.cs.umass.edu
by adding 1 to the initial sequence number of SYN segment from the client computer (i.e.
the sequence number of the SYN segment initiated by the client computer is 0.).

The SYN flag and Acknowledgement flag in the segment are set to 1 and they indicate
that this segment is a SYNACK segment.

Figure 3: Sequence number and Acknowledgement number of the SYNACK segment

4. (1 point) What is the sequence number of the TCP segment containing the HTTP

POST command? Note that in order to find the POST command, you’ll need to
dig into the packet content field at the bottom of the Wireshark window, looking
for a segment with a “POST” within its DATA field.

Solution: No. 4 segment is the TCP segment containing the HTTP POST command. The
sequence number of this segment has the value of 1.

 4

Figure 4: Sequence number of the TCP segment containing the HTTP POST command

5. (2 points) Consider the TCP segment containing the HTTP POST as the first

segment in the TCP connection. What are the sequence numbers of the first six
segments in the TCP connection (including the segment containing the HTTP
POST)? At what time was each segment sent? When was the ACK for each
segment received? Given the difference between when each TCP segment was
sent, and when its acknowledgement was received, what is the RTT value for each
of the six segments? What is the EstimatedRTT value (see page 237 in text)
after the receipt of each ACK? Assume that the value of the EstimatedRTT is
equal to the measured RTT for the first segment, and then is computed using the
EstimatedRTT equation on page 249 for all subsequent segments.

Note: Wireshark has a nice feature that allows you to plot the RTT for
each of the TCP segments sent. Select a TCP segment in the “listing of
captured packets” window that is being sent from the client to the
gaia.cs.umass.edu server. Then select: Statistics->TCP Stream Graph-
>Round Trip Time Graph.

Solution: The HTTP POST segment is considered as the first segment. Segments 1 – 6
are No. 4, 5, 7, 8, 10, and 11 in this trace respectively. The ACKs of segments 1 – 6 are
No. 6, 9, 12, 14, 15, and 16 in this trace.

 5

Segment 1 sequence number: 1
Segment 2 sequence number: 566
Segment 3 sequence number: 2026
Segment 4 sequence number: 3486
Segment 5 sequence number: 4946
Segment 6 sequence number: 6406

The sending time and the received time of ACKs are tabulated in the following table.

 Sent time ACK received time RTT (seconds)
Segment 1 0.026477 0.053937 0.02746
Segment 2 0.041737 0.077294 0.035557
Segment 3 0.054026 0.124085 0.070059
Segment 4 0.054690 0.169118 0.11443
Segment 5 0.077405 0.217299 0.13989
Segment 6 0.078157 0.267802 0.18964

EstimatedRTT = 0.875 * EstimatedRTT + 0.125 * SampleRTT

EstimatedRTT after the receipt of the ACK of segment 1:
EstimatedRTT = RTT for Segment 1 = 0.02746 second

EstimatedRTT after the receipt of the ACK of segment 2:
EstimatedRTT = 0.875 * 0.02746 + 0.125 * 0.035557 = 0.0285

EstimatedRTT after the receipt of the ACK of segment 3:
EstimatedRTT = 0.875 * 0.0285 + 0.125 * 0.070059 = 0.0337

EstimatedRTT after the receipt of the ACK of segment 4:
EstimatedRTT = 0.875 * 0.0337+ 0.125 * 0.11443 = 0.0438

EstimatedRTT after the receipt of the ACK of segment 5:
EstimatedRTT = 0.875 * 0.0438 + 0.125 * 0.13989 = 0.0558

EstimatedRTT after the receipt of the ACK of segment 6:
EstimatedRTT = 0.875 * 0.0558 + 0.125 * 0.18964 = 0.0725
second

 6

Figure 5: Segments 1 – 6

Figure 6: ACKs of segments 1 - 6

 7

Figure 7: Round Trip Time Graph

 8

6. (1 point) What is the length of each of the first six TCP segments?

Solution: Length of the first TCP segment (containing the HTTP POST): 565 bytes
Length of each of the other five TCP segments: 1460 bytes (MSS)

Figure 8: Lengths of segments 1 - 6

 9

7. (1 point) What is the minimum amount of available buffer space advertised at the
received for the entire trace? Does the lack of receiver buffer space ever throttle
the sender?

