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ABSTRACT This paper proposes a novel method for solving and tracing power flow solutions with 
changes of a loading parameter. Different from the conventional continuation power flow method, which 
repeatedly solves static AC power flow equations, the proposed method extends the power flow model into 
a fictitious dynamic system by adding a differential equation on the loading parameter. As a result, the 
original solution curve tracing problem is converted to solving the time domain trajectories of the 
reformulated dynamic system. A non-iterative algorithm based on differential transformation is proposed to 
analytically solve the aforementioned dynamized model in form of power series of time. This paper proves 
that the nonlinear power flow equations in the time domain are converted to formally linear equations in the 
domain of the power series order after the differential transformation, thus avoiding numerical iterations. 
Case studies on several test systems including a 2383-bus system show the merits of the proposed method. 

INDEX TERMS Continuation power flow; dynamized power flow; differential transformation; power 
flow; power-voltage curve; voltage stability; voltage collapse. 

I. INTRODUCTION 
Tracing solution curves of power flow equations with the 

changes of a trending parameter such as the loading level is 
usually a computation-intensive task in power system 
operations and planning to prevent steady-state voltage 
instability and other insecurities [1]-[4]. An example is 
computation of the power-voltage (P-V) curves for critical 
buses with the increase of load. Traditionally, the 
continuation power flow (CPF) method [5]-[9] is widely 
used to solve P-V curves, which adopts a prediction-
correction scheme to identify a series of power flow 
solutions along the solution curve where each prediction 
step gives an initial guess and the following corrector step 
performs numerical iterations to find the converged solution 
[10]-[12]. However, the CPF method may suffer from huge 
computation burdens since it requires solving nonlinear AC 
power flow equations for multiple times using numerical 
iteration methods [13]-[14]. Moreover, the computation 
burden of the CPF method can further grow and become 
unacceptable with modern power grids being integrated 
with high renewable energy resources and demand 
response, where such a solution process with numerical 
iterations needs to be repeated many times for multiple 

contingencies. 
In the literature, some techniques are proposed to reduce 

the computation burden of the CPF method [15]-[17], 
falling into two categories. The first category of techniques 
aim to design a more effective predictor than a standard 
tangent predictor [10]-[12] as adopted by many commercial 
CPF programs [13]-[14]. For example, paper [15] proposes 
three types of nonlinear predictors to predict a new solution 
from more than one previous solutions using interpolation 
and polynomial approximation including the Lagrange’s 
polynomial interpolation formula, Newton’s forward and 
backward divided difference formula, and cubic spline 
interpolation method. Besides, a secant predictor is used in 
[16] and a holomorphic embedding-based predictor is 
proposed in [17]. Methods in the first category are able to 
generate a better initial guess for the Newton Raphson (NR) 
method so as to reduce the total number of iterations; 
however, they still require many numerical iterations for 
solving nonlinear power flow equations. The second 
category of techniques focus on more efficient correctors 
than the standard NR method-based corrector. For example, 
authors in [15] propose a hybrid corrector allowing the 
switches between a NR method (taking its merit of 
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robustness) and a fast decoupled NR method (taking its 
merit of fast speed) until a pre-defined maximum total 
number of iterations. Methods in this category are mainly 
used to improve the convergence performance of numerical 
iterations, but still require solving nonlinear AC power flow 
equations repeatedly. Overall, a major bottleneck of the 
above two types of methods lies in their inherent solution 
mechanism that the power-flow equations are essentially 
solved as algebraic equations in an iterative manner.  

To more efficiently trace solution curves of power flow 
equations, this paper proposes a novel dynamized power 
flow (DPF) method that extends the power flow model into 
a fictitious dynamic system, called a “dynamized” power 
flow model, by adding a differential equation about a 
fictitious time, and then solve the complete time-domain 
trajectory of the dynamic system instead of repeatedly 
solving power flow equations for a series of conditions. A 
differential transformation (DT) method, which is proved 
effective for solving power system transient stability 
simulation in our recent works [18]-[20], is applied to solve 
the dynamized model, named as dynamized power flow 
(DPF) method. This paper proves that the nonlinear AC 
power flow equations are converted to formally linear 
equations after DT, and further designs an efficient 
algorithm to solve the time domain trajectory without 
numerical iterations. Case studies on several test systems 
including a 2383-bus system demonstrate the accuracy, 
computational complexity and time performance of the 
proposed approach compared with a CPF solver.  

