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Abstract—This paper investigates the fluctuation phenomenon in 
the electromechanical oscillation frequency of a power system. 
Analysis on the power system swing equation explains that the 
oscillation frequency fluctuates around a central frequency due 
to the nonlinear system nature of a power system. A Phase-Plane 
Trajectory based method and the Prony method are used to 
track the real-time frequency fluctuation, based on which a real-
time angular stability margin index is proposed for early 
warning of angular stability issues. That index is tested by case 
studies on a two-generator system and a 179-bus power system. 

Index Terms—oscillation frequency; phase-plane trajectory; 
prony analysis; PMU; stability margin; synchrophasor 

I. INTRODUCTION 

Poorly damped oscillations in an interconnected power 
system may reduce the power transfer capabilities, result in 
detrimental economic and operational consequences and even 
threaten the angular stability of the system [1][2]. The 
computation of oscillation frequency (OF) is very important, 
especially for lightly damped modes. From the study on the 
synchronization phenomenon [3], the solution of the second-
order nonlinear differential equation, named van der Pol 
equation, has been shown to have a fluctuation in the OF. 
When it comes to the power system, it is also possible for the 
generators’ swing equations, which are essentially a 
combination of many second-order nonlinear differential 
equations, to have a fluctuation in the OF.  

Nowadays, a majority of applications for computing power 
system frequency modes like Prony analysis [4], Subspace 
Identification method [5], Frequency Domain Decomposition 
[6] and Wavelet Transform based method [7] can provide 
accurate estimates of the OF and damping ratio of an 
oscillation mode. A recently proposed method based on 
Recursive Adaptive Stochastic Subspace Identification can 
give mode shapes besides the OF and damping ratio [8]. 
However, most of those methods need data over a certain time 
window to perform the computation and their results are 
actually average OF estimates over the time window and lack 

instantaneity. Therefore, when using some of those methods, 
e.g. Prony analysis, to track the OF in power systems, some 
dynamical phenomena of the OF due to the nonlinear nature of 
a power system might be missed.  

This paper intends to reveal a fact that the OF fluctuates in 
a specific way following a disturbance due to the nonlinear 
nature of a power system. Such a fluctuation, if captured in 
real time by an effective OF estimation method, may indicate 
real-time stability margin information. To analytically explain 
the causes of the fluctuation, this paper first investigates the 
swing equation of a single machine-infinite bus (SMIB) 
system and then verifies the results by case studies on a large 
power system model. Section II explains why the OF 
fluctuates on a SMIB power system, which will be verified in 
section III. Section IV proposes a stability margin index based 
on the characteristics of OF fluctuation. Section V presents 
case studies on a two-generator system and a 179-bus system. 

II. ANALYSIS OF OSCILLATION FREQUENCY 

In this section, a second-order nonlinear differential 
equation for describing the rotor angle’s behavior will be 
established from the swing equation of a SMIB. Then the 
characteristics of the OF will be discussed. Consider the swing 
equation of the SMIB power system following a disturbance: 
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where ω0 is the synchronous frequency, ∆δ and ∆ωr are the 
rotor angle and speed relative to their initial states δ0 and ω0, 
Pm and Pe represent the per-unit mechanic torque and 
electromagnetic torque, respectively. H and D represent the 
inertia and damping factor of the machine, respectively. 
Assume that Pm remains the same before and after the 
disturbance, i.e. ignore the effect of governor system. 

 
max 0 max 0sin     sin( )m eP P P Pδ δ δ= = + ∆  (2) 

where Pmax is the maximum transfer power.  Substitute (2) into 
(1) and eliminate ∆ωr, then get: 
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where α=D/2H and β=Pmaxω0/2H for simplicity. The solution 
∆δ(t) of (3) is determined given two initial conditions. 
Generally, if this SMIB power system remains stable 
following a disturbance, the solution ∆δ(t) would oscillate for 
a period of time, such as several seconds or tens of seconds, 
and damp to zero eventually.  

Equation (3) is a second-order nonlinear differential 
equation. When compared to the second-order ordinary 
differential equation, which has been well studied, the only 
difference is the third term. Thus, replace the third term using 
(4), then get (5). 
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Recall that for the second-order ordinary differential equation 
(6), the natural oscillation frequency could be calculated by 
(7), where a and b are constants.  

