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Abstract— A dynamical system whose damping of os-
cillation or vibration is directly controlled may manifest a
periodically varying damping ratio. In this paper, such a
phenomenon is discovered to arise from a new type of
parametric resonance, named the “zero-th order parametric
resonance”, which is different from the conventional princi-
pal parametric resonance. This letter proposes an approach
using the method of multiple scales to find approximate,
analytical solutions of the system and thus providing an
interpretation on damping variations.

Index Terms— Method of multiple scales, oscillation
damping, parametric resonance, vibration damping.

I. INTRODUCTION

For a dynamical system that can be modeled as a network of
oscillators, damping is important for attenuating its oscillation
or vibration to eventually settle the system down to a stable
equilibrium. Under disturbances, vibration or oscillation of the
system is inevitable but is expected to be damped quickly
to avoid detrimental effects; otherwise, open-loop or closed-
loop damping control will be considered for a weakly-damped
dynamical system to enhance its dynamic performance subject
to a disturbance. For instance, weakly-damped and sustained
oscillation of a power system can lead to rotor angle instability
of generators, which can be avoided by properly-designed
power system stabilizers or damping controllers [1], [2].
Similar cases that require damping control with a dynamical
system can also be found in the fields of power electronics
[3], robotics [4], etc.

When the damping ratio of a natural mode is controlled, an
improperly tuned controller may introduce a new conjugated
pair of complex eigenvalues that generate a new oscillatory
mode. Such a phenomenon may induce a parametric resonance
under certain conditions [5]. In literature, several types of
parametric resonances are studied, e.g. fundamental parametric
resonance [6] and principle parametric resonance [7]. For a
dynamical system of multiple degrees of freedom, when the
damping ratio of one dominant, natural oscillatory mode is
concerned, the effect of a parametric resonance can be studied
on its 1-DOF equivalent, i.e. a harmonic oscillator, regarding
that mode by adding a controlled input u to the differential
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equation of the oscillator. Most of existing studies consider u
to be an external force [6], [7] or a dimensionless scalar that
scales the total system damping [8]. Very few papers have
considered u as an additional change on top of the original
damping of the system, which is the focus of this letter.

Consider direct control of the damping with oscillation or
vibration of a weakly-damped dynamical system. Its dynamics
regarding a specific oscillation or vibration mode can be stud-
ied using a 1-degree-of-freedom (1-DOF) system as modeled
by (1):

ẍ+ (−2σ + u)ẋ+ (σ2 + ω2)x = 0 (1)

where x and ẋ are state variables respectively on the displace-
ment and velocity. Parameter u is a change on damping by
control. An example is the real-time damping improvement
of power systems by a feedback controller that measures the
damping ratio and minimizes its error from a setpoint, and
the controller changes the power output of the distributed
energy resources in order to add a damping torque in phase
with an oscillating generator’s rotor speed deviation, which
corresponds to the term uẋ [9]. If u = 0, the pair of
eigenvalues λ1,2 are calculated by (2), where ζ and wn are
the damping ratio and natural angular frequency of the mode,
respectively.

λ1,2 = σ ± jω = −ζωn ± jωn
√

1− ζ2 (2)

The controller for changing u should be carefully de-
signed to reach the expected performance; otherwise, the
variation in u could lead to unexpected dynamic response
that complicates the damping control. For instance, the PID
(proportional-integral-derivative) controller is a widely-used
and easy-to-implement controller in practical applications, but
an improperly-tuned PID controller could generate a (quasi-
)periodical variation in u that leads to a parametric resonance
in the system response manifested by a periodically varying
damping ratio.

In this letter, by considering the changes of u over time due
to continuous damping control, u is represented by a periodic
function Kcos(Ωt) with amplitude K and angular frequency
Ω. Namely, eq. (1) is rewritten as (3). Then, by using the
method of multiple scales (MMS) [10], this letter will show
that, first, the principal parametric resonance can be excited
when Ω ≈ 2ω and, second, when Ω ≈ 0, a different, new type
of parametric resonance can arise, which is called a “zero-th
order parametric resonance” in this paper. Note that here “Ω ≈
2ω” means |Ω−2ω| � ω, and similarly “Ω ≈ 0” means Ω�



ω. Those two conditions indicate that the parametric resonance
is at a slower time scale than the oscillation in the state x,
which motivates the use of MMS to identify the solution of
x. Moreover, in practical applications, if the satisfaction of
those two conditions is intentionally avoided in the design of
control, the chances of principle and zero-th order parametric
resonances can be eliminated or reduced.

