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Abstract— Large electrical power networks viewed as con-
tinuum systems have been studied under constant voltage
magnitude assumptions. The continuum system phase behavior
was proved to follow the dynamics of a second order nonlinear
wave equation. The latter represents electromechanical wave
propagation in large electric power networks. In this paper,
we generalize this work to time and space variant voltage
magnitudes which is the case in real world applications. The
resulting partial differential equations (PDEs) are also wave
equations but include more nonlinearity terms. Optimal control
theory is used to derive optimality conditions for two optimal
control problems. The first problem is when the mechanical
power is the control input where the constraint is a constant
voltage PDE, while the second problem is when the variant
voltage magnitude is the control input under a generalized
variant voltage PDE as the optimization constraint. Numerical
results are presented to illustrate the performance of the
resulting closed loop control systems for large power networks.
Due to page size limits we present the optimal control results
for the variant voltage swing PDE in a different paper.

I. INTRODUCTION

Stability and control of power systems has been a concern

since the early twenties and recently it become increasingly

challenging due to several reasons: power systems are now

being operated closer to their maximum operating points,

environmental constrains limits the expansion needs, the

number of long distance power transfers increased to serve

far areas and the most recent challenge; the renewable energy

integration [1].

Wind generation for instance is a growing renewable

energy resource but the challenge is how to effectively

integrate a significant amount of wind power into the power

network [2].

The fundamental equation that describes the rotor dynam-

ics in power systems is the swing equation [3]:

2H

ω
δ̈ +ωDδ̇ = Pm −Pe, (1)

where δ is the rotor rotation angle, H is the is the inertia

constant, ω is the electrical angular velocity, D is the
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rotor damping constant, Pm and Pe are the mechanical and

electrical power respectively, all expressed in per unit on the

system base power. It represents the equation of motion of

synchronous machines[5], [6], [9].

Sudden disturbances in power systems cause electrome-

chanical oscillations, mainly of two types [3], local or inter

area mode oscillations. Local mode oscillations are localized

in one station or a small part of the power system and are

associated with the swing of units at that station with respect

to the rest of the power systems, while inter area mode

oscillations are typically caused by two or more groups of

closely coupled machines [4].

In [10], the power network consisting of generators and

transmission lines was treated as a continuum system de-

scribed by a nonlinear version of the standard second-order

wave partial differential equation. However, authors assumed

that the voltage is constant which is a limiting assumption in

real applications, especially if voltage is used as a space/time

variable control input to stabilize the system and quickly

damp the oscillations that propagate after disturbances.

Optimal Control for PDEs is not as easy as ODEs since

there is no complete generalization of the Pontryagin’s

Maximum Principle [12],[17]. However, basic ideas on how

to deal with optimal control for PDEs were presented by

Lions [14] and Li [15].

In this paper, we assume the voltage to vary in space and

time and we develop the general continuum system PDE

that describes the system. The stability analysis of a contin-

uum system for which robust methods have been developed

provides an alternative to overcome the extreme difficulties

associated with the stability analysis of a large dimensional

discrete system. Considering powerful mathematical tools

for PDEs, our objective in this paper is to apply distributed

control designs to our proposed continuum model and gain

additional insight into mechanisms by which disturbance

propagations in the power system can be mitigated.

This paper is organized as follows: In section II we start

by summarizing the existent constant voltage Swing PDE,

then in part B of this section we develop the variant voltage

swing PDE. In section III we design the distributed optimal

controller for the constant voltage swing PDE using the

mechanical power as the control input while in section IV we

solve the distributed optimal control problem using voltage as

the control input, and then finally section V is the conclusion.
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II. THE SWING PDE WITH A SPACE DEPENDENT

VOLTAGE MAGNITUDE

A. Constant Voltage Magnitude Swing PDE

We will consider the distributed power system model

shown in Fig. 1 [10]. Each node is a generator that supplies

a variable current and voltage producing a variable power.

The special case of a constant voltage was discussed in [10].

Fig. 1. Power System Model [10]

The continuum system for the case of a constant voltage

is described by the following second order hyperbolic wave

PDE [10]:

∂ 2δ

∂ t2
+ν

∂δ

∂ t
− v2

∇
2δ +u2(∇δ )2 = P, (2)

and the PDE parameters are given by:

v2 =
ωV 2sinθ

2h|z|

u2 =
ωV 2cosθ

2h|z|

P =
ω(pm −GV 2)

2h

ν =
ω2d

2h

where E(x,y) = Ve jδ (x,y) and V is the constant voltage

magnitude,z = |z|(cosθ + jsinθ) is the transmission line

impedance and G is the real part of the admittance and ∇ and

∇
2 are the first and second spacial derivatives respectively.