 0=++ bxxax ɺɺɺ    (6) 
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Comparing (5) with (6), we may conclude that the OF changes 
with the instantaneous value of ∆δ(t) and the pre-fault power 
angle δ0. Under a certain power system operating condition, δ0 

could be treated as a constant with respect to ∆δ(t). If |∆δ(t)| is 
small enough to be  negligible, the dynamic coefficient of ∆δ  
in (5) will be close to a constant  

0cos( )β δ  and hence ωn will 

degenerate into a constant, which is just the result from small-
signal stability analysis. Thus, we hypothesize that the 
instantaneous OF of ∆δ(t) may be approximated as: 
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When |∆δ(t)| is not that small but bounded, by the continuity 
ωn will change continuously in an interval, say [ωnmin  , ωnmax]. 

Generally, the maximum deviation of ∆δ(t) is proportional 
to the energy injected into the system by the disturbance. Then 
it will also determine the range of the OF by (8). Therefore, a 
disturbance with larger energy injected into the power system 
will enable the OF to change on a larger interval. 

III.  VERIFICATION ON SMIB POWER SYSTEM 

To verify the changing OF phenomenon indicated by (8), a 
case study is performed on a SMIB system. Then a phase-
plane trajectory (PPT) method from [9] is used to calculate the 
instantaneous OF and compare it to the Prony Method. 

Let the parameters in (3) take these values: D=1, H=3, 
Pmax=1.7, δ0=20.8o, and ω0=2π×60 rad/s. A line fault is applied 
at 1 second and the fault duration is increased to 0.33 second 
to push the system to its stability boundary, which generates a 
marginally stable case. Then, the system will take the 
following two initial values for the post-fault period and it is 
supposed to have large nonlinearity in the first several swings.  

rad5171.1)0( =∆δ   srad /2184.8)0( =∆δɺ  

Fourth-order Runge-Kutta method is used to numerically 
solve (3) for t=0~16s as is shown in Fig. 1. 

A. Verification of Varying OF 

The verification of the fluctuation phenomenon in the OF 
will be done by contradiction. Assume that the OF is constant 
over time. Then data from the first 0.5 second of post-fault 
period are used to fit a damped sinusoidal curve using the 
model shown in (9) by the Least Mean Square approach. In (9), 
A, σ, ω and φ are assumed to be constants. Similarly, another 
curve could be obtained using the last 5 seconds time window. 
The curve fitting results are shown in Fig. 1. 

 )sin()( ϕωδ σ +=∆ − tAet t    (9) 

It can be seen from Fig. 1 that after 1 second, the optimal 
fitted curve using the first 0.5 second data of post-fault period 
has a slower oscillation than the numerical solution, while the 
curve from the last 5 seconds seems to have a faster oscillation 
in the beginning of the whole time widow. Thus, the constant 
OF assumption does not hold for the solution to the nonlinear 
swing equation. Furthermore, a simple conclusion could be 
drawn that in this stable case, the OF will start from a 
relatively small value and gradually increase as the angle 
difference is damped gradually.  

0 2 4 6 8 10 12 14 16

-2

-1

0

1

2

 

 

Numerical solution
Fitted curve using first 0.5s data
Fitted curve using last 5s data

 
Figure.1.Numerical solution and its fitting curves 

B. Estimation of Instantaneous OF 

To validate the result implied by (8), the PPT method is 
used to estimate the OF with more sense of instantaneity to 
show how the OF fluctuates over time. An example of other 
techniques for real-time OF estimation is a Phase Locked 
Loop base d method [10]. The steps of the PPT method are: 

i. Define x(t) as (10) and calculate its derivative x'(t). 

ii. Define y(t) as (11). 

iii.  Draw the phase diagram using (x(t), y(t)) and calculate 
the point-wise OF by (12) and (13) using any two 
adjacent points. 
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where α(t) is the angular displacement, ω(t) is the OF and ∆t is 
the sampling interval. 