ẍ+ (−2σ +Kcos(Ωt))ẋ+ (σ2 + ω2)x = 0 (3)

In the rest of the letter, principal and zero-th order para-
metric resonances of the dynamical system are respectively
studied in sections II and III. The approximate solution un-
der parametric resonance is derived using MMS, via which
the mechanism of the periodically varying damping ratio is
interpreted. Conclusions are drawn in section IV.

II. PRINCIPAL PARAMETRIC RESONANCE

If Ω ≈ 2ω, the principal parametric resonance can be
observed from the response of x. For instance, let ζ = 0.0098,
ωn = 3.8072 rad/s and K = 0.5. Thus, σ = 0.0373 and ω =
3.8070 rad/s from (2). If Ω = 6.9115 rad/s, which is close to
2ω and the initial state has x(t) = 1, ẋ(t) = 0, the response
of x is shown in Fig. 1 with its envelop marked. The damping
ratio is estimated using Prony’s method [11] and is given in
Fig. 2. The periodic variations in the damping ratio shows the
parametric resonance due to Ω ≈ 2ω.

Fig. 1. Principal parametric resonance: response of x.

Fig. 2. Principal parametric resonance: Damping ratio.

The mechanism and properties of such a parametric reso-
nance can be revealed from the solution of (3) obtained by the
MMS. The basic idea of MMS is to find an asymptotic solution
of a perturbed system considering different time scales. The
use of MMS follows the approach in [6], [7]. First, the periodic
parameter Kcos(Ωt) is treated as a perturbation by inserting
a small dimensionless parameter ε > 0 as in (4), where
Kε = K/ε.

ẍ+ (−2σ + εKεcos(Ωt))ẋ+ (σ2 + ω2)x = 0 (4)

Then, a first order uniform solution of (4) is:

x(ε, T0, T1) ≈ x0(T0, T1) + εx1(T0, T1)
T0 = t, T1 = εt

(5)

where T1 is introduced as a slow-scale time variable, so that
(5) describes how the solution evolves in a long time scale
of order ε−1, which is the key to identify the parametric
resonance. Note that x0 is exactly the solution of (4) when ε
= 0, and x1 is the part caused by the perturbation. Substitute
(5) into (4) and equate the coefficients of powers of ε:

D2
0x0 − 2σD0x0 + (σ2 + ω2)x0 = 0 (6)

D2
0x1 − 2σD0x1 + (σ2 + ω2)x1 =

− 2D1D0x0 −Kεcos(ΩT0)D0x0 + 2σD1x0

(7)

where Dn = ∂/∂Tn.
The solution of (6) can be expressed in this complex form,

where the bar denotes the complex conjugate:

x0(T0, T1) = A(T1)e(σ+jω)T0 + Ā(T1)e(σ−jω)T0 (8)

Substitute (8) into (7) to obtain (9), where C.C. for sim-
plicity denotes the complex conjugates of the former two
terms. By introducing a detuning parameter ξ such that Ω =
2ω + εξ, (9) can be converted to (10). Before solving (10),
it can be verified that the condition (11) should be met to
avoid generating secular terms in the solution of x. The
explanation of secular term can be found in [10]. In this
problem it will be a term growing linearly with t to result
in an unbounded solution, which conflicts with the actually
bounded true solution. With the condition (11), the solution
of (10) is given in (12).
x1 is usually small and negligible compared to x0. Hence,

assume x(t) ≈ x0(t). A(T1) is determined by solving (11).
For an undamped or weakly-damped system, σ can be assumed
to be zero and (11) changes to:

dA

dT1
=
Kε

4
ejξT1Ā (13)

The analytical solutions of A(T1) and x(t) are found for
three cases:

1) (Ω− 2ω)2 −K2/4 > 0,
2) (Ω− 2ω)2 −K2/4 < 0,
3) (Ω− 2ω)2 −K2/4 = 0.