The rest of the paper is organized as follows. Section II 
gives the problem description, section III presents the 
proposed method, section IV is the case study and section V 
draws conclusions. 

 
II.  PROBLEM STATEMENT 

The conventional power flow equations are given in (1a) 
where S  is a vector of the complex power injections, V is 
a vector of bus voltage phasor, and Ybus is the bus 
admittance matrix. By adding the product of a loading 
parameter λ and a constant vector b  to the left-hand side, a 
general continuum of power flow equations is given in (1b).  

 


*
bus

*
bus

  S=V(Y V)            (1a)
S+ b=V(Y V)            (1b)

  (1)  

Note that the vector b  is defined to reflect an arbitrarily 
direction of load changes, for example, uniform increases 
of all generation and load, or increases of generation and 
load at certain buses or zones. Meanwhile, practical 
operating constraints such as the reactive power limit of 
generators can be considered during the load change.  

Equation (1b) is further written as the general form in (2) 
where g is a nonlinear vector field; y is the bus voltage 
vector under rectangular coordinates defined as y=[eT,fT]T, 
where e= [e1,…, eN]T and  f= [f1,…, fN]T are respectively the 

real and imaginary parts of the bus voltage phasor; N is the 
total number of buses; λ is the loading parameter.  

 0 ( , ) g y     (2)  

The goal is to determine how power flow solution y 
changes with loading parameter λ, shown in (3). After (3) is 
obtained, the other system variables (such as voltage 
magnitude and power injections) are easily calculated to 
draw P-V curves. 

 ( )y y     (3)  

Generally, analytical expression of (3) is unavailable due 
to the nonlinearity of g in (2). Therefore, a prediction-
correction scheme and numerical iterations are needed in 
conventional CPF method.  

 
III.  PROPOSED DYNAMIZED POWER FLOW METHOD 

A. INTRODUCTION OF DIFFERENTIAL 
TRANSFORMATION 

A smooth nonlinear function of time x(t) can be 
approximated by a Kth order polynomial function of time as 
shown in (4), where X(k) is the kth order power series 
coefficient and can be calculated by (5).  

 0( ) ( )K k
kx t X k t   (4) 

 
0

( )1( )
!

k

k
t

d x tX k
k dt 

      
  (5)  

Generally, these power series coefficients are calculated 
in a recursive manner from k=0 to k=K, and many 
mathematical methods can be used such as the Adomain 
decomposition method [21]-[22] and the power series-
based method in [23]-[24]. However, the applications of the 
above methods are limited by their huge computational 
burdens in deriving power series coefficient X(k) using the 
complicated high order derivative operations.  

As an emerging mathematical tool, DT [25]-[28] 
considers power series coefficient X(k) as a transformation 
of x(t) at the kth order as shown by (6). When multiple 
functions like x(t) are to be calculated and analyzed, their 
high order power series coefficients can directly be 
operated and calculated based on transformation rules 
introduced by DT. Thus, there is no need to calculate 
complicated high order derivatives of each function.  

( ) ( )x t X k     (6) 

Our recent paper [18]-[19] introduces DT to the power 
system field to effectively solve power system nonlinear 
differential-algebraic equations (DAEs) for transient 
stability simulation. New transformation rules for nonlinear 
functions in power system models are proved in [18]-[19]. 
Five rules are given in (7) and will be utilized in this paper. 
Here, X(k) and Y(k) are DTs of functions x(t) and y(t), c is a 
constant, and  is the Kronecker delta function:  
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i) ( ) ( ) ( ) ( )
ii) ( ) ( )

iii) ( ) ( ) ( ) ( ) ( ) ( )

( )iv) ( 1) ( 1)

1, 0
v) ( )=   

0, 0

k

m

x t y t X k Y k
cx t cX k

x t y t X k Y k X mY k m

dx t k X k
dt

k
c c k

k




  


  

  
   


 (7) 

B. IDEA OF THE PROPOSED METHOD 
The proposed method has following four steps, where 

each step is first briefed below and then described in detail 
in Section III-C to Section III-F respectively. 

First, the algebraic equation (2) is extended to a set of 
DAEs by introducing a fictitious time t and adding two new 
equations, i.e., (8a) and (8b). Differential equation (8a) is a 
dynamic system to trace the changes of system variables 
such as power or voltages, where x(t) is a state variable and 
f(·) is a vector field.  Algebraic equation (8b) is an ancillary 
equation that builds the relationship between the newly 
introduced variable x(t) and the original variables y(t) and 
λ(t). Note that the ancillary function h may not be needed if 
x(t) is selected from one of the variables in y(t) and λ(t). 
The details of designing (8a) and (8b) are in Section III-C.  

