ECE 522 - Power Systems Analysis II
Spring 2021

Frequency Regulation and Control

Spring 2021
Instructor: Kai Sun
Content

• Modeling the speed governing system of a generator
• Automatic generation control (AGC)
• Under-frequency load shedding (UFLS)

• References:
 – Chapter 11.1 of Kundur’s book
 – Chapter 12 of Saadat’s book
 – Chapter 4 (Frequency Control) of EPRI Tutorial
Generator Control Loops

• For each generator,
 – Load Frequency Control (LFC) loop controls the frequency (or real power output)
 – Automatic Voltage Regulator (AVR) loop controls the voltage (or reactive power output)

• The LFC and AVR controllers are set for a particular steady-state operating condition to maintain frequency and voltage against small changes in load demand.

• Cross-coupling between the LFC and AVR loops is negligible because the excitation-system time constant is much smaller than the prime mover/governor time constants

FIGURE 12.1
Schematic diagram of LFC and AVR of a synchronous generator.
Frequency Control

• The frequency of a system depends on real power balance.
 – Changes in real power affect mainly the system frequency.
 – Reactive power is less sensitive to changes in frequency and mainly depends on changes in voltage magnitude.

• As frequency is a common factor throughout the system, a change in real power at one point is reflected through the system by a change in frequency.

• In an interconnected system with two or more independently controlled areas, in addition to control of frequency, the generation within each area has to be controlled so as to maintain scheduled power interchange.

• The control of generation and frequency is commonly referred to as **Load Frequency Control (LFC)**, which involves
 – Speed governing system with each generator
 – Automatic Generation Control (AGC) for interconnected systems
Frequency Deviations

- Under normal conditions, frequency in a large Interconnected power system (e.g. the Eastern Interconnection) varies approximately ±0.03Hz from the scheduled value.
- Under abnormal events, e.g. loss of a large generator unit, frequency experiences larger deviations.
Impact of Abnormal Frequency Deviations

• Prolonged operation at frequencies above or below 60Hz can damage power system equipment.

• Turbine blades of steam turbine generators can be exposed to only a certain amount of off-frequency operation over their entire lifetime.

• Steam turbine generators often have under- and over-frequency relays installed to trip the unit if operated at off-frequencies for a period.

For example, at 58Hz, a typical steam turbine can be operated under load for 10 minutes over the lifetime before damage is likely to occur to the turbine blades.
Speed Governing System (LFC Loop)

\[P = \omega_r T \]

- Under the rated condition:
 \[\omega_r = \omega_0 = 1 \text{ pu}, \quad P_m = P_e = P_0 = \omega_0 T_0 = T_0 = T_m = T_e \]

- Under a small change (\(\Delta \omega_r \ll \omega_0 \)) around the rated condition:
 \[\omega_r = 1 + \Delta \omega_r \text{ pu}, \quad \Delta P_m - \Delta P_e = P_m - P_e = (1 + \Delta \omega_r)(T_m - T_e) \approx T_m - T_e = \Delta T_m - \Delta T_e \]
Consider both generator and load

Generator:

\[2H \frac{d(\Delta \omega_r)}{dt} = T_m - T_e = P_m - P_e = \Delta P_m - \Delta P_e \]

\[\frac{1}{\omega_0} \frac{d\delta}{dt} = \Delta \omega_r \]

\(\omega_r, T \) and \(P \) in pu, \(\delta \) in rad, \(H \) and \(t \) in sec.

Load:

\[\Delta P_e = \Delta P_L + D \Delta \omega_r \]

\(\Delta P_L \) Frequency-insensitive load change (due to ZIP load)

\(D \Delta \omega_r \) Frequency-sensitive load change (due to the total effect of external frequency-dependent load and the damping coefficient of the generator)

Damping constant \(D \text{ (pu)} = \% \text{ change in load per 1\% frequency change} \)
Frequency Deviation without LFC

<table>
<thead>
<tr>
<th>M=2H</th>
<th>D</th>
<th>ΔP_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 sec</td>
<td>0.75 pu</td>
<td>-0.01 pu</td>
</tr>
</tbody>
</table>

(load varies by 0.75% by 1 % change in of frequency (e.g. a 1MW decrease of 100MW unit)

\[
\Delta P_L \rightarrow \frac{1}{M s + D} \rightarrow \Delta \omega_r
\]

- For a step change of load by -0.01pu:

\[
\Delta P_L(s) = \frac{-0.01}{s}
\]

- Speed (or frequency) deviation:

\[
\Delta \omega_r(s) = -\left(\frac{-0.01}{s}\right)\left(\frac{K}{1+sT}\right) = \frac{-0.01K}{s+1/T} + \frac{0.01K}{s}
\]

\[
\Delta \omega_r(t) = -0.01Ke^{-\frac{t}{T}} + 0.01K
\]

\[
= -0.01 \times 1.33 e^{-\frac{t}{13.33}} + 0.01 \times 1.33
\]

\[
= -0.0133e^{-0.075t} + 0.0133
\]

\[0.0133 \times 60 = 0.8 \text{Hz}\]
Relationships between Load, Speed Regulation and Frequency

Governor Speed characteristic

\[-\Delta P_L = \Delta \omega_{ss} (D + 1/R) \]

Slope= -R

- Frequency-sensitive Load Characteristic
 - Slope=1/D
 - If D \(\uparrow\) (more frequency-dependent load), then \(|\Delta f|\downarrow\)
 - If R \(\downarrow\) (stronger LFC feedback), then \(|\Delta f|\downarrow\)

- Frequency-insensitive Load Characteristic
 - Slope=1/D
 - D=2

© 2021 Kai Sun
Governor Model

Classic Watt Centrifugal Governing System

Speed changer

Linkage mechanism

Speed governor

Hydraulic Amplifier

Figure 11.1 Servo-assisted speed governor.

A centrifugal governor applied in a 19th century steam engine
Governor Model

• Without a governor, the generator speed drops significantly \((\propto 1/D)\) when load increases
• Speed governor closes the loop of negative feedback control
 – For stable operation, the governor reduces but does not eliminate the speed drop due to load increase.
 – Usually, speed regulation \(R\) is 5-6% from zero to full load
 – Governor output \(\Delta \omega_r/R\) is compared to the change in the reference power \(\Delta P_{ref}\)

\[
\Delta P_g = \Delta P_{ref} - \Delta \omega_r/R
\]

– The difference \(\Delta P_g\) is then transformed through the hydraulic amplifier to the steam valve/gate position command \(\Delta P_v\) with time constant \(\tau_g\)
– Its steady-state speed characteristics tells how the speed drops as load increases.
Turbine Model

- The prime mover, i.e. the source of mechanical power, may be a hydraulic turbine at waterfalls, a steam turbine burning coal and nuclear fuel, or a gas turbine.

