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Abstract—This paper investigates the fluctuation phenomenoim

the electromechanical oscillation frequency of a peer system.
Analysis on the power system swing equation explarthat the

oscillation frequency fluctuates around a central fequency due
to the nonlinear system nature of a power system. Rhase-Plane
Trajectory based method and the Prony method are sl to

track the real-time frequency fluctuation, based orwhich a real-

time angular stability margin index is proposed for early

warning of angular stability issues. That index igested by case
studies on a two-generator system and a 179-bus pemsystem.

Index Terms—oscillation frequency; phase-plane trajectory;
prony analysis; PMU; stability margin; synchrophasa
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instantaneity. Therefore, when using some of thuséhods,
e.g. Prony analysis, to track the OF in power sgsiesome
dynamical phenomena of the OF due to the nonlinature of
a power system might be missed.

This paper intends to reveal a fact that the O€tdiates in
a specific way following a disturbance due to ttumlimear
nature of a power system. Such a fluctuation, gtwaed in
real time by an effective OF estimation method, nmaljcate
real-time stability margin information. To analylly explain
the causes of the fluctuation, this paper firstestigates the
swing equation of a single machine-infinite bus (BM
system and then verifies the results by case stualiea large

power system model. Section Il explains why the OF
fluctuates on a SMIB power system, which will beified in
Wsection Il. Section IV proposes a stability margidex based
on the characteristics of OF fluctuation. SectiorpMsents
case studies on a two-generator system and a 1k&7/9ybstem.

l. INTRODUCTION

Poorly damped oscillations in an interconnected qro
system may reduce the power transfer capabilitesylt in
detrimental economic and operational consequenueeen
threaten the angular stability of the system [1][Zhe
computation of oscillation frequency (OF) is vergpiortant,
especially for lightly damped modes. From the stodythe
synchronization phenomenon [3], the solution of $keond-
order nonlinear differential equation, named vam 8el established from the swing equation of a SMIB. Tliea
equation, has been shown to have a fluctuatiorhén @F. characteristics of the OF will be discussed. Caerside swing
When it comes to the power system, it is also ftes$or the equation of the SMIB power system following a dibance:
generators’ swing equations, which are essentialy .
combination of many second-order nonlinear difféedn {Aa—:%ﬂa’r

Il.  ANALYSIS OFOSCILLATION FREQUENCY

In this section, a second-order nonlinear diffaednt
equation for describing the rotor angle’s behawal be

(1)

equations, to have a fluctuation in the OF. Aw =(P,-P,-DAw )/2H

Nowadays, a majority of applications for computpayver \yhere o, is the synchronous frequencyd and Aw, are the
system frequency modes like Prony analysis [4],sBabe yotor angle and speed relative to their initiatesd, andwo,
Identification method [5], Frequency Domain Decompon Pn and P, represent the per-unit mechanic torque and
[6] and Wavelet Transform based method [7] can ideoV glectromagnetic torque, respectively.and D represent the
accurate estimates of the OF and damping ratio rof gertia and damping factor of the machine, respelti

oscillation mode. A recently proposed method based Assume thatP,, remains the same before and after the

give mode shapes besides the OF and damping @tio [
However, most of those methods need data overtaircéme 2
window to perform the computation and their resudte

actually average OF estimates over the time windowlack WheréPmaxis the maximum transfer power. Substitute (2) int
(1) and eliminat\w,, then get:

P,=PR,,sino, P.=P., sind,+Ad)
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3)
wherea=D/2H and f=Pnxw¢/2H for simplicity. The solution

A +al\d + [Isin(d, + Ad) —sind,] =0

AS(0) = 1517%ad AS(0) = 82184ad /s

Fourth-order Runge-Kutta method is used to numidica

AS(t) of (3) is determined given two initial conditionsSolve (3) fort=0~16s as is shown in Fig. 1.

Generally,
following a disturbance, the solutiaw(t) would oscillate for
a period of time, such as several seconds or teseaonds,
and damp to zero eventually.

Equation (3) is a second-order nonlinear diffegdnti
equation. When compared to the second-order ordin

differential equation, which has been well studittk only
difference is the third term. Thus, replace thedtiérm using
(4), then get (5).

sin(d, + AJd) —sind, = 2sin(Ad /2)cosP, +A512)  (4)

sin(Ad/2)
Ao /2
Recall that for the second-order ordinary diffei@ntquation

(6), the natural oscillation frequency could becaldted by
(7), wherea andb are constants.