 

( ) ( ( ), ( ), ( )) (8 )
0 ( ( ), ( ), ( )) (8 )
0 ( ( ), ( )), . ., . (2) (8 )

x t f x t t t a
h x t t t b

t t i e Equ c










y
y

g y



  

               
               
    

     (8) 

Second, the DTs of (8a)-(8c) are derived in (9a)-(9c) 
respectively, using the transformation rules in (7). 
Specifically, the nonlinear power flow equation (8c) is 
converted to a new set of equations (9c) that couples the 
power series coefficients of y(t) and λ(t) in all orders, i.e., 
Y(0)… Y(k), Λ(0)… Λ(k).  
( 1) ( 1) ( (0 : ), (0 : ), (0 : )) (9 )

0 ( (0 : ), (0 : ), (0 : )) (9 )
0 ( (0 : ), (0 : )) (9 )

k X k F X k k k a
H X k k k b

k k c






  



Y
Y

GY   

    
    

              
 (9) 

Third, we prove that both (9c) and (9b) satisfy formally 
linear equations about the kth order coefficients Y(k) and 
Λ(k), as shown in (10a) and (10b), respectively, where A 
matrices are functions of Y(0) and Λ(0) and B matrices are 
functions of Y(0:k-1) and Λ(0:k-1). As a result, Y(k), i.e., 
the kth order power series coefficient of bus voltage vector, 
is analytical solved from Y(0:k-1) and Λ(0:k-1), either by 
(11) or by (12), depending on if the ancillary function h is 
needed when designing the differential equation in (8).  

 
0 ( ) ( ) (10 )
0 ( ) ( ) (10 )

gy g g

hy h h

k k a
k k b








  
  

 A Y A B
A Y A B   

      
     

       (10) 

 1( ) ( ( ) )gy g gk k
 Y A A B                    (11) 

 

1
( )
( )

gy g g

hy h h

k
k





                         

Y A A B
A A B                (12) 

Finally, we design a non-iterative algorithm based on (9a) 
and (11) or (12) to solve power series coefficients X(k), 
Y(k) and Λ(k) from k=0 to any order K in a recursively 
manner, and approximate variables x(t), y(t) and λ(t) as 
power series of time, shown in (13). After y(t) and λ(t) are 
solved, the solution curves of power flow equations are 
directly obtained, as illustrated in Section IV-A. 

 

2

2

2

( ) (0) (1) (2) ... ( )
( ) (0) (1) (2) ... ( )
( ) (0) (1) (2) ... ( )

K

K

K

x t X X t X t X K t
t t t K t
t t t K t    

   
   
   

y Y Y Y Y  (13) 

Among the above four steps, only the last step needs to 
be performed online, while the first three steps can be 
conducted in the offline stage because they are mainly used 
to derive expressions of matrices A and B in (10) and 
function F in (9a), which is a one-time effort.  

Remarks: there are two important observations: 1) from 
(10a) that the nonlinear power flow equation (2) about y(t) 
are converted to a formally linear equation about power 
series coefficients Y(k) after DT; 2) coefficients on bus 
voltages are explicitly solved by (11) or (12) and then used 
to calculate bus voltages by (13) in a straightforward 
manner, which is different from using a conventional power 
flow solver to calculate bus voltages by numerical 
iterations. The proposed DT based method for solving 
solution curves of power flow equations differentiates itself 
from the traditional continuation power flow method that 
relies on iterative numerical methods such as the family of 
Newton Raphson methods. 

C. STEP 1: DYNAMIZING POWER FLOW EQUATION 
Two formulations of (8) are proposed to dynamize the 

power flow equation (2), shown in (14) and (15) 
respectively, where C1 and C2 are constants and vl(t) is the 
voltage magnitude of a load bus l. In (14), there is no 
ancillary equation (8b) because the selected state variable 
λ(t) has existed in (2). In (15), the ancillary equation gives 
the relationship between bus voltage magnitude and the 
rectangular coordinate components.   

