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Abstract—With increasing penetration of distributed genera-
tion in the distribution networks (DN), the secure and optimal
operation of DN has become an important concern. In this
paper, an iterative quadratic constrained quadratic programming
model to minimize voltage deviations and maximize distributed
energy resource (DER) active power output in a three phase
unbalanced distribution system is developed. The optimization
model is based on the linearized sensitivity coefficients between
controlled variables (e.g., node voltages) and control variables
(e.g., real and reactive power injections of DERs). To avoid the
oscillation of solution when it is close to the optimum, a golden
search method is introduced to control the step size. Numerical
simulations on modified IEEE 13 nodes test feeders show the
efficiency of the proposed model. Compared to the results solved
by heuristic search (harmony algorithm), the proposed model
converges quickly to the global optimum.

Index Terms—Voltage regulation, sensitivity coefficients, lin-
earization, distributed energy resource (DER), golden search
method, unbalanced distribution network.

I. INTRODUCTION

With increasing penetration of distributed energy resources
(e.g., wind turbines, PV panels, microturbines, fuel cells, mini-
hydro, battery storage, and so on) in the distribution networks
(DN), the traditional passive DNs without any sources are
gradually transforming into active ones with both dispatchable
and non-dispatchable power sources[1]. Correspondingly, the
usual “install and forget” principle becomes infeasible and
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potentially could compromise operating efficiency. Within
this context, new control and operation strategies capable of
coordinating different types of distributed energy resources
(DERs) efficiently to achieve operational objectives are in
particular need of development [2].

Management and optimizing the operation of these active
DNs require a full AC-formulation of the power flow equa-
tions. Various approaches have been proposed for solving the
distribution optimal power flow (DOPF) problem in litera-
ture. Generally, these approaches can be classified into two
categories. In the first category, the nonlinear optimization
problem is directly solved using nonlinear programming meth-
ods such as gradient search or interior point methods [3]-[6].
The solution time and convergence characteristic of nonlinear
programming in solving the DOPF problem may not satisfy
the stringent time constraints required by real-time controls.
More commonly, as in the second category, the nonlinear
optimization problem is addressed by iteratively solving the
linearized problem [7]-[12]. These linear programming based
methods are generally more efficient in term of solution time.
Nevertheless, the linearized problem is formulated based on
the calculated sensitivity coefficients. When the solution is
close to the optimum, the linearized sensitivities do not repre-
sent the nonlinear system correctly. In this case, the solution
may oscillate around the optimum and fail to converge.

Traditionally, voltage profile and power flow in distribution
feeders have been locally controlled using switched devices
such as shunt capacitor banks and voltage regulators. These
devices are expected to switch only a few times a day to
accommodate relatively slow variations in load. Thus, they
cannot effectively respond to mitigate the frequent voltage
deviations caused by the rapid output fluctuations of renewable
resources. Under this circumstance, inverter-interfaced DERs
can provide dynamic voltage/VAR support to maintain system
voltage stability and improve voltage profile [13]-[16]. The
well known apparent power equation, S = P2 + )2, shows
that a small change in active power output of DERs can



actually provide a wide range of reactive power capability.

This paper is a direct extension of [15], [16] with improve-
ments in multiple aspects. The main contributions of this paper
are as follows.

1) A nonlinear one dimensional optimization problem is
added to determine the optimal step size of the control
variables. The problem is solved by the golden search
method. By this way, the oscillation of solution is
avoided and the convergence is accelerated.

2) In sensitivity calculation [17], various types of power
injections (i.e. constant PQ, constant impedance and
constant current) are taken into account and the accuracy
of calculation is improved by removing the assumption
of constant PQ injections as in [15], [16].

3) A population based heuristic search method, harmony
search, is also used to solve the problem [18]. The results
indicate that the proposed linearized model is indeed
converging to the global optimum.

The rest of this paper is organized as follows. In Section
I, the quadratic constrained quadratic programming (QCQP)
formulation for the linearized optimization problem of voltage
regulation is presented. The golden search method is integrated
to accelerate the convergence. In Section III, the proposed
model is validated on modified IEEE 13 nodes test feeders and
the results are compared to those of the harmony search based
optimization. Section IV summarizes the paper and presents
conclusions.

II. FORMULATION AND METHODOLOGY

In this section, the QCQP formulation for the linearized
optimization problem of voltage regulation is presented. Then,
the golden search method is introduced to avoid the oscillation-
s when close to the optimum. After that, the harmony search
algorithm is introduced.