When applying the above approach to the solution shown 
in Fig. 1, λ and ∆t take 0.1 and 1.667ms, respectively in this 
case. The plot of y(t) and the phase diagram of x(t) are shown 
in Fig. 2 and Fig. 3, respectively. The OF is calculated using a 
two-point time window. Then perform the computation by 
moving the window point-wise to give the OF curve shown in 
Fig. 4. The OF estimated by (8) using data in Fig. 1 is also 
presented in Fig. 4. The Prony method is used to track the OF 
over a sliding time window slightly longer than the period of 
the swing. The tracked result is shown in Fig. 4 as well. 
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Figure.2.Plot of y(t) 

 
Figure.3.Phase diagram of x(t) 

 
Figure.4.OF estimated by (8) and Tracked by the PPT and Prony 

Fig. 4 shows the OF tracked by the three methods. Their 
general trends seem to match well, i.e. the range of the OF’s 
fluctuation is big initially and gradually becomes smaller 
when the oscillation of angle difference is damped over time. 
The green curve by the PPT method exhibits more dynamics 
in the OF and matches the OF curve from (8) better. The red 
curve by the Prony method oscillates during the first 5 seconds 
and becomes stable after that. It does not show as much 
fluctuation because it uses data over a period of time to 
estimate average rather than instantaneous modal parameters.  

IV.  ANALYSIS OF STABILITY MARGIN  

This section is going to link the fluctuation of the OF to 
the system’s stability margin (i.e. the distance to the angular 
stability boundary). Then, a stability margin index in terms of 
OF will be defined to indicate the stability level of a system 
when encountering a disturbance which excites significant 
oscillations. Finally, the impact from a change in the operating 
condition will be discussed. 

A. Stability Margin in Terms of OF 

Based on (8), the OF may change with the instantaneous 
angle difference ∆δ(t) and the initial operating condition, 
which depends on power angle δ0. Three interesting 
observations regarding the OF are discussed below. 

Observation 1: The OF may change within a certain range 
over a post-disturbance period. Note that right after the 
disturbance, the system gets closest to the stability boundary 
and the OF has the largest fluctuations. When angle deviation 
|∆δ(t)| decreases, the system approaches a stable equilibrium  
and the OF fluctuation also decreases. Thus, the range of 
fluctuation may represent the criticality to instability.  

Observation 2: Every maximum of ∆δ(t), in Fig. 1, 
corresponds to a minimum of OF. This could be derived 
directly from the OF as a function of ∆δ(t) by (8). 

Observation 3: When the fluctuation range of the OF 
decreases, only the minima of the OF increase with time while 
the local maxima do not change significantly. Thus, the very 
beginning of OF following a disturbance, especially when its 
first minimum is reached, represents its maximum fluctuation. 

A ccording to the above analysis, a Stability Margin Index 
(SMI) in terms of the OF is defined in (14). 

 %100/ maxmin ×= OFOFSMI                      (14) 

where OFmin and OFmax are the lowest and highest OFs 
captured following the disturbance. This index could be used 
to reflect the angular stability level:  

• If OFmin≈OFmax over a monitored time window, then 
SMI≈1, which means that the system state during the time 
window is always near its stable equilibrium. Therefore, it 
is reasonable to say that the system has a relatively high 
stability level. 

• If OFmin<< OFmax over the time window, the system state 
has been far from the equilibrium sometime and hence its 
stability level should be relatively low, which is 
confirmed by a small SMI value. 

Remark: if the system loses angular stability during the time 
window, the definition of the OF after an unreturning 
instability point (a saddle point in the phase diagram) is 
unclear since that definition is extended from the small-signal 
stability point of view based on (6) and (7). However, we may 
hypothesize that OFmin must be far less than OFmax, so SMI 
should be small even if it is not accurately zero.  

By calculating the SMI using wide-area measurements 
acquired by phasor measurement units near key generators or 
on the boundary of the system’s critical oscillation mode, the 
system operator could have a better awareness of how stable 
the system is following any disturbance. If a disturbance, 
although not causing instability, has SMI close to zero, it can 
be foreseen that the next disturbance of a bigger size may 
potentially cause instability. And, if the operating condition of 
the system becomes more stressed, then a disturbance of the 
same or even a smaller size may threaten stability. 



B. Impact from a Change in the Operating Condition 

The SMI is able to foresee, especially from its value for 
the first few swings, how close the system has been to the 
boundary of stability during a disturbance. Note that the SMI 
is usually determined by the first minimum of the OF, which 
is corresponding to the first peak of ∆δ(t). Thus, by changing 
δ0 in (8), which actually reflects the operating condition, the 
SMI may be changed. Fig. 5 shows the OF as a function of ∆δ 
with different values of δ0. The intersection of OF and the ∆δ 
axis represents how big ∆δ is such that OF approaches zero, 
which indicates the system may lose its stability when 
reaching that point. By decreasing δ0, the intersection will 
move towards right, which allows ∆δ to reach a larger value 
without losing stability. Thus, the system will be more stable 
under the same disturbance. Therefore, any change on the 
power flows that decreases the power output from the 
generator increases the stability margin. 
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Figure.5.OF versus ∆δ with different δ0 

V. CASE STUDIES 

This section shows case study results first on the two-
generator system shown in Fig. 6, which could be an 
equivalent of a power system with two areas of an 
interconnected power system, and then on a 179-bus 
simplified model of the WECC system. The purpose is to 
verify the prediction from (8) and show that the decrease in 
power transfer may enhance the stability of the system. 