- The model for the turbine relates changes in mechanical power output ΔP_m to changes in gate or valve position ΔP_V.

$$ G_T(t) = \frac{\Delta P_m(s)}{\Delta P_V(s)} = \frac{1}{1 + \tau_T s} $$

τ_T is in 0.2-2.0 seconds.
Load Frequency Control block Diagram

\[\frac{\Delta \omega_r(s)}{-\Delta P_L(s)} = \frac{(1 + \tau_r s)(1 + \tau_g s)}{(2Hs + D)(1 + \tau_r s)(1 + \tau_g s) + 1/R} \]

- For a step load change, i.e. \(-\Delta P_L(s) = -\Delta P_L/s\)

\[\Delta \omega_{ss} = \lim_{s \to 0} s \Delta \omega_r(s) \quad \Delta \omega_{ss} = \frac{-\Delta P_L}{D + 1/R} \]

- For \(n\) generators supporting the load:

\[\Delta \omega_{ss} = \frac{-\Delta P_L}{D + 1/R_{eq}} \]

\[R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \cdots + \frac{1}{R_n}} = \frac{R_1}{R_1 / R_2 / \cdots / R_n} \]
Saadat’s Example 12.1

Example 12.1 (chp12ex1)

An isolated power station has the following parameters:

- Turbine time constant $\tau_T = 0.5$ sec
- Governor time constant $\tau_g = 0.2$ sec
- Generator inertia constant $H = 5$ sec
- Governor speed regulation R per unit

The load varies by 0.8 percent for a 1 percent change in frequency, i.e., $D = 0.8$

(a) Use the Routh-Hurwitz array (Appendix B.2.1) to find the range of R for control system stability.

(b) Use `MATLAB rlocus` function to obtain the root locus plot.

(c) The governor speed regulation of Example 12.1 is set to $R = 0.05$ per unit. The turbine rated output is 250 MW at nominal frequency of 60 Hz. A sudden load change of 50 MW ($\Delta P_L = 0.2$ per unit) occurs.

(i) Find the steady-state frequency deviation in Hz.

(ii) Use `MATLAB` to obtain the time-domain performance specifications and the frequency deviation step response.

(d) Construct the `SIMULINK` block diagram (see Appendix A.17) and obtain the frequency deviation response for the condition in part (c).

The open-loop transfer function is

$$KG(s)H(s) = \frac{K}{(10s + 0.8)(1 + 0.2s)(1 + 0.5s)} = \frac{K}{s^3 + 7.08s^2 + 10.56s + 0.8}$$

where $K = \frac{1}{R}$

(a) The characteristic equation is given by

$$1 + KG(s)H(s) = 1 + \frac{K}{s^3 + 7.08s^2 + 10.56s + 0.8} = 0$$

which results in the characteristic polynomial equation

$$s^3 + 7.08s^2 + 10.56s + 0.8 + K = 0$$

Necessary & sufficient condition for stability of a linear system:

All roots of the characteristic equation (i.e. poles of closed-loop transfer function) have negative real parts (in the left-hand portion of the s-plane)
Routh-Hurwitz Stability Criterion

- **Characteristic equation**
 \[a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0 = 0 \quad (a_n > 0) \]

- **Routh table:**
 For \(i > 2 \), \(x_{ij} = \frac{(x_{i-2,j+1} x_{i-1,1} - x_{i-2,1} x_{i-1,j+1})}{x_{i-1,1}} \)
 where \(x_{ij} \) is the element in the \(i \)-th row and \(j \)-th column

\[
\begin{array}{c|cccc}
\text{s}^n & a_n & a_{n-2} & a_{n-4} & \ldots \\
\hline
\text{s}^{n-1} & a_{n-1} & a_{n-3} & a_{n-5} & \ldots \\
\text{s}^{n-2} & b_1 & b_2 & b_3 & \ldots \\
\text{s}^{n-3} & c_1 & c_2 & c_3 & \ldots \\
\end{array}
\]

\[b_1 = \frac{a_{n-1} a_{n-2} - a_n a_{n-3}}{a_{n-1}}, \quad b_2 = \frac{a_{n-1} a_{n-4} - a_n a_{n-5}}{a_{n-1}}, \text{ etc.} \]

\[c_1 = \frac{b_1 a_{n-3} - a_{n-1} b_2}{b_1}, \quad c_2 = \frac{b_1 a_{n-5} - a_{n-1} b_3}{b_1}, \text{ etc.} \]

- **Routh-Hurwitz criterion:**
 Number of roots of the equation having positive real parts = Number of times of sign changes in the 1\(^{st} \) column of the Routh table

- **Necessary & sufficient condition for stability of a linear system:**
 The 1\(^{st} \) column has all positive numbers

\[
s^3 + 7.08s^2 + 10.56s + 0.8 + K = 0
\]

\[
\begin{array}{cc}
s^3 & 1 & 10.56 \\
s^2 & 7.08 & 0.8 + K \\
s^1 & 73.965 - K & 0 \\
s^0 & 7.08 & 0.8 + K \\
\end{array}
\]

\[s^1 \text{ row} > 0 \text{ if } K < 73.965 \]

\[s^0 \text{ row} > 0 \text{ since } K > 0 \]

\[\text{So } R = 1/K > 1/73.965 = 0.0135 \]
Root-Locus Method

\[KG(s)H(s) = \frac{K(s + z_1)(s + z_2)\cdots(s + z_m)}{(s + p_1)(s + p_2)\cdots(s + p_n)} \]

(B.5)

When \(s = \pm j 3.25 \), \(R_{\text{min}} = 1/K = 0.0135 \) (\(R > 0.0135 \))

Conclusions (see Saadat’s B2.22 for details):

• The loci of roots of \(1 + KG(s)H(s) \) begins at \(KG(s)H(s) \)’s poles and ends at its zeros as \(K \to 0 \to \infty \).
• Number of separate loci = Number of poles; root loci must be symmetrical with respect to the real axis.
• The root locus on the real axis always lies in a section of the real axis to the left of an odd number of poles and zeros.
• Linear asymptotes of loci are centered at a point \((x, 0)\) on the real axis with angle \(\phi \) with respect to the real axis.

 \[
 \begin{align*}
 x &= \left[\sum_{j=1}^{n} (-p_j) - \sum_{i=1}^{m} (-z_i) \right]/(n - m) \\
 \phi &= \pi \times (2k + 1)/(n - m) \quad k = 0, 1, \ldots, (n - m - 1)
 \end{align*}
 \]
• Closed-loop transfer function with $R=0.05 \text{pu} (>0.0135)$:

$$\frac{\Delta \omega_c(s)}{-\Delta P_L(s)} = \frac{(1+0.2s)(1+0.5s)}{(10s+0.8)(1+0.2s)(1+0.5s)+1/0.05} = \frac{0.1s^2 + 0.7s + 1}{s^3 + 7.08s^2 + 10.56s + 20.8}$$

