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• Understand nonlinearity in power system oscillation under a large 
disturbance.

• Learn how to decompose a power grid model regarding its oscillation 
modes by a Nonlinear Modal Decoupling method.

• Discuss use cases of the method for real-time power system stability 
monitoring and control.

Learning Objectives
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• Characterization of a nonlinear oscillation by its F-A curve

• Introduction of the Nonlinear Modal Decoupling (NMD) method for power grids 
and other multi-oscillator systems

• Use cases:

1. Transient stability analysis and monitoring

2. Real-time damping estimation on nonlinear oscillations

3. Direct damping feedback control for grid stabilization

• Conclusions and takeaways

Table of Contents
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Tm

T =Tmax sinEquilibria of  in 360o:

• Stable equilibrium point (SEP):     s=arcsin(Tm/Tmax)

• Unstable equilibrium point (UEP): u =180o-s

SMIB system 
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Oscillations under small and large disturbances

max sin 0mD
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I=1, D=0, Tmax=10, Tm=5 (s=30o)
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Frequency-Amplitude (F-A) Curve
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[1] B. Wang, K. Sun, "Formulation and Characterization of Power System Electromechanical Oscillations," IEEE Trans. Power Systems, 2016.

[2] M. Xiong, X. Xu, K. Sun, B. Wang, “Approximation of the Frequency-Amplitude Curve Using the Homotopy Analysis Method,” IEEE PESGM’21.

Elliptic integral of the first kind
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Frequency-Amplitude (F-A) Curve

Oscillation amplitude (max -s)

F
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Stability margin

(UEP)

max min( , )f  

• The F-A curve characterizes the non-linear oscillation mode of a 1-DOF oscillator while its linear 

natural mode defined by a pair of eigenvalues only corresponds to single point, i.e. SEP, on the curve.

• Hypothesis: For a multi-generator system, an F-A curve describes one of nonlinear oscillation modes 

in which generators keep oscillatory coherency before loss of synchronism, 

• In the rest of the presentation, “a mode of X Hz” refers to a non-linear mode whose frequency at the 

SEP equals X Hz.

[3] B. Wang, X. Su, K. Sun, “Properties of the Frequency-Amplitude Curve,” IEEE Trans. Power Systems, 2017

Tm

T =Tmax sin

P- curveF-A curve
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F-A curves on WECC 29-machine 179-bus system

• Consider cascading line outages near the California-Oregon Intertie (COI).

Margin<30%

Approximate F-A curves on other modes

COI

North-South A mode

(0.2-0.3 Hz)

Can we decouple these 

nonlinear modes for 

stability analysis and 

control?
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Modal decoupling: from linear to nonlinear oscillations

           with decoupled   ( )i i i iz z z= = 
x=Φz

x Ax z = Λz

• Under a small disturbance, linear modes are decoupled by diagonalizing 

Jacobian A to analyze small-signal stability for each mode.

• Under a large disturbance, can we decouple non-linear modes?
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(2)( ) ( ) ...= = + +x f x Λx f x

(2)( ) ( ) ...= = + +x H z z h z

Nonlinear Modal Decoupling of a Multi-Oscillator System

• By a coordinate transformation x=H(z), the goal is to decompose the system’s high-
dimensional vector field into low-dimensional vector fields on as many decoupled 
nonlinear 1-DOF oscillators as oscillation modes.

Decoupled 1-DOF oscillatorsN-oscillator system
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[4]  B. Wang, K. Sun, W. Kang, “Nonlinear Modal Decoupling of Multi-Oscillator Systems with Applications to 

Power Systems,” IEEE Access, 2018

(2)( ) ( ) ..= = + +z d z Λz d z
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Poincaré’s Normal Form Theorem: formal linearization

Consider a smooth, nonlinear system having an equilibrium at x=0. If eigenvalues of its Jacobian A are 

non-resonant, then the system can be transformed into a linear system by changing coordinates:

h(z) can be obtained by solving a homological equation:

If f(n)(z)0 for n<k, there is: 

Note: this equation is a linear equation about k-th order monomials of z. Thus, to formally linearize the 

system up to the K-th order, we only need to solve such a linear equation for (K-1) times.
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[5] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (2nd Ed), Springer, 1988
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1-D example of formal linearization

2 3 4

2 3 ( )y y c y c y O y= + + +

4( )= +z z O z

2 3 4

2 3Let   ( ) ( )y z h z z h z h z O z= + = + + +

2 2 3 2 3 3 4

2 3 2 3 2 2 3(1 2 3 ) ( ) ( 2 ) ( )h z h z z z h z h z c z h z c z O y + + − + + = + + +

2 2
2 2 2 2

3 23
3 3 2 2 3 3 2

: 2

: 3 2
2

c
z h h c h

c
z h h c h c h h

 


 


− =  =

− − =  = +

2 3 4

2 3( ) ( ) ( ) + = + + + +
d

z h z z h z c y c y O y
dt

2 3 4

2 3( ) ( ) 


− = + +


h
z h z c y c y O y

z
(homological equation)