Formulation 1: 

 1( )
0 ( ( ), ( )), . ., .(2)
t C

t t i e Equ




 g y


                    (14) 

Formulation 2: 

 
2

2 2 2

( )
0 ( ) ( ) ( )
0 ( ( ), ( )), . ., .(2)

l

l l l

v t C
v t e t f t

t t i e Equ


  
 g y


                    (15) 

For Formulation 1, its purpose is to characterize how the 
power changes with time, i.e., the power increases with 
time when C1>0 and decreases with time when C1<0.  It can 
be used to trace curve segment in various shapes, either 
monotonically or non-monotonically, such as the curves (a), 
(b) and (c) in Fig. 1. For Formulation 2, its purpose is to 
characterize how the voltage magnitude changes with time, 
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i.e., the voltage magnitude increases with time when C2>0 
and decreases with time when C2<0.  It can also be used to 
trace either monotonical or non-monotonical curve 
segments such as (a), (b) and (d) in Fig. 1. 

 
FIGURE 1. Illustration of the two dynamized formulations for 
tracing curve segments of power flow equations 

 
The above two formulations can be flexibly used to trace 

the full solution curve of a power flow equation. For 
example, the high voltage solutions in a P-V curve can be 
traced by Formulation 1 with C1>0, the low voltage 
solutions can be traced by Formulation 1 with C1<0, and the 
solution curves near the nose point can be traced by 
Formulation 2 with C2<0.  

D. STEP 2: DERIVING DIFFERENT TRANSFORMATION 

1) DTS OF NONLINEAR POWER FLOW EQUATION 
The nonlinear power flow equation (2) is written into 

(16)-(19) under rectangular coordinates, where ΩPQ, ΩPV, 
ΩREF are the set of PQ buses, PV buses and reference bus 
respectively, p and q are active and reactive power, e and f 
are the real and imaginary parts of bus voltages, g and b are 
real and imaginary parts of the admittance, v is the voltage 
magnitude, superscript sp means the value is specified, 
subscript i and j are the index of buses. 

   
1 1

( , )

                                                             if 

N N
sp
i p i ij i j i j ij i j i j

j j

PQ PV

p g p g ee f f b fe e f

i

 
 

      

 

 y  (16) 

   
1 1

( , )

                                                             if 

N N
sp
i q i ij i j i j ij i j i j

j j

PQ

q g q b ee f f g fe e f

i

 
 

      



 y   (17) 

2 2 2( ) ( ) ,   if sp
i v i i PVv g e f i    y        (18) 

 
( ) ,         if 
( ) ,         if 

sp
i e i REF
sp
i f i REF

e g e i
f g f i

   
   

y
y

    (19) 

The DTs of (16)-(19) are in (20)-(23), respectively. 

 

 
1

1

( ) ( , )

        ( ) ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( )

            if 





 

     

   

 





Ysp
i p

N

i ij i j i j
j

N

ij i j i j
j

PQ PV

p k G

p k g E k E k F k F k

b F k E k E k F k

i



(20) 

 

 
1

1

( ) ( , )

        ( ) ( ) ( ) ( ) ( )

        ( ) ( ) ( ) ( )

            if 





 

      

   

 





Ysp
i q

N

i ij i j i j
j

N

ij i j i j
j

PQ

q k G

q k b E k E k F k F k

g F k E k E k F k

i



(21) 

2( ) ( ) ( )
            ( ) ( ) ( ) ( ), if 


     

Ysp
i v

i i i i PV

v k G
E k E k F k F k i


(22) 

 
( )= ( ) ( ), if 
( )= ( ) ( ), if 

  
  

Y
Y

sp
i e i REF
sp
i f i REF

e k G E k i
f k G F k i



        (23) 

 
For details, the derivation of (20) is elaborated below as 

an example. The remaining equations (21)-(23) are 
obtained in a similar procedure.  

The left-hand-side (LHS) and the first term in the right-
hand-side (RHS) of (20) are obtained by applying the rule 
(7-i), (7-ii) and (7-v) to the corresponding terms of (16). 
Note that pi

sp and Δpi are constants and λ= λ(t) is a variable, 
therefore their transformations are: pi

 sp pi
 sp(k) and Δpiλ 

 ΔpiΛ(k).  
The remaining terms in the RHS of (20) are obtained 

from the corresponding terms of (16) by following steps:  
First, apply the rule (7-iii): 

 
( ) ( )   ( ) ( )
( ) ( )   ( ) ( )

i j i j i j i j

i j i j i j i j

e e E k E k f f F k F k
f e F k E k e f E k F k

   
   

  

Then, apply the rule (7-i) and (7-ii): 

   
   

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ij i j i j ij i j i j

ij i j i j ij i j i j

g e e f f g E k E k F k F k
b f e e f b F k E k E k F k

    
    

  

Finally, using the rule (7-i), the RHS of (20) is obtained. 