Solution: The minimum amount of buffer space (receiver window) advertised at
gaia.cs.umass.edu for the entire trace is 5840 bytes, which shows in the first
acknowledgement from the server. This receiver window grows steadily until a maximum
receiver buffer size of 62780 bytes. The sender is never throttled due to lacking of
receiver buffer space by inspecting this trace.

Figure 9: Minimum receive window advertised at gaia.cs.umass.edu (packet No. 2)

 10

8. (1 point) Are there any retransmitted segments in the trace file? What did you
check for (in the trace) in order to answer this question?

Solution: There are no retransmitted segments in the trace file. We can verify this by
checking the sequence numbers of the TCP segments in the trace file. In the Time-
Sequence-Graph (Stevens) of this trace, all sequence numbers from the source
(192.168.1.102) to the destination (128.119.245.12) are increasing monotonically with
respect to time. If there is a retransmitted segment, the sequence number of this
retransmitted segment should be smaller than those of its neighboring segments.

Figure 10: Sequence numbers of the segments from the source (192.168.1.102) to the destination
(128.119.245.12)

 11

9. (1 point) How much data does the receiver typically acknowledge in an ACK?
Can you identify cases where the receiver is ACKing every other received
segment (see Table 3.2 on page 257 in the text).

Solution: The acknowledged sequence numbers of the ACKs are listed as follows.
 acknowledged sequence number acknowledged data
ACK 1 566 566
ACK 2 2026 1460
ACK 3 3486 1460
ACK 4 4946 1460
ACK 5 6406 1460
ACK 6 7866 1460
ACK 7 9013 1147
ACK 8 10473 1460
ACK 9 11933 1460
ACK 10 13393 1460
ACK 11 14853 1460
ACK 12 16313 1460
…
The difference between the acknowledged sequence numbers of two consecutive ACKs
indicates the data received by the server between these two ACKs. By inspecting the
amount of acknowledged data by each ACK, there are cases where the receiver is
ACKing every other segment. For example, segment of No. 80 acknowledged data with
2920 bytes = 1460*2 bytes.

 12

Figure 8: Cumulative ACKs (No. 80, 87, 88, etc) where the receiver is ACKing every other received
segment.

10. (2 points) What is the throughput (bytes transferred per unit time) for the TCP

connection? Explain how you calculated this value.
Solution: The computation of TCP throughput largely depends on the selection of
averaging time period. As a common throughput computation, in this question, we select
the average time period as the whole connection time. Then, the average throughput for
this TCP connection is computed as the ratio between the total amount data and the total
transmission time. The total amount data transmitted can be computed by the difference
between the sequence number of the first TCP segment (i.e. 1 byte for No. 4 segment)
and the acknowledged sequence number of the last ACK (164091 bytes for No. 202
segment). Therefore, the total data are 164091 - 1 = 164090 bytes. The whole
transmission time is the difference of the time instant of the first TCP segment (i.e.,
0.026477 second for No.4 segment) and the time instant of the last ACK (i.e., 5.455830
second for No. 202 segment). Therefore, the total transmission time is 5.455830 -
0.026477 = 5.4294 seconds. Hence, the throughput for the TCP connection is computed
as 164090/5.4294 = 30.222 KByte/sec.

 13

11. (2 points) Use the Time-Sequence-Graph (Stevens) plotting tool to view the
sequence number versus time plot of segments being sent from the client to the
gaia.cs.umass.edu server. Can you identify where TCP’s slowstart phase begins
and ends, and where congestion avoidance takes over? Solution: TCP Slow Start
begins at the start of the connection, i.e., when the HTTP POST segment is sent
out. The identification of the TCP slow start phase and congestion avoidance
phase depends on the value of the congestion window size of this TCP sender.
However, the value of the congestion window size cannot be obtained directly
from the Time-Sequence-Graph (Stevens) graph. Nevertheless, we can estimate
the lower bound of the TCP window size by the amount of outstanding data
because the outstanding data is the amount of data without acknowledgement. We
also know that TCP window is constrained by the receiver window size and the
receiver buffer can act as the upper bound of the TCP window size. In this trace,
the receiver buffer is not the bottleneck; therefore, this upper bound is not quite
useful to infer the TCP window size. Hence, we focus on the lower bound of the
TCP window size.