14

Nonlinear Modal Decoupling (NMD) 

decoupled k-jet

Theorem (NMD): If system (1) has no resonance at equilibrium x=0, and its eigenvalues belong to the 

Poincare domain, i.e. 0 their convex hull (this is a sufficient condition), then these exists a convergent 

coordinate transformation to (2), which is decoupled up to the kth order with desired modal nonlinearity. 
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d(k): decoupled, kth order intra-modal terms (carrying designed modal nonlinearity if nonzero)
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2-D example of nonlinear modal decoupling
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Real-valued decoupled k-jet

• How to transform a decoupled, complex-valued k-jet into an approximately 

real-valued k-jet?
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Resonance of eigenvalues

• Distinct eigenvalues 1, 2, …, n are said to be resonant if there exists a vector m=[m1, …, mn]
T of 

non-negative integers such that the following equation holds. The order of resonance is defined as 

imi. If there is “” instead of “=”, these eigenvalues have near-resonance. 

i =m11+m22+…+mnn where imi2

1 1

1

1

, ,

,
  

−
=

+ + −

k k

k

k

i s s i s s

i s s

s s i

c d
h

• Examples (n=2): 1=22

21=32

1+2=0 

a resonance of order 2; 

not a resonance;

a resonance of order 3 since 1=21+2.

• A necessary condition of normal form/NMD transformation: in order to eliminate or transform 

c(k) terms,  the system cannot have kth order resonance.

[5] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (2nd Ed), Springer, 1988
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From Linear 

Model

Mode

(Hz)

0.54

1.10

1.67

From 

Measurements
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 
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+


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 z

1.10Hz

0.54Hz

1.67Hz

Mode shape on near-resonance oscillation 

[6] T. Xia, Z. Yu, K. Sun, D. Shi, Z. Wang, “Extended Prony Analysis on Power System 

Oscillation Under a Near-Resonance Condition,” IEEE PESGM, 2020
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NMD with designed modal nonlinearity

How to design new d(k) terms introduced by h for desired modal nonlinearity (e.g. the stability limit)?

• Strategy 1: Normal form, i.e.  a linear k-jet system with d(2)=…=d(k)=0. 

− Unable to estimate the stability limit from each decoupled linear system.

• Strategy 2: Let hi,ii…i=0, i.e. di,i…i=ci,i…i for n<k to avoid adding any new d(k) terms.

− The F-A curve on each decoupled oscillator only depends on remaining c(k) terms.
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• Strategy 3: each decoupled system is a k-jet SMIB system.

− New d(k) terms change the shape of the F-A curve on each mode.
− The stability of each decoupled system can be analyzed and controlled as an SMIB system.
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Example: NMD on IEEE 9-bus system

• Consider a 3-phase fault (CCT=0.17s)
• Decouple its 3-jet system (CCT=0.16s) by 3 strategies: 

1 2

2 2 2

2 1 2 3 5 1 3 5 1 3 1 5

3 3 3 2 2 2 2

1 3 5 1 3 1 3 1 5 1 5

Real valued 3-jet of the post-fault system:  

3.12
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Strategy 3 
(ND-SMIB)
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Strategy 2

(ND-ST)
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Accuracy on transient stability

• For small disturbances, all strategies give accurate 
decoupled 3-jets.

• For a large disturbance (90% of CCT), strategy 2  
is much more accurate than Strategy 3 (decoupled 
into SMIBs).

Error<5 deg. UEPs by Strategy 2 (ND-ST)

Small disturbance 

(clearing time=0.01s<<CCT)

Large disturbance 

(clearing time=0.15s >0.9CCT)

[7] X. Xu, B. Wang, K. Sun, “Approximation of Closest Unstable Equilibrium Points 

via Nonlinear Modal Decoupling,” IEEE PESGM, 2019.

[8] X. Xu, B. Wang, K. Sun, “Initial Study of the Power System Stability Boundary 

Estimated from Nonlinear Modal Decoupling,” IEEE PES Powertech’19, Milano.
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Transient stability analysis using decoupled oscillators
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NMD-based transient stability analysis for a large power system

• Step 1: Derive modal space representation for the classical system model:

• Step 2: Obtain decoupled k-jet (k3) systems for selected m critical modes

• Step 3: Find the stability boundary for each decoupled system by a direct method. Considering 
reduction and truncation errors, adjust the boundaries for conservative stability assessment.

• Step 4: Compare the post-disturbance system trajectory in z or w-coordinates with the stability 
boundaries regarding m critical modes

Remarks: If the system has near-resonance modal interaction, elimination of some inter-modal terms c(k)

becomes difficult due to large h-coefficients. However, NMD can still decouple non-resonant modes.