 

2) DTS OF THE DESIGNED DIFFERENTIAL EQUATIONS 
For the differential equation in Formulation 1, i.e., (14), 

its DT is derived as follows. After applying the rule (7-iv) 
for LHS and (7-v) for RHS, (k+1)Λ(k+1)=C1(k) holds. 
Then, it can be further written in (24) after replacing k by k-
1 and using the definition of (k). 

 1( ) ( 1) k C k                       (24) 

For Formulation 2 in (15), the DT of the differential 
equation is in (25) where the derivation is similar as (24) 
and is omitted here; the DT of the ancillary equation is in 
(26) after applying the rule (7-iii) to both sides. 

 2( ) ( 1) lV k C k                     (25) 

 ( ) ( ) ( ) ( ) ( ) ( )l l l l l lV k V k E k E k F k F k      (26) 

3) PROOF OF FORMAL LINEARITY OF NONLINEAR 
POWER FLOW EQUATION AFTER DT 

Proposition 1: The transformed power flow equations 
(20)-(23) respectively satisfy formally linear equations 
(27)-(30). 
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 P,0 ( ) ( ) , if i i i PQ PVk p k i        a Y (27) 

 Q,0 ( ) ( ) , if i i i PQk q k i      a Y  (28) 

 V,0 ( ) 0 ( ) , if i i PVk k i     a Y (29) 

 E,

F,

0 ( ) 0 ( ) ( ), if 
0 ( ) 0 ( ) ( ), if 
     
     

a Y
a Y

sp
i i REF

sp
i i REF

k k e k i
k k f k i




(30) 

where Y(k) 2 1N  and Λ(k)    are variables representing 

the DT of y and λ respectively; aP,i, aQ,i, aV,i aE,i, aF,i 1 2N   
and εi, μi, ζi   are parameters given in (44)-(49) 
respectively. The detailed proof of Proposition 1 is in 
Appendix. 

From the Proposition, DTs (9c) of the nonlinear power 
flow equation satisfy formally linear equation (10a) with 
matrices Agy, Agλ, and Bg given by (31). For notation 
simplicity, here we let buses 1 to M be PQ buses, buses 
M+1 to N-1 be PV buses and bus N be the reference bus. 

   
,PQ ,PQ PQ
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Besides, the DT (26) of the ancillary equation in 
Formulation II also satisfies a formally linear equation in 
(10b) with proof in the Appendix. 

E. STEP 3: RECURSIVELY SOLVING VARIABLES AS 
POWER SERIES OF TIME  

Following the basic idea in Section III-B, two algorithms 
are designed to solve power series coefficients X(k), Λ(k), 
Y(k) up to any desired order, as shown by Algorithm 1 and 
Algorithm 2 in Table I, using Formulation I and 
Formulation II respectively. Note that these coefficients are 
explicitly calculated with no numerical iteration. 

After the power series coefficients are calculated, y(t) 
and λ(t) are calculated by evaluating the power series of 
time in (13) and the solution curves are directly obtained. In 
practical, the multi-time window strategy [18]-[19] can be 
used to extend the convergence region of power series of 
time and ensure the accuracy. The time step length as well 
as the order K of the power series of time are usually 
selected from trial simulations [19], and the impact of K 

and time step length are also studied in [18]-[19].  
 

TABLE I 
ALGORITHMS FOR FORMULATIONS I & II 

Algorithm 1: Solve Coefficients Using Formulation I 

Input Initial values (0), (0), (0)x y  

Output Any order coefficients ( ), (, ,) ) 0(X Kk kk k Y   

1 Initialization:    )(0) (0) (0 , (0), 0 0X x    yY  

2 Calculate matrices Agy using (31) 

3 Calculate 1
gy
A  

4 for 1 :k K do 
5 Calculate matrix Bg using (31) 

6 Solve  k using 1( ) ( 1) k C k   

7 Solve ( )kY using 1( ) ( ( ) )gy g gk k
 Y A A B  

8 end for 

 
Algorithm 2: Solve Coefficients Using Formulation II 

Input Initial values (0), (0), (0)x y  

Output Any order coefficients ( ), (, ,) ) 0(X Kk kk k Y   

1 Initialization:    )(0) (0) (0 , (0), 0 0X x    yY  

2 Calculate matrices Agy, Agλ, Ahy, Ahλ using (31) 

3 Calculate

1
hy h

gy g





     