• Steady-state frequency deviation due to a step input:

$$\Delta \omega_{ss} = \lim_{s \to 0} s \Delta \omega_c(s) = -\Delta P_L \frac{1}{D+1/R} = -0.2 \times \frac{1}{20.8} = -0.0096 \text{ p.u.}$$

$$\Delta f = -0.0096 \times 60 = 0.576 \text{ Hz}$$

Note: Frequency does not go back to 60Hz (there is a frequency offset)
Modeling of a realistic turbine-governor system

FIGURE 1.2
Simplified diagram of a conventional coal-fired steam generator.
IEEE Type 1 Speed-Governor Model: IEEEG1/IEEEG1_GE

Governor

\[
\frac{\Delta \omega}{\omega_b} = \frac{1}{1 + sT_1} K(1 + sT_2)
\]

\[
P_{\text{MAX}} = \frac{U_c}{U_0}
\]

\[
P_{\text{MIN}} = \frac{U_c}{U_0}
\]

Turbine

\[
\frac{P_{\text{MECH}_{\text{HP}}}}{P_{\text{MECH}_{\text{LP}}}} = 1/R
\]

States
1 - Governor Output
2 - Lead-Lag
3 - Turbine Bowl
4 - Reheater
5 - Crossover
6 - Double Reheat

IEEEG1_GE is supported by PSLF. PowerWorld ignores the db2 term. All values are specified on the turbine rating which is a parameter in PowerWorld and PSLF. If the turbine rating is omitted or zero, then the generator MVABase is used. If there are two generators, then the SUM of the two MVABases is used.

IEEEG1 is supported by PSSE. PSSE does not include the db2, db1, non-linear gain term, or turbine rating. For the IEEEG1 model, if the turbine rating is omitted then the MVABase of only the high-pressure generator is used.

GV1, PGV1...GV6, PGV6 are the x,y coordinates of \(P_{\text{cor}} \) vs. \(GV \) block

<table>
<thead>
<tr>
<th>Bus</th>
<th>CorM00000</th>
<th>Area</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.0000</td>
<td>PMAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>K1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>K2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>T5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>K5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0000</td>
<td>T7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7200</td>
<td>K7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7000</td>
<td>K6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(P_{\text{cor}} \) (Powerflow) \(541.4351 \)

\(P_{\text{MVA}} \) (Powerflow) \(5999.0000 \)

\(\text{Status} = 1 \)
Under steady-state conditions ($s=0$):

\[
\Delta f (pu) = \Delta \omega_{ss} (pu) = \frac{-\Delta P_L (pu)}{D + 1/R}
\]

\[
\Delta P_m = -\frac{\Delta \omega_{ss}}{R} = \Delta P_L + D\Delta \omega_{ss} = \Delta P_L + \Delta P_D
\]

Multiple generators:

\[
\Delta \omega_{ss} = -\Delta P_{mi} R_i = \frac{-\Delta P_L (pu)}{D + \sum_i \frac{1}{R_i}}
\]

Figure 11.17 Composite governor and load characteristic
Saadat’s Example 12.2

Example 12.2 (chp12ex2)

A single area consists of two generating units with the following characteristics.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Rating</th>
<th>Speed regulation R (pu on unit MVA base)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600 MVA</td>
<td>6%</td>
</tr>
<tr>
<td>2</td>
<td>500 MVA</td>
<td>4%</td>
</tr>
</tbody>
</table>

The units are operating in parallel, sharing 900 MW at the nominal frequency. Unit 1 supplies 500 MW and unit 2 supplies 400 MW at 60 Hz. The load is increased by 90 MW.

(a) Assume there is no frequency-dependent load, i.e., $D = 0$. Find the steady-state frequency deviation and the new generation on each unit.

(b) The load varies 1.5 percent for every 1 percent change in frequency, i.e., $D = 1.5$. Find the steady-state frequency deviation and the new generation on each unit.

\[
\Delta \omega_{ss} = -\Delta P_m R_i = \frac{-\Delta P_L (\text{pu})}{D + \sum \frac{1}{R_i}}
\]

Note: Two generators use different MVA bases. Select 1000 MVA as the common MVA base. Change the per unit value on the machine base (B1) to a new per unit value on the common base (B2).

\[
\frac{R^{B1}}{S_{B1}} = \frac{R^{B2}}{S_{B2}} = \frac{R^{B1}}{S_{B1}} \times \frac{S_{B2}}{S_{B2}}
\]

\[
P = \frac{R^{B1}}{S_{B1}} \times S_{B1} = \frac{R^{B2}}{S_{B2}} \times S_{B2}
\]

\[
R_i = \frac{1000}{600} (0.06) = 0.1 \text{ pu} \quad R_2 = \frac{1000}{500} (0.04) = 0.08 \text{ pu} \quad \Delta P_L = \frac{90}{1000} = 0.09 \text{ pu}
\]
(a) \(D=0\)

\[
\Delta \omega_{ss} = \frac{-\Delta P_L}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{-0.09}{10 + 12.5} = -0.004 \text{ pu}
\]

\[
\Delta f = -0.004 \times 60 = -0.24 \text{ Hz}
\]

\[
f = f_0 + \Delta f = 60 - 0.24 = 59.76 \text{ Hz}
\]

\[
\Delta P_{m1} = \frac{\Delta \omega_{ss}}{R_1} = \frac{-0.004}{0.1} = 0.04 \text{ pu} = 40 \text{ MW}
\]

\[
\Delta P_{m2} = \frac{\Delta \omega_{ss}}{R_2} = \frac{-0.004}{0.08} = 0.05 \text{ pu} = 50 \text{ MW}
\]

Unit 1 supplies 540MW and unit 2 supplies 450MW at the new operating frequency of 59.76Hz.

(b) \(D=1.5\) (ignoring its change due to load increase)

\[
\Delta \omega_{ss} = \frac{-\Delta P_L}{\frac{1}{R_1} + \frac{1}{R_2} + D} = \frac{-0.09}{10 + 12.5 + 1.5} = -0.00375 \text{ pu}
\]

\[
\Delta f = -0.00375 \times 60 = -0.225 \text{ Hz}
\]

\[
f = f_0 + \Delta f = 60 - 0.225 = 59.775 \text{ Hz}
\]

\[
\Delta P_{m1} = \frac{\Delta \omega_{ss}}{R_1} = \frac{-0.00375}{0.1} = 0.0375 \text{ pu} = 37.5 \text{ MW}
\]

\[
\Delta P_{m2} = \frac{\Delta \omega_{ss}}{R_2} = \frac{-0.00375}{0.08} = 0.0469 \text{ pu} = 46.9 \text{ MW}
\]

Unit supplies 537.5MW and unit 2 supplies 446.9MW at the new operating frequency of 59.775Hz. The total change in generation is 84.4MW, i.e. 5.6MW less than 90MW load change, because of the change in load due to frequency drop.

\[
\Delta \omega_{ss} \cdot D = -0.00375 \times 1.5 = -0.005625 \text{ pu} = -5.625 \text{ MW}
\]
Adjusting R_1 and R_2 may change generation dispatch between Units 1 and 2.