A. Two- Generator Power System 

A temporary three-phase fault is applied to bus 1 at t=1s. 
The fault clearing time is increased long enough, 0.597 second 
for this case, to generate a marginally stable case. After the 
fault is cleared, no line is tripped. Therefore, the system will 
come back to its original operation condition and OF will be 
computed by the PPT method to calculate the SMI. Since the 
active power is transferred from bus 2 to bus 1, thus increasing 
generation on bus 1 (PG1) and decreasing generation on bus 2 
(PG2) can decreases the power angle δ0. Thus, PG2 is 
decreased from 80MW to 41MW by a step of 4MW while 
PG1 is increased to meet the balance of the power flow.  

 
Figure.6.Two-generator power system 

Fig. 7 shows the angle difference between G1 and G2. 
From Fig. 8 it can be seen that the OF increases from 0.12Hz, 
after the fault clearing time, to 0.65Hz, where the deviation of 
angle difference is small and the OF almost remains fixed. 
When PG2 takes different amounts of MW, the OF curves are 

shown in Fig. 9. By decreasing PG2 to 41MW, the SMI will 
increase from 20% to 54% if encountering the same 
disturbance in future, where Fig.10 shows time domain 
simulation result and compared to the original case. 
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Figure.7.Angle difference between two generators 
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Figure.8.Tracked OF by PPT 
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Figure.9.Tracked OF by PPT method with different PG2 
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Figure.10.Influence of increasing PG2 on the oscillation 

B. 179-Bus Power System 

In the 179-bus power system shown in Fig. 11 with the 
following lines tripped before simulation: line 83-172, 83-170, 
114-124 and 115-130, a three-phase fault on line 83-94 is 
added at 1 second, which is on a critical interface 0-1, which 
corresponding to the famous California-Oregon Intertie (COI). 
This fault scenario is similar to the last fault in [9] with the 
only difference being that the fault clearing time is increased 
to its critical clearing time, i.e. 0.091 second, to make the 
system to be marginally stable. Fig. 12 shows the angle 
difference between two buses respectively in areas 0 and 1. 
This angle difference is found to have two oscillation modes at 
about 0.15Hz (mode 1) and 0.7Hz (mode 2), respectively, as 
shown by its Fourier spectrum in Fig. 13. The 0.7Hz mode 
appears only in the first 10s and its amplitude is then damped 
to <10% thereafter. In order to analyze how the frequency of 
each mode may change, low-pass filter and high-pass filter are 
applied to remove the other mode and noise, respectively, as 
shown in Fig. 12. The OFs estimated by the PPT method are 
shown in Fig. 14 and Fig. 15. The SMIs on two models are 
given in Fig. 16. 



 
Figure.11.WECC 179-bus power system 
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Figure.12.Angle difference between two areas 
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Figure.13.FFT analysis on angle difference 
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 Figure.14.Tracked OF of Mode 1 by PPT 
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Figure.15.Tracked OF of Mode 2 by PPT 
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Figure.16.SMI on Mode 1 and Mode 2 
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Figure.17.Influence of increasing generation in area1 on oscillation 

 

Although there are two modes excited by the fault, mode 1 
is more critical since it has more fluctuations than mode 2. 
The lowest SMI for mode 1 is calculated to be 40%. In an 
additional study, after a generation re-dispatch increases the 
active power generation in area 1 by 10% and decreases the 
same amount of generation in area 0, the transferred power 
across the interface 0-1 will decrease and the lowest SMI is 
increased to 58%. Time domain simulation results with and 
without that generation re-dispatch are shown in Fig. 17, from 
which the re-dispatched system is more stable. It confirms that 
the SMI can be an indicator of the stability level for taking 
early preventive actions. 

VI.  CONCLUSIONS 

This paper analyzes the fluctuation phenomenon of the 
oscillation frequency in power systems and proposes a 
stability margin index. Case studies have demonstrated that 
real-time monitoring the fluctuating OF can help estimate the 
angular stability margin and suggest preventive control. 
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