A. QCQP Formulation for Optimal Voltage Regulation

In distribution systems operation, one wants the bus volt-
age magnitudes as close as possible to 1 pu. Large voltage
deviations may cause inefficiencies and other problems. Other
considerations in the objective function is maximizing active
power output of inverter based DER. The optimal voltage
regulation problem is formulated as a QCQP. The controlled
variables are the node voltages and the control variables are
the active and reactive power injections of the DERs. The
objective of the optimal voltage regulation problem is:
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where Az = [APPER AQPER] js the control variable

vector. N¢g is the number of DERs and Np is the number
of nodes. The linearized sensitivities directly link node volt-
ages with the control variables. In this way, the complicated
distribution power flow equations are replaced by the simple

linear equation as following:
3Ng
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where Kf;- and Kg are the sensitivity coefficients of voltage

deviations at node j to control variables variations APPEFR
and AQPELR . Other constraints are included as following:
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where P;”?* is the maximum real power output of DER ¢ and
S; is the capacity of DER ¢ or the inverter connected.

A QCQP algorithm is used to solve the optimization prob-
lem (1-5). Hence, the improvement direction Ax of the control
variable vector x = [PDER, QDER], with PPFE and QPER
being the active and reactive power set-points of all DERs, are
determined. The initial values of the DERSs’ control variables
are modified by Az and the new improvement direction is
calculated based on the updated sensitivity coefficients at
current operating condition. This iterative procedure continues
until the objective function or the control variables do not
change significantly between two consecutive iterations or a
maximum number of iterations is reached.

It should be noted that the quadratic capacity constraint (5)
can also be linearized. With linear objective function, e.g.,
summation of absolute value of voltage deviations, the QCQP
can be adapted to linear programming, which has much higher
solution efficiency.

B. Golden Search Method for Avoiding Oscillations

The QCQP problem is formulated based on the calculated
sensitivity coefficients. When the operating point is far from
the optimum, the solution of the QCQP gives a reasonable
improvement direction Ax since the sensitivity coefficients
represent the nonlinear system within a small error range.
However, as the solution approaches the optimum, the nonlin-
earity of system increases. When the solution is close to the
optimum, the sensitivity coefficients can change dramatically.
In fact, their signs may change at the optimum. In this
case, the linearized sensitivities do not represent the nonlinear
system correctly. As a result, the solution oscillates around the
optimum and may not converge as shown in Fig. 1.

To avoid the oscillations when close to the optimum, a
golden search method is introduced to control the step size of
Az. After the calculation of the k-1 iteration, the elements of
improvement direction Az*+1) are compared with that of the
last iteration Az(*). If any pair of them has a different sign,
an oscillation is detected. Then, a nonlinear one dimensional
optimization problem is solved by the golden search method
to determine the optimal step size & of the control variables.
The improvement direction Az**1) is modified by Az F+1),
In this way, the oscillations are avoided and convergence



Fig. 1: Oscillation of iterations near the optimum
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Fig. 2: Tterative optimization procedure with golden search
method

accelerates. The iterative optimization procedure with golden
search methods shown is Fig. 2

C. Harmony Search Algorithm

The harmony search algorithm is inspired by the way jazz
musicians seek to find better harmony by adjusting their
playing during improvisation. Like other derivative free, popu-
lation based algorithms, this method initially creates a random
solution vector in the feasible solution space and with the help
of operators like mutation and crossover, the solutions of the
problem improve and the global optimum can be found given
an infinite number of iterations. The optimization problem is
as follows:
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The method consists of four steps: initialization of solution
candidate, improvisation, update process and control of stop-
ping criterion.

1) Choose harmony memory size (HMS), harmony memory
consideration rate (HMCR) and pitch adjusting rate
(PAR). Create initial solution candidates and compute
their objective function values.

2) Create a new solution candidate vector by performing
the following operations:

e Generate a random number between 0 and 1, and
compare it with harmony memory consideration rate
(HMCR). If this number is bigger than HMCR
create a random solution candidate vector.

o If this number is smaller than HMCR, construct a
new solution vector by randomly picking elements
from the candidate solution matrix one by one.
At each step of this process construct two random
numbers. Compare the first one with pitch adjusting
rate (PAR). If it is bigger than PAR do nothing,
otherwise either increase or decrease the solution
candidate element by a small value.

3) Compute the value of objective function of the new
solution candidate vector, then compare the value of
the objective function of the new solution candidate
vector with the worst objective function of the solution
candidate matrix. If it is smaller replace the row of
the solution candidate matrix with the new solution
candidate vector, otherwise do nothing.

4) Finished if stopping criterion is reached, otherwise con-
tinue from step 2.