For $D=0$ (frequency-sensitive load is ignored):

$$\Delta P_{m1} = -\frac{\Delta \omega_{ss}}{R_1}$$

$$\Delta P_{m2} = -\frac{\Delta \omega_{ss}}{R_2}$$

$$\frac{\Delta P_{m1}}{\Delta P_{m2}} = \frac{R_2}{R_1}$$
Composite Frequency Response Characteristic (FRC)

- LFC analysis for a multi-generator system:
 - Assume coherent response of all generators to changes in system load
 - Consider an equivalent generator representing all generators

\[
M_{eq} = 2H_{eq} = 2 \times (H_1 + \ldots + H_n) \\
R_{eq} = \frac{1}{1/R_1 + \ldots + 1/R_n}
\]

- Frequency response characteristic (FRC), also called Frequency bias factor \(\beta \)

\[
\beta = D + 1/R_{eq} = |\Delta P_L / \Delta f| \quad \text{(Unit: MW/0.1 Hz)}
\]

- FRC tells how much MW change may cause a 0.1Hz frequency derivation, and it can be developed for either the whole system or any section of the system.

- FRC depends on:
 - The governor droop settings \(R_{eq} \) of all on-line units in the system.
 - The frequency response \(D \) of the connected load in the system.
 - The condition of the system (includes current generator output levels, transmission line outages, voltage levels, etc.) when the frequency deviation occurs.

\[
\Delta \omega_{ss} = \frac{-\Delta P_L}{D + 1/R_{eq}}
\]
FRCs of Different Interconnections

Figure 4-27. Eastern Interconnection

Figure 4-29. ERCOT Interconnection

Figure 4-28. Western Interconnection

\(\beta = \frac{1.600 \text{ MW}}{0.1 \text{ Hz}} \)

\(\beta = \frac{4.000 \text{ MW}}{0.1 \text{ Hz}} \)
LFC for a Two-Area System

- Generators in each area are coherent, i.e. closely coupled internally
- Two areas are represented by two equivalent generators (modeled by a voltage source behind an equivalent reactance) interconnected by a lossless tie line

\[P_{12} = \frac{|E_1| |E_2|}{X_T} \sin \delta_{12} \quad X_T = X_1 + X_{tie} + X_2 \]
\[\delta_{12} = \delta_1 - \delta_2 \]

\[\Delta P_{12} \approx \frac{dP_{12}}{d\delta_{12}} \bigg|_{\delta_{12}=0} = \Delta \delta_{12} = P_s \Delta \delta_{12} = P_s (\Delta \delta_1 - \Delta \delta_2) = \frac{P_s}{s} (\Delta \omega_{r1} - \Delta \omega_{r2}) \]

\[P_s = \frac{dP_{12}}{d\delta_{12}} \bigg|_{\delta_{12}=0} = \frac{|E_1| |E_2|}{X_T} \cos \Delta \delta_{12,0} \]

\(P_s \) is the synchronizing power coefficient
LFC for a Two-Area System: with only the Primary Loop

- Generators in each area are coherent and represented by one equivalent generator
- Consider a load change ΔP_{L1} in area 1.
- Both areas have the same steady-state frequency deviation

$$\Delta \omega = \Delta \omega_1 = \Delta \omega_2$$

$$\Delta P_{m1} - \Delta P_{12} - \Delta P_{L1} = \Delta \omega D_1$$

$$\Delta P_{m2} + \Delta P_{12} - 0 = \Delta \omega D_2$$

$$\Delta P_{12} = \Delta \omega D_2 - \Delta P_{m2}$$

- Changes in mechanical powers determined by governor speed characteristics:

$$\Delta P_{m1} = -\Delta \omega / R_1 \quad \Delta P_{m2} = -\Delta \omega / R_2$$

- Solve $\Delta \omega$ and ΔP_{12}

$$\Delta \omega = \frac{-\Delta P_{L1}}{\left(\frac{1}{R_1} + D_1\right) + \left(\frac{1}{R_2} + D_2\right)} = \frac{-\Delta P_{L1}}{\beta_1 + \beta_2}$$

$$\Delta P_{12} = \Delta \omega D_2 - \Delta P_{m2} = \Delta \omega (D_2 + 1 / R_2) = \Delta \omega \cdot \beta_2$$

$$= \frac{\beta_2}{\beta_1 + \beta_2} (-\Delta P_{L1})$$
Example 12.4 (chp12ex4), (sim12ex4.mdl)

A two-area system connected by a tie line has the following parameters on a 1000-MVA common base

<table>
<thead>
<tr>
<th>Area</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed regulation</td>
<td>$R_1 = 0.05$</td>
<td>$R_2 = 0.0625$</td>
</tr>
<tr>
<td>Frequency-sens. load coeff.</td>
<td>$D_1 = 0.6$</td>
<td>$D_2 = 0.9$</td>
</tr>
<tr>
<td>Inertia constant</td>
<td>$H_1 = 5$</td>
<td>$H_2 = 4$</td>
</tr>
<tr>
<td>Base power</td>
<td>1000 MVA</td>
<td>1000 MVA</td>
</tr>
<tr>
<td>Governor time constant</td>
<td>$T_g1 = 0.2$ sec</td>
<td>$T_g2 = 0.3$ sec</td>
</tr>
<tr>
<td>Turbine time constant</td>
<td>$T_T1 = 0.2$ sec</td>
<td>$T_T2 = 0.6$ sec</td>
</tr>
</tbody>
</table>

The units are operating in parallel at the nominal frequency of 60 Hz. The synchronizing power coefficient is computed from the initial operating condition and is given to be $P_s = 2.0$ per unit. A load change of 187.5 MW occurs in area 1.

(a) Determine the new steady-state frequency and the change in the tie-line flow.

(b) Construct the SIMULINK block diagram and obtain the frequency deviation response for the condition in part (a).