In the following, define ωk and the A0, the initial value of
A(T1):

ωK =
√
|ξ2 −K2

ε/4| =
√
|(Ω− 2ω)2 −K2/4|/ε (14)

A0 = Are0 + jAim0 (15)



D2
0x1 − 2σD0x1 + (σ2 + ω2)x1 =− 2(σ + jω)e(σ+jω)T0D1A− 2ζωne

(σ+jω)T0D1A

− Kε

2

[
(σ + jω)e(σ+j(Ω+ω))T0A+ (σ − jω)e(σ+j(Ω−ω))T0Ā

]
+ C.C.

(9)

D2
0x1 − 2σD0x1 + (σ2 + ω2)x1 =−

[
2(σ + jω)D1A− 2σD1A+

Kε

2
(σ − jω)ejεξT0Ā

]
e(σ+jω)T0

− Kε

2
(σ + jω)e(σ+j(Ω+ω))T0A+ C.C.

(10)

2(σ + jω)D1A− 2σD1A+
Kε

2
(σ − jω)ejεξT0Ā = 0 (11)

x1(T0, T1) =
Kε(σ + jω)A

2

(
e(σ+j(Ω+ω))T0

Ω(Ω + 2ω)
+

e(σ−jω)T0

2ω(Ω + 2ω)
− e(σ+jω)T0

2ωΩ

)
+ C.C. (12)

A. Case 1: (Ω− 2ω)2 − K2/4 > 0

The solution of A(T1) is:

A(T1) = (C1e
j(r1−ωKT1) + C2e

jr2)ej
ξ+ωK

2 T1 (16)

where:



C1 =

√
ξ + ωK

2ω2
K

√
ξ(A2

re0 +A2
im0) +KεAre0Aim0

C2 =

√
ξ − ωK

2ω2
K

√
ξ(A2

re0 +A2
im0) +KεAre0Aim0

r1 = arctan

(
2Aim0(ξ + ωK) +KεAre0
2Are0(ξ + ωK) +KεAim0

)
r2 = arctan

(
2Aim0(ξ − ωK) +KεAre0
2Are0(ξ − ωK) +KεAim0

)
(17)

The solution of x(t) is obtained by substituting (16) into
(5) and ignoring x1:

x(t) = 2C1e
σtcos(ωCt+ r1 − εωKt)

+ 2C2e
σtcos(ωCt+ r2)

(18)

where ωC = ω + ξ+ωK
2 ε.

At the first glance, x(t) seems to depend on ε and ξ.
Actually, such ”dependence” does not exist after we substitute

ξ = (Ω− 2ω)/ε, ωK =

√
|(Ω−2ω)2−K2/4|

ε , ωC = ω + ξ+ωK
2 ε

and (17) into (18).
The resulting detailed expression of x(t) is omitted for

the sake of brevity, which consists of two components. The
magnitude of the first component is 2C1 and the frequency is
ωC−εωK . The magnitude of the second component is 2C2 and
the frequency is ωC . The validity of the approximated solution
can be visualized by the case when Ω = 6.9115 rad/s. The
comparison of the true response of x(t) and the approximated
x(t) from (18) is shown in Fig. 3. The approximated x(t)
matches well the true response.

The principal parametric resonance in this case can be inter-
preted as follows. Without loss of generality, only consider the
case when C2 is larger than C1. The second component can be
more dominant than the first component. Since εωK << ωC ,
the term εωKt can be viewed as a slow change in phase of
the first component. Then, the change of damping of x(t)

Fig. 3. Comparison of true response and approximated solution: (Ω −
2ω)2 − K2/4 > 0.

can be interpreted as the periodic phase shift between the two
components. When r1−εωKt ≈ r2+2mπ,m = 0,±1,±2, ...,
the two components are in-phase and the magnitude of x(t)
is amplified. When r1 − εωKt ≈ r2 + 2mπ + π,m =
0,±1,±2, ..., the two components are out-of-phase and the
magnitude of x(t) is reduced. Such changes have a frequency
equal to εωK =

√
(Ω− 2ω)2 −K2/4, resulting in periodi-

cally varying damping of the response of x(t).