AS+and + (,3 cos@, + AJ/Z)JAJ: o

X+ax+bx=0 (6)
w, =b 7

Comparing (5) with (6), we may conclude that thecbBnges
with the instantaneous value A6(t) and the pre-fault power
angled,. Under a certain power system operating conditign,
could be treated as a constant with respeav(d. If |AJ(t)] is
small enough to be negligible, the dynamic cogfit of Ad
in (5) will be close to a constanBcos, ) and henceo, will

degenerate into a constant, which is just the résuh small-
signal stability analysis. Thus, we hypothesizet thiae
instantaneous OF dfj(t) may be approximated as:

uefp

sin(Ad/2)

NS2

cos@, +AJ/2) (8)

if this SMIB power system remains stable

A. Verification of Varying OF

The verification of the fluctuation phenomenon lire tOF
will be done by contradiction. Assume that the ®dnstant
over time. Then data from the first 0.5 second a$tgault
eriod are used to fit a damped sinusoidal cuniaguthe
odel shown in (9) by the Least Mean Square apprdad?9),
A o,  andg are assumed to be constants. Similarly, another
curve could be obtained using the last 5 seconus window.
The curve fitting results are shown in Fig. 1.

AJ(t) = Ae™® sin(at + @) %)

It can be seen from Fig. 1 that after 1 second,apiémal
fitted curve using the first 0.5 second data oftfaslt period
has a slower oscillation than the numerical solytighile the
curve from the last 5 seconds seems to have a fast#lation
in the beginning of the whole time widow. Thus, ttenstant
OF assumption does not hold for the solution tortbelinear
swing equation. Furthermore, a simple conclusionlctde
drawn that in this stable case, the OF will stadnf a
relatively small value and gradually increase as #émgle
difference is damped gradually.

—Numerical solution
2r \ — Fitted curve using first 0.5s data
— Fitted curve using last 5s data

1 1 )
12 14 16

6 . 8 1
Tlme(second%

Figure.1.Numerical solution and its fitting curves

B. Estimation of Instantaneous OF

When Ad(t)] is not that small but bounded, by the continuity To validate the result implied by (8), the PPT roetlis

wy Will change continuously in an interval, S@yhfin » ©@nmax-

Generally, the maximum deviation 4b(t) is proportional
to the energy injected into the system by the distoce. Then
it will also determine the range of the OF by (Bherefore, a
disturbance with larger energy injected into thev@osystem
will enable the OF to change on a larger interval.

Ill.  VERIFICATION ONSMIB POWER SYSTEM

To verify the changing OF phenomenon indicated®)yd
case study is performed on a SMIB system. Then asgph
plane trajectory (PPT) method from [9] is useddfzulate the
instantaneous OF and compare it to the Prony Method

Let the parameters in (3) take these vallest, H=3,
Pmax=1.7,60=20.8, andw,=2nx60 rad/s. A line fault is applied
at 1 second and the fault duration is increase@l38 second
to push the system to its stability boundary, wigelmerates a
marginally stable case. Then, the system will take
following two initial values for the post-fault ped and it is
supposed to have large nonlinearity in the firsesal swings.

used to estimate the OF with more sense of insiait{ato

show how the OF fluctuates over time. An exampletbier
techniques for real-time OF estimation is a Phasekéd

Loop base d method [10]. The steps of the PPT rdedhe:
i. Definex(t) as (10) and calculate its derivatixé).
i. Definey(t) as (11).
iii. Draw the phase diagram usingt], y(t)) and calculate
the point-wise OF by (12) and (13) using any two
adjacent points.

X(t) = AJ(t) (10)

y©) =X (t)/ A, A= Jvarx(t))/var(xX'(t)) (11)

a(t) =|arcta y(t+ a0 - y() - arctal y(O) = y(t - A1) 12)
X(t +At) = x(t)| X(t) = X(t - A)|
a(t) =a(t)/ At (13)



whereq(t) is the angular displacementt) is the OF andit is
the sampling interval.