(a) The per unit load change in area 1 is

$$\Delta P_{L1} = \frac{187.5}{1000} = 0.1875 \text{ pu}$$

The per unit steady-state frequency deviation is

$$\Delta \omega_{ss} = \frac{-\Delta P_{L1}}{(\frac{R_1}{H_1} + D_1) + (\frac{R_2}{H_2} + D_2)} = \frac{-0.1875}{(20 + 0.6) + (16 + 0.9)} = -0.006 \text{ pu}$$

Thus, the steady-state frequency deviation in Hz is

$$\Delta f = (-0.006)(60) = -0.3 \text{ Hz}$$

and the new frequency is

$$f = f_0 + \Delta f = 60 - 0.3 = 59.7 \text{ Hz}$$

The change in mechanical power in each area is

$$\Delta P_{m1} = \frac{\Delta \omega}{R_1} = \frac{-0.005}{0.05} = 0.10 \text{ pu}$$

$$\Delta P_{m2} = \frac{\Delta \omega}{R_2} = \frac{-0.005}{0.0625} = 0.80 \text{ pu}$$

Thus, area 1 increases the generation by 100 MW and area 2 by 80 MW at the new operating frequency of 59.7 Hz. The total change in generation is 180 MW, which is 7.5 MW less than the 187.5 MW load change because of the change in the area loads due to frequency drop.

The change in the area 1 load is $\Delta \omega D_1 = (-0.005)(0.6) = -0.003 \text{ per unit}$, and the change in the area 2 load is $\Delta \omega D_2 = (-0.005)(0.9) = -0.0045 \text{ per unit}$. Thus, the change in the total area load is -7.5 MW.

The tie-line power flow is

$$\Delta P_{L2} = \Delta \omega \left(\frac{1}{R_2} + D_2 \right) = -0.005(16.9) = 0.0845 \text{ pu}$$

$$= -84.5 \text{ MW}$$

That is, 84.5 MW flows from area 2 to area 1. 80 MW comes from the increased generation in area 2, and 4.5 MW comes from the reduction in area 2 load due to frequency drop.
LFC for more than two areas

- Given load change ΔP_{Li}, find the net export change ΔP_i

$$\Delta P_{mi} = \Delta P_i + \Delta P_{Li} + \Delta P_{Di}$$

$$\Delta P_{mi} = -\frac{\Delta \omega}{R_i} \quad \Delta P_{Di} = D_i \Delta \omega$$

$$\Delta P_i = -\Delta P_{Li} - \left(D_i + \frac{1}{R_i}\right) \Delta \omega = -\Delta P_{Li} - \beta_i \Delta \omega$$

From the balance in active power:

$$0 = \sum_i \Delta P_i = -\sum_i \Delta P_{Li} - \left(\sum_i \beta_i\right) \Delta \omega$$

$$\Delta \omega = \frac{-\sum_i \Delta P_{Li}}{\sum_i \beta_i} = \frac{-\sum_i \Delta P_{Li}}{\sum_i \left(D_i + \frac{1}{R_i}\right)}$$

Example 12.4: $\Delta P_{L1} \neq 0$ and $\Delta P_{L2} = 0$

$$\Delta P_{12} = \Delta P_1 = \frac{-\Delta P_{L1}(\beta_1 + \beta_2) + \beta_1 (\Delta P_{L1} + 0)}{\beta_1 + \beta_2}$$

$$= \frac{\beta_2}{\beta_1 + \beta_2} (-\Delta P_{L1})$$
Limitations of Governor Frequency Control

• Governors do not recover frequency back to the scheduled value (60Hz) due to the required % droop characteristic.

• Governor control does not adequately consider the cost of power production so control with governors alone is usually not the most economical alternative.

• Governor control is intended as a primary means of frequency control and is not suited to fine adjustment of the interconnected system frequency.

• Other limitations of a governor (see Sec. 4.3 in EPRI Tutorial)
 – Spinning Reserve is not considered;
 – Has a dead-band, typically 60Hz ± 0.03-0.04 Hz, in which it stops functioning;
 – Depends on the type of generation unit (Hydro: very responsive; Combustion turbine: may or may not be responsive; Steam: varies depending on the type);
 – May be blocked: a generator operator can intentionally prevent a unit from responding to a frequency disturbance.

• From studies on EI and WECC in 2011-2013, 70-80% units are modeled with governors but only 30-50% of units actually have governor responses (governors of the others are either turned off or inactive due to dead-bands).
Automatic Generation Control (AGC)

• Adding supplementary control on load reference set-points of selected generators
 – Controlling prime-mover power to match load variations
 – As system load is continually changing, it is necessary to change the output of generators automatically

• Primary objective: LFC
 – Regulating frequency to the specified nominal value, e.g. 60Hz, and maintaining the interchange power between control areas at the scheduled values by adjusting the output of selected generators

• Secondary objective: Generation Dispatch
 – Distributing the required change in generation among generators to minimize operation costs.

• During large disturbances and emergencies, AGC is bypassed and other emergency controls are applied.
AGC for an Isolated Power System

• An integral controller is added with gain K_I

$$ \frac{\Delta \omega_r(s)}{\Delta P_L(s)} = \frac{s(1 + \tau_g s)(1 + \tau_T s)}{s(2Hs + D)(1 + \tau_g s)(1 + \tau_T s) + K_I s + s/R} $$

• Example 12.3: Applied to the system in Example 12.1 with $K_I = 7$
AGC with Frequency Bias Tie-Line Control

• The objective is to restore generation-load balance in each area
• A simple control strategy:
 – Keep frequency approximately at the nominal value (60Hz)
 – Maintain the tie-line flow at about schedule
 – Each area should absorb its own load changes
• Area Control Error (ACE): supplementary control signal added to the primary LFC through an integral controller

\[\text{ACE}_i = \sum_{j=1}^{n} \Delta P_{ij} + B_i \Delta \omega \]

– \(B_i \): frequency bias factor (may or may not equal \(\beta \))
– Any combination of ACEs containing \(\Delta P_{ij} \) and \(\Delta \omega \) will result in steady-state restoration of the tie line flow and frequency deviation (the integral control action reduces each \(\text{ACE}_i \) to 0)
– What composition of ACE signals should be selected is more important from dynamic performance considerations.
– In practice, only the selected units participating in AGC receive and respond to ACE signals
Comparing different B_i’s in ACE signals

- Consider a sudden load increase ΔP_{L1} in Area 1:
 1) $B_i = k\beta_i = \beta_i = D + 1/R_i$

\[
\text{ACE}_1 = \Delta P_{12} + \beta_1 \Delta \omega = \frac{\beta_2}{\beta_1 + \beta_2} (-\Delta P_{L1}) + \beta_1 \frac{-\Delta P_{L1}}{\beta_1 + \beta_2} = -\Delta P_{L1}
\]

\[
\text{ACE}_2 = -\Delta P_{12} + \beta_2 \Delta \omega = -\frac{\beta_2}{\beta_1 + \beta_2} (-\Delta P_{L1}) + \beta_2 \frac{-\Delta P_{L1}}{\beta_1 + \beta_2} = 0
\]