B. Case 2: (Ω− 2ω)2 − K2/4 < 0

In this case, the solution of A(T1) is:

A(T1) = (C3e
jr3 + C4e

j(r4−ωKT1))ej
ξ+ωK

2 T1 (19)

where:





C3 =

√
Kε(2Kε + ωK)

ω2
K

∣∣∣∣Are0 +Aim0
2ξ

Kε + 2ωK

∣∣∣∣
C4 =

√
Kε(2Kε − ωK)

ω2
K

∣∣∣∣Are0 +Aim0
2ξ

Kε − 2ωK

∣∣∣∣
r3 = arctan

(
−Aim0(Kε − 2ωK) − 2ξAre0
Are0(Kε + 2ωK) + 2ξAim0

)
r4 = arctan

(
Aim0(Kε + 2ωK) + 2ξAre0
−Are0(Kε − 2ωK) − 2ξAim0

)
(20)

Then, the solution of x(t) is obtained by substituting (19)
into (5) and ignoring x1. Similarly to (18), it does not depend
on ε and ξ, either.

x(t) = 2C3e
(σ+ε

ωK
2 )tcos

(
(ω +

Ω

2
)t+ r3

)
+2C4e

(σ−εωK2 )tcos

(
(ω +

Ω

2
)t+ r4

) (21)

The resulting x(t) consists of two components. The magni-
tude of the first component is 2C3 and the magnitude of the
second component is 2C4. The frequency of both components
is ω + Ω/2. The two components of x(t) have damping
different from σ. The validity of the approximated solution can
be verified by the case when Ω is changed to 7.5524 rad/s. A
comparison of the true response of x(t) and the approximate
response from (21) is shown in Fig. 4, which match well. Note
that the response has a growing amplitude since the damping
of the first component becomes negative. In this case, the
response of x(t) does not exhibit periodical damping although
damping changes with time. If assume C4 � C3, the second
component will become dominant at the early stage and the
response of x(t) is damped more quickly. Thereafter, the first
component will become dominant after the second component
is damped out.

Fig. 4. Comparison of true response and approximated solution: (Ω −
2ω)2 − K2/4 < 0.

Fig. 5. Comparison of true response and approximated solution: (Ω −
2ω)2 − K2/4 = 0.

C. Case 3: (Ω− 2ω)2 − K2/4 < 0

In this case, the solution of A(T1) is:



A(T1) = A0e
jKε

4 T1 +
Kε
4

(Ā0 − jA0)T1e
jKε

4 T1 ,

if Ω − 2ω =
K

2

A(T1) = A0e
−jKε

4 T1 − Kε
4

(Ā0 − jA0)T1e
−jKε

4 T1 ,

if Ω − 2ω = −K
2

(22)

By substituting (22) into (5) and ignoring x1, the solution
of x(t) is obtained as (23).

Each of the resulting x(t) consists of two components at
the frequency Ω/2. Note that part of the result depends on t,
indicating varying damping with time.

This validity of the approximate solution can be verified by
the case when Ω is changed to 7.3639 rad/s. The comparison
of the true response of x(t) and the approximated x(t) from
(23) is shown in Fig. 5, which match well.

Since the condition (Ω − 2ω)2 −K2/4 = 0 can hardly be
met, this case is rare in realistic systems.

III. ZERO-TH ORDER PARAMETRIC RESONANCE

When Ω ≈ 0, the parametric resonance can also be observed
in the response of x, which is named as the “zero-th order
parametric resonance” in this paper.

For instance, let ζ = 0.0098, ωn = 3.8072 rad/s, K = 0.5,
and consequently, σ = 0.0373 and ω = 3.8070 rad/s. Then, if
Ω = 0.6283 rad/s and the initial state has x(0) = 1, ẋ(0) = 0,
the response is shown in Fig. 6 with the envelop marked. The
damping ratio estimated using the Prony’s method is given in
Fig. 7. The periodic variations of the damping ratio manifest
the parametric resonance due to Ω ≈ 0.