It should be noted that the efficiency of harmony search
algorithm is much lower compared with the proposed iterative
optimization, but since it can converge to a global optimum
given sufficient time, it is used to check whether the proposed
iterative optimization procedure can find the global optimum.

III. CASE STUDIES

The proposed iterative optimization procedure is demon-
strated on a modified IEEE 13 nodes test feeder as shown
in Fig. 3 [19]. In the modified system, the real power load
at node 671 is tripled for each phase. Three DERs with
a capacity of 770 kVA are installed at bus 671 (one for
each phase). Thus, the increased load is balanced out if the
DERs real power output reaches its full capacity. To create 40
different scenarios, the available active power output of DERs
is decreased from maximum to zero output in 5% decrement
and then increased back to maximum. For these scenarios, 3
cases are studied:

e Case 1: Only a voltage regulator is considered. The real

power outputs of DERs are assumed to be at maximum
for all scenarios, and power factor is assumed to be 1.

o Case 2: The tap positions of voltage regulator are fixed
at its nominal value [9 6 8], but DERs are allowed to
generate/consume reactive power, i.e., power factor is not
fixed. The problem is solved by the proposed iterative
optimization procedure.

e Case 3: Same as case 2 but solution is found by harmony
search algorithm with HMS = 20, HMCR = 0.8 and PAR
=0.4.
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All numerical simulations are coded in MATLAB. The
QCQP in Case 2 is solved using the QCP solver in CPLEX
12.2. With a pre-specified maximum error of 0.01 kVA, the
running time of each scenario is about 4 s on a 2.66 GHz
Windows-based PC with 4 Gb of RAM.

In Case 1, the tap positions of voltage regulator for different
scenarios are shown in 4. As can be seen, the tap positions
change as the power output of DERs varies. Since the power
outputs of renewable DERs are subject to rapid and frequent
fluctuations, and voltage regulators are expected to switch only
a few times a day to accommodate relatively slow variations
in load, hence the voltage regulator would probably not be
able to effectively respond to mitigate the frequent voltage
deviations caused by DERs.

In Case 2, the DERs are allowed to generate/consume
reactive power. The real and reactive power outputs of DERs
are shown in Fig. 5. As the real power output of DERs
decreases, the load increases and the voltage drop on the
feeders increases. To reduce the voltage drop and support the
node voltages, the reactive power output of DERs increases. In
particular, the reactive power output of phase B is negative in
some scenarios. This is because phase B is close to overvoltage
in these scenarios, which can be verified by Fig. 6b.

The voltages of Case 1 and Case 2 are compared in
Fig. 6 The vertical bars show the range of voltages and
the mark on each bar shows the average value. The nodes
are renumbered as 1(650a), 2(632), 3(632a), 4(671), 5(684),
6(652), 7(633), 8(634), 9(645), 10(646), 11(692), 12(675),
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Fig. 5: Real and reactive power output of DERs in Case 2
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Fig. 6: Comparison of voltages in Case 1 and 2

13(680) and 14(611) for simplicity. As can be seen, the node
voltages in Case 2 are much closer to 1 than Case 1. Also, the
node voltages of Case 2 almost stay constant while the real
power outputs of DERs change in different scenarios. Thus,
even if the voltage regulator can be switched frequently in
Case 1, voltage profiles can still be improved significantly in
Case 2 with DERs providing dynamic Var support.
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Fig. 8: Comparison of Case 2 and 3 results

In order to show the effect of integrated golden search
method, the improved direction of reactive power AQPEFR
for the scenario with zero active power output is compared
in Fig. 7. As can be seen, without the golden search method,
AQPFE oscillates and does not converge. With the golden
search method, AQPF® is modified by optimal step size &
and the solution converges after 4 iterations.

In order to check whether the proposed method converges
to global optimum, the real and reactive power of DERs
calculated in Case 2 and Case 3 are compared. The relative
differences (based on the capacity of DERs) are shown in
Fig. 8. As can be seen, both the differences of real power and
reactive power of DERs are very small. The proposed iterative
optimization procedure converges to the global optimum for
these cases.

IV. CONCLUSIONS

In this paper, an iterative QCQP model to minimize voltage
deviations and maximize DERs active power output in a
three phase unbalanced distribution system is proposed. A
nonlinear one dimensional optimization problem solved by
golden search method is integrated into an iterative QCQP
approach. Numerical simulations on a modified IEEE 13 nodes
test feeder show the efficiency of the proposed model. The
voltage profiles can be significantly improved with DERs
providing dynamic Var support. The proposed model finds

the global optimum for the test cases. Case studies on larger
systems with multiple DERs will be studied in the future work.
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