2021 IEEE-NASPI Oscillation Source Location Contest ## Solution Key | | | Oscillation Source(s) Information | | | | | | |-----------|-------------------|-----------------------------------|---|--|--|--|--| | Case
| Frequency
(Hz) | Area Name | Bus # | Asset Type
(choose) | Controller
(choose) | Notes | | | | | 3 pt. | +3 pt. – correct
+1 pt. – within 1 bus
+0 pt. – other | +1 pt. – correct
+0 pt. – N/A
-1 pt. – wrong | +1 pt. – correct
+0 pt. – N/A
-1 pt. – wrong | In all cases, forced oscillations are introduced at t=30s. | | | 1 | 0.82 | 1 – SOUTH | 1431 | Generator | Governor | Max oscillation amplitude in MW flow is
not at the source. | | | 2 | 1.19 | 2 – CALIFORNIA | 2634 | Generator | Governor | The forced oscillation resonates with a natural local mode at 1.19Hz with low damping ratio. Max oscillation amplitude in MW flow is not at the source. The natural mode is excited by a fault at bus 1131 at t=30s. | | | 3 | 0.379 | 1 – SOUTH | 1131 | Generator | Exciter | The forced oscillation resonates with the lowest frequency inter-area mode. Max oscillation amplitude in MW flow is not at the source, in a different area. Fault at bus 2503 added at t=30s. Bus 1131 is not monitored by a PMU. | | | 4 | 0.379 | 2 – CALIFORNIA | 3831 | Generator | Governor | The forced oscillation resonates with the lowest frequency inter-area mode. Max oscillation amplitude in MW flow is not at the source. Fault at bus 6103 added at t=26s. Bus 3831 is not monitored. | | | 5 | 0.68, 0.76 | 3 – NORTH | 4231 | Generator | Governor | Forcing frequency is 0.68Hz before t=58s,
0.76Hz after t=61s, and is transitioning in
the 3-sec interval. | | | 6 | 1.27 | 3 – NORTH | 7031 | Generator | Governor | System has modes at: 0.614Hz, 0.708Hz, 0.741Hz and 0.78Hz. Bus 4231 is not monitored by a PMU. The forced oscillation resonates with a local mode in the NORTH area. Line 2604-6404_1 tripped at t=70s. Max oscillation amplitude in MW flow is not at the source, in a different area. Voltage at bus 7031 is monitored by PMU, besides the other PMUs in the California | |----|-------|----------------|------|-----------|----------|--| | 7 | 0.379 | 2 – CALIFORNIA | 2634 | Generator | Exciter | and South areas. The forced oscillation resonates with the lowest frequency inter-area mode. Fault at bus 2503 added at t=27s. | | 8 | 0.614 | 3 – NORTH | 6333 | Generator | Governor | The forced oscillation resonates with a regional inter-area mode. Max oscillation amplitude in MW flow is not at the source. Fault at bus 6103 added at t=27s. | | 9 | 0.762 | 3 – NORTH | 6533 | Generator | Governor | ■ The forced oscillation (at bus 6533) resonates with a natural mode whose damping is reduced by adjusting PSS gain (Ks=-2) in generator 4131_H creating | | 9 | 0.762 | 3 – NORTH | 4131 | Generator | Exciter | negative contribution into damping from that generator. • Max oscillation amplitude in MW flow is not at the source. | | 10 | 1.218 | 2 – CALIFORNIA | 3931 | Generator | Governor | There are two forced oscillations, each resonates with a natural mode. Max oscillation amplitude in MW flow is | | 10 | 0.614 | 3 – NORTH | 6335 | Generator | Governor | not at the source. Fault at bus 1131 added at t=28s. Bus 3931 is not monitored by a PMU. | | 11 | 0.614 | 3 – NORTH | 4009 | Load | Other | The forced oscillation resonates with a regional inter-area mode. The source is close to a HVDC and a generator (neither is a source). | | | | | | | | ■ Fault at bus 4104 added at t=29s. | |----|------------------------------|----------------|------|-----------|----------|--| | 12 | 0.37
0.74
1.11
1.48 | 3 – NORTH | 6335 | Generator | Governor | Rectangular forcing signal (at 0.37Hz) has harmonics: 0.74Hz, 1.11Hz and 1.48Hz, etc. The second harmonic resonates with a natural mode and produces the largest oscillation amplitude in MW flow that is not at the source. Fault at bus 6333 added at t=26s. | | 13 | 0.614 | 3 – NORTH | 4010 | HVDC | Other | The forced oscillation resonates with a regional inter-area mode. The source is in the HVDC controls at California side. | | 13 | 0.614 | 2 - CALIFORNIA | 2619 | HVDC | Other | Both terminal buses of HVDC 4010 and
2619 may look as the sources in the AC
network. | | A1 | 0.379
0.614
0.725 | 3 – NORTH | 6333 | Generator | Governor | Forcing frequency is 0.379Hz before t=30s, 0.614Hz from t=35s-60s, and 0.725Hz after t=65s. A mix of P/M class PMU, P/M class assignment is different from the first 13 cases. | | A2 | 0.379
0.614
0.725 | 3 – NORTH | 6333 | Generator | Governor | ■ Same as A1, but with 100% P class PMU. | | A3 | 0.379
0.614
0.725 | 3 – NORTH | 6333 | Generator | Governor | ■ Same as A1, but with 100% M class PMU. |