$k=1$: load change is taken care of locally

2) $B_1 = k\beta_1$, $B_2 = k\beta_2$

\[
\text{ACE}_1 = \Delta P_{12} + k\beta_1 \Delta \omega = \frac{\beta_2}{\beta_1 + \beta_2} (-\Delta P_{L1}) + k\beta_1 \frac{-\Delta P_{L1}}{\beta_1 + \beta_2} = -\Delta P_{L1} \frac{k\beta_1 + \beta_2}{\beta_1 + \beta_2}
\]

\[
\text{ACE}_2 = -\Delta P_{12} + k\beta_2 \Delta \omega = -\frac{\beta_2}{\beta_1 + \beta_2} (-\Delta P_{L1}) + k\beta_2 \frac{-\Delta P_{L1}}{\beta_1 + \beta_2} = -\Delta P_{L1} \frac{(k-1)\beta_2}{\beta_1 + \beta_2}
\]

$k>1$: both generators are more active in regulating frequency

FIGURE 12.25
AGC block diagram for a two-area system.

<table>
<thead>
<tr>
<th>Coefficient of $-\Delta P_{L1}$ ($\beta_1 = \beta_2 = 20$)</th>
<th>$k=2$</th>
<th>$k=1$</th>
<th>$k=1/2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.5</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

© 2021 Kai Sun
<table>
<thead>
<tr>
<th>k</th>
<th>$\Delta \omega_1 \sim 0$</th>
<th>$\Delta \omega_2 \sim 0$</th>
<th>$\Delta P_{m1} \sim 0$</th>
<th>$\Delta P_{m2} \sim 0$</th>
<th>$\Delta P_{12} \sim 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k=2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k=1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k=1/2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coefficient of $-\Delta P_{L1}$ ($\beta_1=\beta_2=20$)

$B_i = 2\beta_i$

$B_i = \beta_i = D + 1/R_i$

$B_i = \beta_i/2$
AGC for more than two areas

- By means of ACEs, the frequency bias tie-line control scheme schedules the net import/export for each area, i.e. the algebraic sum of power flows on all the tie lines from that area to the others.

![Diagram of three areas connected by tie lines](image)

Figure 11.26 Three areas connected by tie lines
NERC Balancing Authority

• The control center is the headquarters of the BA, where the AGC computer system is typically located and all the data collected by the AGC system are processed.

• Based on the gathered data, the AGC signals are transmitted from the control center to the various generators currently involved in supplementary control to tell the generators what generation levels (set-points) to hold.

• It is unnecessary for the AGC system to regulate outputs of all generators in a BA. Most BAs have policies requiring that as many units as needed are under control and able to respond to the BA’s continual load changes. Those units that receive and respond to AGC signals are called regulating units. Their number vary from a few for a small BA to 40-50 for the largest BA.
Influences from generation reserves

• Sufficient or insufficient spinning reserve
 – Normal conditions: each area has sufficient generation reserve to carry out its supplementary control (AGC) obligations to eliminate the ACE
 – Abnormal conditions: one or more areas cannot fully eliminate the ACE due to insufficient generation reserve; thus, there will be changes in frequency and tie-line flows (under both supplementary control and primary control)

• Operating reserve resources
 – Spinning reserve: unloaded generating capacity \((P_{\text{ref,max}} - P_{\text{ref}}) \) or some interruptible load controlled automatically
 – Non-spinning reserve: not currently connected to the system but can be available within a specific time period, e.g. 15 minutes. Examples are such as combustion turbines while cold standby and some interruptible load.

• Each BA shall carry enough operating reserves.
Influences from generation reserves (cont’d)

• In an interconnect system, all generators with governors may respond to a generation/load change due to $\Delta f/R \neq 0$ or $\Delta P_{\text{ref}} \neq 0$.

• **Under a sudden load increase or generation loss,** only the generators with spinning reserves can quickly increase their outputs up to their maximum output limits (by either AGC or governors)

 – “Spinning reserves consist of unloaded generating capacity that is synchronized to the power system. A governor cannot increase generation in a unit unless that unit is carrying spinning reserves. An AGC system cannot increase a unit’s MW output unless that unit is carrying spinning reserves.” from EPRI tutorial Sec. 4.4.2.

• **Under a load decrease,** all generators may reduce their outputs as long as higher than their minimum output limits.
Kundur’s Example 11.3

Spinning reserve:
1,000 of 4,000 MW

\[B_1 = \frac{250 \text{MW}}{0.1 \text{Hz}} \]

Area 1
Load = 20,000 MW
Gen. = 19,000 MW

Area 2
Load = 40,000 MW
Gen. = 41,000 MW

The connected load at 60 Hz is 20,000 MW in area 1 and 40,000 MW in area 2. The load in each area varies 1% for every 1% change in frequency. Area 1 is importing 1,000 MW from area 2. The speed regulation, \(R \), is 5% for all units.

Area 1 is operating with a spinning reserve of 1,000 MW spread uniformly over a generation of 4,000 MW capacity, and area 2 is operating with a spinning reserve of 1,000 MW spread uniformly over a generation of 10,000 MW.

Determine the steady-state frequency, generation and load of each area, and tie line power for the following cases.

(a) Loss of 1,000 MW load in area 1, assuming that there are no supplementary controls.

(b) Each of the following contingencies, when the generation carrying spinning reserve in each area is on supplementary control with frequency bias factor settings of 250 MW/0.1 Hz for area 1 and 500 MW/0.1 Hz for area 2.

(i) Loss of 1,000 MW load in area 1

(ii) Loss of 500 MW generation, carrying part of the spinning reserve, in area 1

(iii) Loss of 2,000 MW generation, not carrying spinning reserve, in area 1

(iv) Tripping of the tie line, assuming that there is no change to the interchange schedule of the supplementary control

(v) Tripping of the tie line, assuming that the interchange schedule is switched to zero when the ties are lost

Spinning reserve:
1,000 of 10,000 MW

\[B_2 = \frac{500 \text{MW}}{0.1 \text{Hz}} \]

\[D = 1.0 \]

\[R = 5\% \]

\[\Delta E_i = B_i \Delta f + \Delta P_{i-others} \]

\[\Delta P_{Gi} - \Delta P_{Li} = D_i \Delta f + \Delta P_{i-others} \]

\[\Delta P_{Gi} = -\frac{\Delta f}{R_i} \]

\[\frac{1}{R_i} \text{ (MW/Hz)} = \frac{1}{R_i} \text{ (p.u.)} \times \frac{P_{\text{gen capacity}} \text{ (MW)}}{60 \text{ (Hz)}} \]

\[D_i \text{ (MW/Hz)} = D_i \text{ (p.u.)} \times \frac{P_{L,i} \text{ (MW)}}{60 \text{ (Hz)}} \]
Loss of 1,000MW load

Spinning reserve:
1,000 of 4,000MW

$B_1=250\text{MW}/0.1\text{Hz}$

Spinning reserve:
1,000 of 10,000MW

$B_2=500\text{MW}/0.1\text{Hz}$

Solution

(a) With no supplementary control.