A A
A A  

4 for 1 :k K do 
5 Calculate matrix Bg, Bh using (31) 

6 Solve  lV k using 2( ) ( 1)  lV k C k  

7 Solve  ( ), kk Y using 

1
( )
( )

gy g g

hy h h

k
k





                         

Y A A B
A A B  

8 end for 

 
The proposed method can also be applied to more 

complicated power system models such as 1) considering 
reactive power limit of generators, 2) ZIP load model. First, 
to consider the reactive power limit of generators, the 
proposed method can be slightly modified as follows: if a 
generator meets the reactive power limit, then it is changed 
from a PV bus to a PQ bus; correspondingly, the matrices A 
and B need to be re-calculated using (31). Later in Section 
IV-A, we demonstrate the proposed method for tracing PV 
curves considering reactive power limits. Second, for a 
nonlinear power flow equation with ZIP loads, we proved 
in [29] that its DTs still satisfy formally linear equations. 
Therefore, the proposed method can be directly applied 
with slight modification on matrices A and B. 

Regarding the computational complexity, the proposed 
method has two unique features: First, it shifts most of the 
computation burden to the offline stage, i.e., deriving the 
equation for calculating matrices A and B, which is a one-
time effort (the matrices A and B derived in this paper can 
be directly used by others without deriving them again); 
and the online stage only involves explicit matrix operation 
and evaluation of analytical solutions, which do not require 
any numerical iterations. Second, the proposed method can 
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reduce the frequency of solving linear equations compared 
with the CPF method, thus having better computational 
efficiency. This is because the CPF method needs to solve a 
linear equation in every iteration and every prediction-
correction step, while the proposed method only needs to 
solve linear equations once in each time step, and the total 
number of time steps are greatly reduced benefiting from 
the high order approximation. 

IV. CASE STUDIES 
The proposed DPF method is first tested on the IEEE 9-

bus system [13] to demonstrate the basic idea, the impact of 
load change directions, and the impact of reactive power 
limit of generators. Then, the accuracy, computational 
complexity, and computation time are compared with the 
CPF method in MATPOWER using several large systems 
including the IEEE 39-bus system, IEEE 57-bus system and 
a Polish 2383-bus test system [13]. At last, the proposed 
approach is applied to N-1 contingency analysis.  
Simulations are conducted in MATLAB R2017a on a 
personal computer with i5-8250U CPU. Without 
specification, generations and loads of all buses are 
uniformly increased. For the CPF method, various 
simulation control parameters are adjusted for the best time 
performance, including using the pseudo arc-length for 
parameterization, enabling adaptive step size, increasing the 
maximum allowed step size and disabling the incremental 
curve plotting in each iteration, etc. For the DPF method, 
parameters C1 and C2 are set as 1, K is set as 6 from trail 
simulations, and the time step length is fixed at 0.05s for 
2383-bus system and 0.1s for other systems.  

A. DEMONSTRATION ON THE 9-BUS POWER SYSTEM 
To demonstrate the idea of the proposed method, Fig. 2 

and Fig. 3 respectively give the time domain trajectories of 
the solved dynamized power flow model and the obtained 
PV curve. In the first 1.63s, the loading parameter λ 
increases with time in a constant rate while the voltage 
magnitude of bus 9 drops from 0.9956 p.u. to 0.6268 p.u., 
indicating high voltage solutions. During the time period 
between t=1.63s and t=1.68s, the voltage is decreased from 
0.6268 p.u. to 0.5439 p.u., while the loading parameter is 
first increased from 1.63 to reach the maximum value 1.64 
and then decreased to 1.63, indicating the dynamic process 
of passing the nose point. Finally, both the loading 
parameter and the bus voltage are decreased after t=1.68s, 
indicating the low voltage solutions. The obtained loading 
limit 1.64 is the same as the limit from the CPF method. 

Two scenarios are designed to demonstrate the capability 
of the proposed method on handling load changes with 1) 
non-uniform directions and 2) reactive power limits. Fig. 4a 
shows the PV curve of load bus 9 when increasing 
generation at bus 3 and load at bus 7 by 50 MW in active 
power and 10 MVar in reactive power. Fig. 4b further 
shows the PV curve of the same bus when reactive power 

limit of generators is considered. It shows the calculated 
maximum loading limits are reduced from 8.17 to 7.79 due 
to the reactive power limit. These results demonstrate the 
performance of the proposed method on practical power 
system models and applications. 