Through MMS, some properties of such a zero-th order
parametric resonance are revealed. Again, consider a small di-
mensionless parameter ε as in (4), and take the same derivation



{
x(t) = 2eσt

[(
Are0 + K

4 (Are0 +Aim0)t
)
cos
(

Ω
2 t
)
−
(
Aim0 − K

4 (Are0 +Aim0)t
)
sin
(

Ω
2 t
)]
, if Ω− 2ω = K

2

x(t) = 2eσt
[(
Are0 − K

4 (Are0 +Aim0)t
)
cos
(

Ω
2 t
)
−
(
Aim0 + K

4 (Are0 +Aim0)t
)
sin
(

Ω
2 t
)]
, if Ω− 2ω = −K2

(23)

D2
0x1 − 2σD0x1 + (σ2 + ω2)x1 =−

[
2(σ + jω)D1A− 2σD1A+

Kε

2
(σ + jω)ejεξT0A

]
e(σ+jω)T0

− Kε

2
(σ − jω)e(σ+j(εξ+ω))T0Ā+ C.C.

(24)

2(σ + jω)D1A− 2σD1A+
Kε

2
(σ + jω)ejεξT0A = 0 (25)

x1(T0, T1) =
Kε(σ − jω)Ā

2

(
e(σ+j(Ω−ω))T0

Ω(Ω− 2ω)
+
e(σ−jω)T0

2ωΩ
− e(σ+jω)T0

2ω(2ω − Ω)

)
+ C.C. (26)

dA

dT1
=
Kε(−ω + jσ)

4ω
ejξT1A (27)

A(T1) = e
Kε(σ+jω)

4ξω ejξT1
+A0 − e

Kε(σ+jω)
4ξω (28)

x(t) = 2e
K
√
σ2+ω2

4Ωω cos(Ωt+θ)+σtcos

(
K
√
σ2 + ω2

4Ωω
sin(Ωt+ θ) + ωt

)

+ 2eσt
(
Are0cos(ωt)−Aim0sin(ωt)− e Kσ4ωΩ cos(ωt+

K

4Ω
)

) (29)

Fig. 6. Zero-th order parametric resonance: response of x.

Fig. 7. Zero-th order parametric resonance: measured damping ratio.

as from (4) to (9). By introducing a detuning parameter ξ such
that Ω = εξ, (9) can be converted to (24).

It can be verified that the condition (25) should be met to
avoid generating secular terms in the solution of x(t). Hence,
the solution of (24) is given in (26).
x1 could be ignored compared to x0, since it is small.

Hence, assume x(t) ≈ x0(t). A(T1) can be determined by
solving (25). First convert (25) to (27). Then, the analytical
solution of A(T1) is shown in (28), where A0 = Are0+jAim0

is the initial value of A(T1).
Substitute (28) into (5) and ignore x1, and then (29) is

obtained, where θ = arctan
(
ω
σ

)
.

The solution includes two components. Note that the first

component has cos(Ωt + θ) added to the damping σt. This
leads to a periodically varying damping in the response of
x(t). The sin(Ωt + θ) term in the first component results in
a periodic phase shift relative to the second component. The
solution x(t) exhibits a periodically varying damping ratio at
a frequency close to Ω.

The validity of the approximated solution can be verified by
the case when Ω is changed to 0.6283 rad/s. The comparison
of the true response of x(t) and the approximated x(t) from
(29) is shown in Fig. 8. The approximated x(t) is almost the
same as the true response.

IV. CONCLUSION

The response of a weakly-damped 1-DOF system with
direct control of its damping ratio can exhibit a principal
parametric resonance or the new type of zero-th order para-
metric resonance. It is shown that the principal parametric
resonance can be classified into three cases depending on
(Ω − 2ω)2 − K2/4 > 0, < 0, or = 0. Specifically, when
(Ω − 2ω)2 − K2/4 > 0, the magnitude of x periodically
variation in time at a frequency close to

√
(Ω− 2ω)2 −K2/4,

which manifests periodical changes of its damping ratio. When
a zero-th order parametric resonance is excited, the magnitude
of x(t) can periodically vary in time at a frequency close to
Ω. Hence, when designing damping controller for a dynamical
system, the principal and zero-th order parametric resonance
need to be taken account of to avoid unexpected dynamic
behaviors with control.
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