Assuming that none of the governors are blocked, all generating units in the two areas respond to the loss of load.

A 5% regulation on 20,000 MW generating capacity (including spinning reserve of 1,000 MW) in area 1 corresponds to

$$\frac{1}{R_1}(\text{MW/Hz}) = \frac{1}{0.05} \times \frac{20,000}{60} = 6,666.67 \text{ MW/Hz}$$

Online generators with active governor control

Similarly, a 5% regulation on 42,000 MW generating capacity in area 2 corresponds to

$$\frac{1}{R_2} = \frac{1}{0.05} \times \frac{42,000}{60} = 14,000.00 \text{ MW/Hz}$$

Total regulation due to 62,000 MW generating capacity in the two areas is

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} = 20,666.67 \text{ MW/Hz}$$

Load damping due to 19,000 MW load (remaining after loss of 1,000 MW load) in area 1 is

$$D_1 = 1 \times \frac{19,000}{100} \times \frac{100}{60} = 316.67 \text{ MW/Hz}$$

Load damping due to 40,000 MW load in area 2 is

$$D_2 = 1 \times \frac{40,000}{100} \times \frac{100}{60} = 666.67 \text{ MW/Hz}$$

Total effective load damping of the two areas is

$$D = D_1 + D_2 = 983.33 \text{ MW/Hz}$$

Change in system frequency due to loss of 1,000 MW load in area 1 is

$$\Delta f = \frac{-\Delta P_L}{1/R+D} = \frac{-(-1000)}{20,666.67+983.33} = 0.04619 \text{ Hz}$$
Load changes in the two areas due to increase in frequency are

\[
\Delta P_{D1} = D_1 \Delta f = 316.67 \times 0.04619 = 14.63 \text{ MW}
\]

\[
\Delta P_{D2} = D_2 \Delta f = 666.67 \times 0.04619 = 30.79 \text{ MW}
\]

Generation changes in the two areas due to speed regulation are

\[
\Delta P_{G1} = -\frac{1}{R_1} \Delta f = 6,666.67 \times 0.04619 = -307.93 \text{ MW}
\]

\[
\Delta P_{G2} = -\frac{1}{R_2} \Delta f = 14,000.00 \times 0.04619 = -646.65 \text{ MW}
\]

The new load, generation and tie line power flows are as follows.

<table>
<thead>
<tr>
<th>Area 1</th>
<th>Area 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>Load</td>
</tr>
<tr>
<td>20,000.00 -1,000.00 +14.63</td>
<td>40,000.00 +30.79</td>
</tr>
<tr>
<td>19,014.63 MW</td>
<td>40,030.79 MW</td>
</tr>
<tr>
<td>Generation</td>
<td>Generation</td>
</tr>
<tr>
<td>19,000.00 -307.93</td>
<td>41,000.00 -646.65</td>
</tr>
<tr>
<td>18,692.07 MW</td>
<td>40,353.35 MW</td>
</tr>
</tbody>
</table>

Tie line power flow from area 2 to area 1 is 322.56 MW. Steady-state frequency is 60.04619 Hz.
(b) With supplementary control.

(i) Loss of 1,000 MW load in area 1:

Area 1 has a generating capacity of 4,000 MW on supplementary control, and this will reduce generation so as to bring ACE_1 to zero. Similarly, area 2 generation on supplementary control will keep ACE_2 at zero:

$$ACE_1 = B_1 \Delta f + \Delta P_{12} = 0$$

$$ACE_2 = B_2 \Delta f - \Delta P_{12} = 0$$

Hence,

$$\Delta f = 0 \quad \Delta P_{12} = 0$$

Area 1 generation and load are reduced by 1,000 MW. There is no steady-state change in area 2 generation and load, or the tie flow.
Spinning reserve: 1,000 of 4,000MW
$B_1=250\text{MW}/0.1\text{Hz}$
Loss of 500MW generation that carry part of spinning reserve

Spinning reserve: 1,000 of 10,000MW
$B_2=500\text{MW}/0.1\text{Hz}$

(ii) Loss of 500 MW generation carrying part of spinning reserve in area 1:

Prior to loss of generation, area 1 had a spinning reserve of 1,000 MW spread uniformly over a generation of 4,000 MW capacity (3,000 MW generation plus 1,000 MW reserve). Spinning reserve lost with generation loss is

$$\Delta P_{Rsrv1} = \frac{500}{3,000} \times 1,000 = 166.67 \text{ MW}$$

Spinning reserve remaining is $1,000.00 - 166.67 = 833.33 \text{ MW}$. This is sufficient to make up for 500 MW generation loss. Hence, the generation and load in the two areas are restored to their pre-disturbance values. There are no changes in tie line flow or system frequency. However, area 1 spinning reserve is reduced from 1,000 MW to $833.33 - 500 = 333.33 \text{ MW}$
(iii) Loss of 2,000 MW generation in area 1, not carrying spinning reserve:

Half of the generation loss will be made up by the 1,000 MW spinning reserve on supplementary control in area 1. When this limit is reached, area 1 is no longer able to control ACE. Supplementary control in area 2, however, is able to control its ACE.

Hence,

\[
ACE_2 = B_2 \Delta f - \Delta P_{12} = 0
\]

\[
\Delta P_{12} = B_2 \Delta f = 5,000 \Delta f \neq 0
\]

There is thus a net reduction in system frequency. This causes a reduction in loads due to frequency sensitivity.

Area 1 load damping is

\[
D_1 = 1 \times \frac{20,000}{100} \times \frac{100}{60} = 333.33 \text{ MW/Hz}
\]

The balance of generation loss in area 1 is made up by a reduction in load and tie flow from area 2. Hence,

\[
-\Delta P_{Li} = D_1 \Delta f + \frac{\Delta f}{R_i} + \Delta P_{-\text{others}}
\]

\[
-1,000 = D_1 \Delta f + \Delta P_{12} = 333.33 \Delta f + 5,000 \Delta f
\]

\[
\Delta f = \frac{-1,000}{5,000 + 333.33} = -0.1875 \text{ Hz}
\]

Change in area 1 load is

\[
\Delta P_{D1} = D_1 \Delta f = 333.33 \times (-0.1875) = -62.5 \text{ MW}
\]

The tie flow change is

\[
\Delta P_{12} = 5,000 \times (-0.1875) = -937.5 \text{ MW}
\]

Change in area 2 load is

\[
\Delta P_{D2} = D_2 \Delta f = 666.67 \times (-0.1875) = -125.00 \text{ MW}
\]