 

 
FIGURE 2.  Time domain trajectory of the dynamized power flow 
model 

 

FIGURE 3. Solution curve of load bus 9 on 9-bus system 

 

 
(a) 

 
(b) 

FIGURE 4. Solution curves under non-uniform load change 
direction, a) not consider reactive power limit, b) consider 
reactive power limit 
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B. ACCURACY, COMPUTATION COMPLEXITY, AND 
TIME PERFORMANCE on LARGE SYSTEMS 

Respectively for the 39-bus system, the 57-bus system 
and the 2383-bus system, the proposed DPF method is 
compared with the CPF method. In all following studies, 
the CPF method is tested using the commercial 
MATPOWER package while the proposed DPF method is 
tested using our research code. Fig. 5 to Fig. 7 show the PV 
curves of three load buses, obtained by both the proposed 
method and the CPF method. Respectively for the three test 
systems, the calculated loading limits are 1.12, 0.88 and 
0.89 for DPF method, and 1.13, 0.89 and 0.89 for the CPF 
method. These results demonstrate the accuracy of the 
proposed method. 

 

FIGURE 5. Solution curves on 39-bus system 

 

FIGURE 6. Solution curves on 57-bus system 
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FIGURE 7. Solution curves on 2383-bus system 

 
For both the CPF method and the DPF method, a major 

computation burden is in solving linear equations. Table II 
gives how many times linear equations are solved for both 
methods. It shows that the proposed approach is 10 times 
fewer than the CPF method for all the three test systems. 
This is because the CPF method needs to solve a linear 

equation in each iteration and for every prediction-
correction step while the proposed method only solves a 
linear equation once in each time step.  

 
TABLE II 

NUMBERS OF TIMES OF SOLVING LINEAR EQUATIONS 

Test Systems CPF DPF 

39-bus system 174 11 

57-bus system 108 10 
2383-bus system 424 18 

Table III further gives the computation times of both 
methods. It shows the proposed DPF method is around 9 
times, 12 times, and 2 times faster than the CPF method, 
respectively, for the three test systems. The speed up on the 
2383-bus system is less than speedups on the other two 
smaller systems because our current academic research 
code that implements the DPF method in MATLAB has not 
been optimized to as efficiently handle large-scale matrix 
operations as the commercial CPF solver in the 
MATPOWER. However, these test results do demonstrate 
the potential of the proposed DPF method for online power 
flow solution tracing and voltage stability assessment. 

 
TABLE III 

COMPARISON OF TIME PERFORMANCE (UNIT: SECOND) 

Test Systems CPF DPF 

39-bus system 0.26 0.03 

57-bus system 0.50 0.04 
2383-bus system 24.45 10.13 

C. APPLICATION TO N-1 CONTINGENCY ANALYSIS 
The proposed approach is further applied to screen N-1 

contingencies. For the 39-bus system, 46 contingencies are 
created each with the loss of each single branch. Fig. 8 
shows the maximum loading condition identified by both 
methods. Using the CPF results as benchmarks, the DPF 
method is accurate and reliable for all the contingencies. 
Regarding the computation time, the CPF method and the 
DPF method respectively takes 12.0 s and 1.4 s, showing 
that the DPF method can identify insecure contingencies 
much faster than the CPF method, and thus can scan more 
contingencies than the CPF method within limited time in 
the real-time environment. 

 

 

FIGURE 8. Maximum loading conditions by CPF and DPF 
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V. CONCLUSION         
In this paper, a novel dynamized power flow method has 

been proposed to efficiently trace solution curves of power 
flow equations. The original curve tracing problem for 
steady-state power flow solutions is converted to a time 
domain simulation problem about a dynamized model after 
adding a differential equation on changes of the operating 
condition. An DT-based approach is proposed for 
efficiently solving the dynamized model without numerical 
iterations. Simulation results have shown high accuracy, 
reduced computational complexity and improved time 
performance of the proposed DPF method compared with a 
CPF solver in MATPOWER. Besides, the proposed method 
can deal with practical engineering constraints such as the 
non-uniform load change directions and reactive power 
limits of generators. 

VI. APPENDIX 
To make the proofs more compact, the following Lemma 

is first proved. In the Lemma, the transformation of 
multiplication operation from time domain to the 
convolution operation in the domain of power series orders 
is well-known in many DT literatures, however, the 
resulted linear relationship in (33)-(34), despite their 
simplicity and being straightforward,  are rarely noticed and 
exploited as far as the authors know.  