1 1( ) ( ),    where − −= =y Φ f Φy f y y Φ x( )=x f x

( , )

( , )

  
=   

   

cr cr cr other

other other cr other

y f y y

y f y y
( , ) =cr cr cry f y 0 (2) (3)   ( ) ( ) =  + + +z Λ z d z d z

[9] B. Wang, K. Sun, X. Xu, “Nonlinear Modal Decoupling Based Power System Transient Stability Analysis,” 
IEEE Trans. Power Systems, 2019.
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Use Cases of the NMD Method

Demonstrations on the NPCC 48-machine 140-bus testbed system

1. Transient stability analysis and monitoring

2. Real-time oscillation damping estimation under small/large disturbances

3. Direct damping feedback control for grid stabilization 
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Case 1 - Transient stability monitoring
• Consider a large fault between NYISO and ISO-NE regions.

• Offline: For the post-fault system, find decoupled 3-jet oscillators on 
top-5 modes (>99% total oscillatory energy) and their stability boundaries.

• Real-time: Monitor 5 oscillators for transient stability. In the test, a MATLAB 
program takes 0.3s to locate 5 consecutive post-fault states of decoupled 
oscillators and only <0.1s to predict instability on 0.6Hz mode.

Mode
No.

Freq. 
(Hz)

Modal
Energy

1 0.38 54.6%

2 0.26 27.9%

3 0.53 9.3%

4 0.60 6.6%

5 0.47 1.1%

… … <1%

0.6Hz

0.60Hz

Marginally 

stable

Marginally 

unstable

1
2

3 4

5

1

23

4

5

[9] B. Wang, K. Sun, X. Xu, “Nonlinear Modal Decoupling Based Power System Transient Stability Analysis,” IEEE Trans. Power Systems, 2019.
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Other four oscillators are all stable
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t

Time (s)

Comparing damping ratios from short sliding windows (3-5 s)

NPCC 0.6Hz inter-area mode under small/large disturbances 

NMD Prony
Fault 

duration:

CCT/4

CCT

Steps:
1. Apply inverse NMD transformation z=H-1(x) to measurement data of x over a sliding window. 

2. Find a nonlinear oscillator of the best fit for data of the targeted mode, and calculate its damping ratio.

Damping ratio

1

( )t
g


 =

z=H-1(x) 

Case 2 - Real-Time Damping Estimation for Nonlinear Oscillations

[10] X. Xu, W. Ju, B. Wang, K. Sun, "Real-time Damping Estimation on Nonlinear 

Electromechanical Oscillation,” IEEE Trans. on Power Systems, 2021.

PronyNMD

Optimal fitting at time t:

1 2

22 ... 0k

kg g g    +  + + + =



28

More tests on practical scenarios

Tests on practical scenarios

• Decrease PMU coverage from 100% to 85%: • Co-existence of two dominant modes
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• An oscillating power grid can be stabilized if the damping ratio of each nonlinear mode 
is accurately controlled at a desired value.

• Direct Damping Feedback Control System: 

− NMD-based real-time damping ratio estimator

− Robust PI controller optimized for each equivalent oscillator of the grid

− Distributed/decentralized actuators using energy storages and other IBRs (inverter-based resources).

Case 3 - Direct Damping Feedback Control and Grid Stabilization

Robust PI 

controller
Damping Ratio Estimator

Power Grid

(equivalent oscillator for a 

targeted mode)

 x

Adjustment of damping/power Measurements

Real-time damping ratio

Desired damping ratio (e.g. 3%)

1 2

22( ... 0) k

kg g g     +   + + + =+
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• Actuation: Change power injections from distributed IBRs (e.g. battery energy storage systems) 

to the grid.

• Robust Control: Design PI parameters for the best tradeoff between 

the integrated absolute control error (IAE) and the sensitivity (Mst) of 

damping estimation to a perturbation in the system condition.

Distributed and Robust Damping Control by IBRs

[11] X. Xu, K. Sun, "Direct Damping Feedback Control Using Power Electronics-Interfaced Resources,” IEEE Trans. 

On Power Systems, 2022.

[12] Y. Zhu, C. Liu, K. Sun, D. Shi, Z. Wang, "Optimization of Battery Energy Storage to Improve Power System 

Oscillation Damping," IEEE Trans. Sustainable Energy, 2019

Grid

Robust PI 

controller
Control 
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Tests on Stabilization of the NPCC system

Mst = 1.3, 1.5, 1.75

Mst = 1.3

Mst = 1.75

• Increase damping ratio from <1% to 3% for 0.6Hz mode after a permanent 3-phase 

fault lasting for CCT.
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Contributions of the presented work:

• Characterization of nonlinear power system oscillation using a new tool “F-A Curve”.

• Establishment of the Nonlinear Modal Decoupling (NMD) method for power grids and other 

multi-oscillator nonlinear systems.

• Demonstration of three use cases of the NMD method for stability analysis and control.

1. Transient stability analysis and monitoring;

2. Real-time oscillation damping estimation under small/large disturbances;

3. Direct damping feedback control for grid stabilization using IBRs. 

Takeaways:

• Small-signal and transient instabilities will be less separate with future oscillation events.

• Future grid controllers need to consider nonlinearities in power system oscillations.

• The NMD method suggests a new approach for decoupling and harnessing various power system 

oscillations having nonlinearities.

Summary
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