<table>
<thead>
<tr>
<th>Area 1</th>
<th>Area 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>= 20,000.0 - 62.5</td>
</tr>
<tr>
<td></td>
<td>= 19,937.5 MW</td>
</tr>
<tr>
<td>Generation</td>
<td>= 19,000.0 - 1,000.0</td>
</tr>
<tr>
<td></td>
<td>= 18,000.0 MW</td>
</tr>
</tbody>
</table>

The steady-state tie line power flow from area 2 to area 1 is 1,937.50 MW, and the system frequency is 60.0 - 0.1875 = 59.8125 Hz.
(iv) Tripping of the tie line, assuming no change in interchange schedule:

The supplementary control of area 1 attempts to maintain interchange schedule at 1,000 MW. Hence,

\[\text{ACE}_1 = \Delta P_{i2} + B_1 \Delta f_1 = 1,000 + 2,500 \Delta f = 0 \]

Solving, we find

\[\Delta f_1 = \frac{-1000}{2500} = -0.4 \text{ Hz} \]

Change in area 1 load is

\[\Delta P_{D1} = D_1 \Delta f_1 = 333.33 \times (-0.4) = -133.33 \text{ MW} \]

Similarly for area 2, we have

\[\Delta f_2 = \frac{1,000}{5,000} = 0.2 \text{ Hz} \]

\[\Delta P_{D2} = 666.67 \times 0.2 = 133.33 \text{ MW} \]

The area load, generation, and frequencies are as follows:

<table>
<thead>
<tr>
<th>Area 1</th>
<th>Area 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>20,000.00 - 133.33</td>
</tr>
<tr>
<td></td>
<td>19,866.67 MW</td>
</tr>
<tr>
<td>Generation</td>
<td>19,866.67 MW</td>
</tr>
<tr>
<td>(f_1)</td>
<td>59.6 Hz</td>
</tr>
<tr>
<td>(f_2)</td>
<td>60.2 Hz</td>
</tr>
<tr>
<td>Load</td>
<td>40,000.00 + 133.33</td>
</tr>
<tr>
<td></td>
<td>40,133.33 MW</td>
</tr>
<tr>
<td>Generation</td>
<td>40,133.33 MW</td>
</tr>
</tbody>
</table>
(v) Tripping of the tie line, with interchange schedule switched to zero:

With interchange schedule switched to zero, area 1 supplementary control will pick up 1,000 MW generation to make up for loss of import power. Similarly, area 2 supplementary control reduces generation by 1,000 MW to compensate for loss of export. The generation in each area is equal to the respective loads and the area frequencies are equal to 60 Hz.
Frequency response following the loss of a generator

\[\Delta P_m \text{ or } -\Delta P_L \rightarrow \frac{K}{1+sT} \rightarrow \Delta \omega_r \]

\[K = \frac{1}{D}, \quad T = \frac{2H}{D} \]

\[\Delta f = \frac{\Delta P_m}{D} \left(1 - e^{-\frac{Di}{2H}}\right) \]

\[\frac{df}{dt} \bigg|_{t=0} = \left. \frac{\Delta P_m}{2H} e^{-\frac{Di}{2H}} \right|_{t=0} \times 60 = \frac{\Delta P_m}{2H} \times 60 \text{ (Hz/sec)} \]

© 2021 Kai Sun
Underfrequency Load Shedding (UFLS)

• In many situations, a frequency decline may lead to tripping of steam turbine generators by underfrequency protective relays, thus aggravating the situation further.

• UFLS is a protection program that automatically trips selected customer loads once frequency falls below a specific value.

• The intent of UFLS is not to recover the frequency to 60 Hz but rather to arrest or stop the frequency decline. Once UFLS has operated, manual intervention by the system operators is likely required to restore the system frequency to a healthy state.

• A typical UFLS setting for a North American utility may include three steps conducted by under-frequency relays, e.g.,
 1. shedding 10% load at 59.3 Hz
 2. shedding 10% additional load at 59.0 Hz
 3. shedding 10% more at 58.7 Hz
North American Industry Practices in Frequency Control

References

• “Balancing and Frequency Control,” NERC resources Subcommittee, January 26, 2011

• “Generation Control” Interconnection Training Program, 2010
 http://www.pjm.com/~media/training/nerg-certifications/gc-gencontrol.ashx
Hierarchical Load balancing and Frequency control

Control Continuum
Summary Table 1 summarizes the discussion on the control continuum and identifies the service\(^5\) that provides the control and the NERC standard that addresses the adequacy of the service.

<table>
<thead>
<tr>
<th>Control</th>
<th>Ancillary Service/IOS</th>
<th>Timeframe</th>
<th>NERC Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Control</td>
<td>Frequency Response</td>
<td>10-60 Seconds</td>
<td>FRS-CPS1</td>
</tr>
<tr>
<td>Secondary Control</td>
<td>Regulation</td>
<td>1-10 Minutes</td>
<td>CPS1 – CPS2 – DCS - BAAL</td>
</tr>
<tr>
<td>Tertiary Control</td>
<td>Imbalance/Reserves</td>
<td>10 Minutes - Hours</td>
<td>BAAL - DCS</td>
</tr>
<tr>
<td>Time Control</td>
<td>Time Error Correction</td>
<td>Hours</td>
<td>TEC</td>
</tr>
</tbody>
</table>

Source: “Balancing and Frequency Control,” NERC resources Subcommittee, Jan 26, 2011
Time Control and Time Error Correction

• Even with AGC, the average frequency over time of one interconnection usually is **not exactly 60 Hz** because of occasional errors in tie-line meters caused by transducer inaccuracy, hardware/software problems with SCADA, or communications errors.

• Each Interconnection designates one Reliability Coordinator to monitor and calculate frequency/time error and request time error corrections so as to maintain the long-term average frequency at 60Hz. For example, MISO (Midcontinent Independent System Operator) is the Time Monitor for EI.

• The Time Monitor compares a clock using Interconnection frequency as a reference against “official time” provided by the NIST (National Institute of Standards and Technology).

• For example, if frequency=60.002Hz,
 – The clock using Interconnection frequency will gain a Time Error of 1.2 seconds in a 10 hour interval:
 \[
 \frac{60.002 \text{ Hz} - 60.000 \text{ Hz}}{60 \text{ Hz}} \times 10 \text{ hrs} \times 3600 \text{ s/hr} = 1.2 \text{ s}
 \]
 – If the Time Error accumulates to a pre-determined value (e.g., +10 seconds in the EI), the Time Monitor will send notices for all BAs to offset their scheduled frequency by -0.02Hz (i.e. 59.98Hz).
 – This offset, known as Time Error Correction, will be maintained until Time Error has decreased below the termination threshold (i.e. +6 s in the EI).