Lemma: The DT of z(t)=x(t)y(t), satisfies a formally 
linear equation in (32). Especially, when x(t)=y(t), (33) 
holds. 

  ( ) ( ) ( ) ( ) ( )Z k X k Y k aX k bY k c       (32) 

  ( ) ( ) ( ) 2 ( )Z k X k X k aX k c      (33) 

Proof of Lemma:  

0
1

1

 ( )  ( ) ( ) ( ) ( )

(0) ( ) ( ) (0) ( ) ( )

k

m
k

m

Z k X k Y k X mY k m

X Y k X k Y X mY k m






   

   




 

Therefore, (32) holds with a, b and c given below. 
1

1
(0), (0), ( ) ( )

k

m
a Y b X c X mY k m




     

Proof of Proposition 1:  
Use (27) as an example. The RHS of (20) is rewritten as 

 

 

 

Term 1

1,

Term 2

1

Term 

RHS ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i ii i i i i

N

ij i j i j
j j i

N

ij i j i j
j

p k g E k E k F k F k

g E k E k F k F k

b F k E k E k F k

 



     

   

   









3


 

According to the Lemma, the three terms are rewritten as: 

1 1

1 1

Term 1 2 (0) ( ) 2 (0) ( )

( ) ( ) ( ) ( )

ii i i ii i i
k k

ii i i ii i i
m m

g E E k g F F k

g E m E k m g F m F k m
 

 

 

    

   
1, 1

1 1

1 1 1

Term 2 (0) ( ) (0) ( ) (0) ( ) (0) ( )

( ) ( ) ( ) ( )

N N

ij j i i j ij j i i j
j j
j i j i
N k k

ij i j i j
j m m
j i

g E E k E E k g F F k F F k

g E mE k m F mF k m

 
 

 

  


   

         

 

  
 

   
1 1

1 1

1 1 1

Term 3 (0) ( ) (0) ( ) (0) ( ) (0) ( )

( ) ( ) ( ) ( )

N N

ij j i i j ij j i i j
j j
N k k

ij i j i j
j m m

b E F k F E k b F E k E F k

b F mE k m E mF k m

 
 

  

   

         

 

  
 

Finally, (27) is obtained by summating the above three 
terms, with vector aP,i and parameter εi in (34) and (39). 
Similarly, (28)-(30) can be proved with vectors aP,i, aQ,i, 
aV,i, aE,i, aF,I and parameters εi, μi, ζi  in (34)-(41). 

 

 

P, 1 1

1

1

,where
(0) (0), (0) (0),if 

(0) (0 (0) (0)

(0) (0) (0) (0)

i i i ij ij

ij ij i ij i ij ij i ij i
N

ii ij j ij j ii i ii i
j
N

ii ij j ij j ii i ii i
j

g E b F g F b E j i

g E b F g E b F

b E g F b E g F

   
 









    
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



a  

(34) 

 
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Q, 1 1

1

1
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(0) (0),  (0) (0),if 

(0) (0 (0) (0)

(0) (0) (0) (0)

i i i ij ij

ij ij i ij i ij ij i ij i
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ii ij j ij j ii i ii i
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ii ij j ij j ii i ii i
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b E g F b F g E j i
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g E b F g E b F

   
 
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





    
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
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  (35) 

 V, 0 0 2 (0) 2 (0) 0 0i i iE F    a     (36) 

 E, 0 0 1 0 0 0    a  i   (37) 

 F, 0 0 0 1 0 0    a  i   (38) 

 

1 1
1 1

1 1
1 1

1 1
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c E m E k m F m F k m
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  (39) 

 
1 1

( )
 

    
N N

i ij ij ij ij i
j j

b c g d q k    (40) 

 2 ( ) i ii ic v k    (41) 

Proof of (10b) from (26): From the Lemma, there are 
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1
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1

( ) ( ) 2 (0) ( ) ( ) ( )

( ) ( ) 2 (0) ( ) ( ) ( )
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Then, (26) is rewritten as:   

1 1

1 1

( ) ( ) 2 (0) ( ) 2 (0) ( )

+ ( ) ( ) ( ) ( )

l l l l l l
k k

l l l l
m m

V k V k E E k F F k
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Finally, (10b) is obtained with al and ξl given in (42). 

1 1

1 1

0 0 2 (0) 2 (0) 0 0  

( ) ( ) ( ) ( ) ( ) ( )

l l l
k k

l l l l l l l
m m

E F

E m E k m F m F k m V k V k
 

 

    
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a     (42) 
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