From the following table, we cannot see that the amount outstanding data increases
quickly at the start of this TCP flow; however, it never exceeds 8192 Bytes. Therefore,
we can ensure that the TCP window size is larger than 8192 Bytes. Nevertheless, we
cannot determine the end of the slow start phase and the start of the congestion avoidance
phase for this trace. The major reason is that this TCP sender is not sending data
aggressively enough to push to the congestion state. By inspecting the amount of
outstanding data, we can observe that the application at most sends out a data block of
8192 bytes. Before it receives the acknowledgement for the whole block of these 8192
bytes, the application will not send more data. It indicates before the end of the slow start
phase, the application already stops transmission temporally.

 14

Type No. Seq. ACKed seq. Outstanding data
Data 4 1 565
Data 5 566 2025
ACK 6 566 1460
Data 7 2026 2920
Data 8 3486 4380
ACK 9 2026 2920
Data 10 4946 4380
Data 11 6406 5840
ACK 12 3486 4380
Data 13 7866 5527
ACK 14 4096 4917
ACK 15 6006 3007
ACK 16 7866 1147
ACK 17 9013 0
Data 18 9013 1460
Data 19 10473 2920
Data 20 11933 4380
Data 21 13393 5840
Data 22 14853 7300
Data 23 16313 8192
ACK 24 10473 6732
ACK 25 11933 5272
ACK 26 13393 3812
ACK 27 14853 2352
ACK 28 16313 892
ACK 29 17205 0
Data 30 17205 1460
Data 31 18665 2920
Data 32 20125 4380
Data 33 21585 5840
Data 34 23045 7300
Data 35 24505 8192
ACK 36 18665 6732
ACK 37 20125 5272
ACK 38 21585 3812
ACK 39 23045 2352
ACK 40 24505 892
ACK 41 25397 0
Data 42 25397 1460
Data 43 26857 2920
Data 44 28317 4380
Data 45 29777 5840

 15

Data 46 31237 7300
Data 47 32697 8192
ACK 48 26857
ACK 49 28317
ACK 50 29777
ACK 51 31237
ACK 52 33589
Data 53 33589 6732
Data 54 35049 5272
Data 55 36509 3812
Data 56 37969 2352
Data 57 39429 892
Data 58 40889 0
ACK 59 35049 6732
ACK 60 37969 3812
ACK 61 40889 892
ACK 62 41781 0
Data 63 41781 1460
Data 64 43241 2920
Data 65 44701 4380
Data 66 46161 5840
Data 67 47621 7300
Data 68 49081 8192
ACK 69 44701 5272
ACK 70 47621 2352
ACK 71 49973 0
Data 72 49973 1460
Data 73 51433 2920
Data 74 52893 4380
Data 75 54353 5840
Data 76 55813 7300
Data 77 57273 8192
ACK 78 52893 5272
ACK 79 55813 2352
ACK 80 58165 0
Data 81 58165

Note that the criteria to determine the end of slow start and the beginning of the
congestion avoidance is the way how congestion window size reacts to the arrival of
ACKs. Upon an ACK arrival, if the congestion window size increases by one MSS,
TCP sender still stays in the slow start phase. In the congestion avoidance phase, the
congestion window size increases at 1/(current_congestion_window_size). By
inspecting the change of the congestion window upon the arrival of ACKs, we can
infer the states of the TCP sender.

 16

12. (2 points) Comment on ways in which the measured data differs from the
idealized behavior of TCP that we’ve studied in the text.

Solution: The idealized behavior of TCP in the text assumes that TCP senders are
aggressive in sending data. Too much traffic may congest the network; therefore, TCP
senders should follow the AIMD algorithm so that when they detect network congestion
(i.e., packet loss), their sending window size should drop down. In the practice, TCP
behavior also largely depends on the application. In this example, when the TCP sender
can send out data, there are no data available for transmission. In the web application,
some of web objects have very small sizes. Before the end of slow start phase, the
transmission is over; hence, the transmission of these small web objects suffers from the
unnecessary long delay because of the slow start phase of TCP.