When applying the above approach to the soluti@mwsh

A.  Sability Margin in Terms of OF

Based on (8), the OF may change with the instantane
angle differenceAd(t) and the initial operating condition,

in Fig. 1,4 andAt take 0.1 and 1.667ms, respectively in thi¢/hich depends on power anglé, Three interesting

case. The plot of(t) and the phase diagram x¢f) are shown
in Fig. 2 and Fig. 3, respectively. The OF is chdtad using a
two-point time window. Then perform the computatiby

moving the window point-wise to give the OF curt®wn in

Fig. 4. The OF estimated by (8) using data in Eigs also
presented in Fig. 4. The Prony method is usedattktthe OF
over a sliding time window slightly longer than theriod of
the swing. The tracked result is shown in Fig. dvak.

2
=3
£ o
a0
0 2 4 6 8 12 14 16
Time(second)
Figure.2.Plot of/(t)
15r
1 F
2
g 05f
=
= o
=
S -05F
_1 L
1355 1 0.5 0 0.5 1 15 2 25
x(#)(rad)
Figure.3.Phase diagramxgf)
2
L T | IRV S S A O A
g E: 1.5
= 2 1 .
= 5 — Estimated by (8)
# =205 —Tracked by PPT
S 2 —Tracked by Prony
= % 10 ' ‘

12 14 16

6 8
Time(second)
Figure.4.OF estimated by (8) and Tracked by the &RiTProny

Fig. 4 shows the OF tracked by the three methotsirT
general trends seem to match well, i.e. the rafigeeoOF’s
fluctuation is big initially and gradually becomesnaller
when the oscillation of angle difference is dampedr time.
The green curve by the PPT method exhibits morearthjcs
in the OF and matches the OF curve from (8) bettee. red
curve by the Prony method oscillates during thst Birseconds
and becomes stable after that. It does not shownash
fluctuation because it uses data over a periodiroé tto
estimate average rather than instantaneous modahpters.

V.

This section is going to link the fluctuation ofetlOF to
the system’s stability margin (i.e. the distancehe angular
stability boundary). Then, a stability margin indexterms of
OF will be defined to indicate the stability leval a system
when encountering a disturbance which excites fSoginit
oscillations. Finally, the impact from a changetia operating
condition will be discussed.

ANALYSIS OF STABILITY MARGIN

observations regarding the OF are discussed below.

Observation 1 The OF may change within a certain range
over a post-disturbance period. Note that righerafthe
disturbance, the system gets closest to the stabibundary
and the OF has the largest fluctuations. When atgléation
[Ad(t)| decreases, the system approaches a stablebagunili
and the OF fluctuation also decreases. Thus, thgeraf
fluctuation may represent the criticality to instiyn

Observation 2 Every maximum of Ad(t), in Fig. 1,
corresponds to a minimum of OF. This could be dekiv
directly from the OF as a function ab(t) by (8).

Observation 3 When the fluctuation range of the OF
decreases, only the minima of the OF increase tite while
the local maxima do not change significantly. Thihe, very
beginning of OF following a disturbance, especiallyen its
first minimum is reached, represents its maximumatfiation.

A ccording to the above analysis, a Stability Marigidex
(SMI) in terms of the OF is defined in (14).

SMI =OF,,,, / OF,,., x100% (14)
where OF,,;, and OF,.x are the lowest and highest OFs
captured following the disturbance. This index dobé used
to reflect the angular stability level:

e If OF,=OF. over a monitored time window, then
SMI=1, which means that the system state during the tim
window is always near its stable equilibrium. Ttere, it
is reasonable to say that the system has a rdlatiigh
stability level.

e If OFjn<< OF, Over the time window, the system state
has been far from the equilibrium sometime and adétsc
stability level should be relatively low, which is
confirmed by a smaBMI value.

Remark: if the system loses angular stability during tinee
window, the definition of the OF after an unretumgi
instability point (a saddle point in the phase diag) is
unclear since that definition is extended from shwall-signal
stability point of view based on (6) and (7). Howewe may
hypothesize thaOF;, must be far less tha@F ., so SMI
should be small even if it is not accurately zero.

By calculating the SMI using wide-area measurements
acquired by phasor measurement units near key aengmor

on the boundary of the system’s critical oscillatimode, the
system operator could have a better awarenessvofstable

the system is following any disturbance. If a distunce,
although not causing instability, has SMI closez¢oo, it can

be foreseen that the next disturbance of a bigger may
potentially cause instability. And, if the operaticondition of

the system becomes more stressed, then a disterlodribe
same or even a smaller size may threaten stability.



B. Impact froma Changein the Operating Condition

The SMI is able to foresee, especially from itsueafor
the first few swings, how close the system has Heethe
boundary of stability during a disturbance. Notattthe SMI
is usually determined by the first minimum of th&,Qvhich

is corresponding to the first peak &é(t). Thus, by changing

do in (8), which actually reflects the operating citioth, the
SMI may be changed. Fig. 5 shows the OF as a fumciiAd
with different values ob,. The intersection of OF and thA&

axis represents how bify is such that OF approaches zero,

which indicates the system may lose its stabilithew
reaching that point. By decreasidg, the intersection will

move towards right, which allow&o to reach a larger value

without losing stability. Thus, the system will bere stable
under the same disturbance. Therefore, any changthe

power flows that decreases the power output from thg
3

generator increases the stability margin.
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V.
This section shows case study results first on tie

CASE STUDIES

generator system shown in Fig. 6, which could be an
equivalent of a power system with two areas of an
interconnected power system, and then on a 179-bus

simplified model of the WECC system. The purposdois
verify the prediction from (8) and show that thecrdase in
power transfer may enhance the stability of théesys

A. Two- Generator Power System

A temporary three-phase fault is applied to bus tE&s.
The fault clearing time is increased long enough9® second
for this case, to generate a marginally stable.cafier the
fault is cleared, no line is tripped. Thereforeg gystem will
come back to its original operation condition ané Will be
computed by the PPT method to calculate the SMiceSthe
active power is transferred from bus 2 to bus ds thcreasing
generation on bus 1 (PG1) and decreasing generatidnus 2
(PG2) can decreases the power angde Thus, PG2 is

shown in Fig. 9. By decreasing PG2 to 41MW, the SW
increase from 20% to 54% if encountering the same
disturbance in future, where Fig.10 shows time doma
simulation result and compared to the original case
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B. 179-Bus Power System

In the 179-bus power system shown in Fig. 11 with t
following lines tripped before simulation: line 832, 83-170,
114-124 and 115-130, a three-phase fault on lin®483%
added at 1 second, which is on a critical interface which
corresponding to the famous California-Oregon ti@COl).
This fault scenario is similar to the last fault[8] with the
only difference being that the fault clearing timsencreased
to its critical clearing time, i.e. 0.091 second, make the
system to be marginally stable. Fig. 12 shows thglea

decreased from 80MW to 41MW by a step of 4MW whilgjtference between two buses respectively in afeasd 1.

PG1 is increased to meet the balance of the pdoer f
@ ' @

Loﬁ
Figure.6.Two-generator power system

This angle difference is found to have two osddlatmodes at
about 0.15Hz (mode 1) and 0.7Hz (mode 2), respelgtias
shown by its Fourier spectrum in Fig. 13. The 0.#Hade
appears only in the first 10s and its amplitudthén damped
to <10% thereafter. In order to analyze how theguency of
each mode may change, low-pass filter and high4{iltesare
applied to remove the other mode and noise, raspbgtas

Fig. 7 shows the angle difference between G1 and Ghown in Fig. 12. The OFs estimated by the PPT adetire

From Fig. 8 it can be seen that the OF increases @.12Hz,
after the fault clearing time, to 0.65Hz, where dewiation of
angle difference is small and the OF almost reméixed.
When PG2 takes different amounts of MW, the OF esirare

shown in Fig. 14 and Fig. 15. The SMIs on two msdaie
given in Fig. 16.
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Although there are two modes excited by the famtide 1
is more critical since it has more fluctuationsrthaode 2.
The lowest SMI for mode 1 is calculated to be 4086an
additional study, after a generation re-dispatatreases the
active power generation in area 1 by 10% and dsesethe
same amount of generation in area 0, the transfgyosver
across the interface 0-1 will decrease and the do\8MI is
increased to 58%. Time domain simulation result aind
without that generation re-dispatch are shown @ Ev, from
which the re-dispatched system is more stablarifions that
the SMI can be an indicator of the stability lefel taking
early preventive actions.

VI. CONCLUSIONS

This paper analyzes the fluctuation phenomenonhef t
oscillation frequency in power systems and propoaes
stability margin index. Case studies have dematestréhat
real-time monitoring the fluctuating OF can helpiraate the
angular stability margin and suggest preventiverobn
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