B. Space Dependent Voltage Magnitude

In this section, we derive the PDE that describes the

electromechanical wave propagation for the space varying

voltage magnitude, i.e. E(x,y) =V (x,y)e jδ (x,y).

The space variant generator current is then given by:

I(x,y) =−
∆

2

z
∇

2E(x,y)+∆Y E(x,y), (3)

where Y is the shunt admittance, ∆ is the separation between

adjacent nodes and ∇ is the space derivative. So the first

derivative of E(x,y) is:

∇E = ∇Ve jδ +V j∇δe jδ (4)

where the second derivative would be:

∇
2E = ∇

2Ve jδ +∇V j∇δe jδ

+ j[(∇V ∇δ +V ∇
2δ )e jδ +V j(∇δ )2e jδ ]

= [∇2V −V (∇δ )2 + j(2∇V ∇δ +V ∇
2δ )]e jδ (5)

Using the current expression in (3), the electrical power Pe

is given by:

Pe = Re{EI∗}

= Re{Ve jδ (−
∆

2

z
[∇2V −V (∇δ )2 − j(2∇V ∇δ

+V ∇
2δ )]e− jδ +∆Y ∗Ve− jδ )}

The complex exponential terms cancel and the electrical

power expression simplifies to:

Pe = Re{V (−
∆

2

z
[∇2V −V (∇δ )2 − j(2∇V ∇δ +V ∇

2δ )]

+∆Y ∗V )}

Using the complex form of the impedance z = |z|(cosθ +
jsinθ) we have:

Pe = Re{V (−
∆

2

|z|
[∇2V −V (∇δ )2 − j(2∇V ∇δ +V ∇

2δ )](cosθ

− jsinθ)+∆YV )}

=V (−
∆

2

|z|
[(∇2V −V (∇δ )2)cosθ − (2∇V ∇δ +V ∇

2δ )sinθ ]

+∆V 2G, (6)

where G = Re{Y}.

The discrete swing equation parameters H,D,Z, and Pm

in (1) translate for the continuum system into the distributed

parameters ∆h(x,y),∆d(x,y),∆z(x,y), and ∆pm(x,y) respec-

tively. Substituting the electrical power expression (6) into

the discrete swing equation (1) and taking the continuum

limits yields:

2h

ω

∂ 2δ

∂ t2
+ωd

∂δ

∂ t
= pm +V (

1

|z|
[(∇2V −V (∇δ )2)cosθ

− (2∇V ∇δ +V ∇
2δ )sinθ ]−GV 2 (7)
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where the dependence on ∆ cancels. The PDE (7) is also

a hyperbolic second order wave equation but includes non-

linearities that didn’t show up in the constant voltage swing

PDE (2). For a particular but also practical choice of θ = π
2

,

(7) simplifies to:

δ̈ +νδ̇ =−α(2V ∇V ∇δ +V ∇
2δ )+β (pm −GV 2) (8)

where ν =
ω2d

2h
,α =

ω

2h|z|
and β =

ω

2h

Figure (2) shows a numerical simulation for the electrome-

chanical wave propagation for the angle δ in a continuous 2D

system. Initial disturbance is a Gaussian function of space

where its peak is at the center. The voltage magnitude V

is allowed to have a random (uncontrolled) space variation

from 0.9 to 1.1 pu. Control design for systems governed

Fig. 2. Electromechanical wave propagation in the continuous 2D system

by these types of nonlinear PDEs is not an easy task due

to the existence of the nonlinear terms in the right hand

side of (8). Optimal Control design for ODE systems is

not difficult. Space discretization can be implemented on

the PDE (8) to obtain a state space system of ODEs for

which control techniques are well studied in the literature.

But before discretization, since it is a second order type PDE,

we define states x1 and x2 as follows:

x1 = δ , ẋ1 = δ̇

x2 = δ̇ , ẋ2 = δ̈

Then (8) can be written in the form:

ẋ1 = x2 (9)

ẋ2 =−νx2 −α(2VA1VA1 +VA2)x1 +β (pm −G(V ).(V ))

where ∇ = A1 and ∇
2 = A2 are the discretization matrices

and

(V ).(V ) =







V1 0 · · ·

0
. . . 0

0 · · · VN













V1

...

VN







If the control input to be implemented is the voltage

magnitude V then the system (9) is highly nonlinear with

cross terms state-control nonlinearities. Linearization is

always the easiest option but not the best one in this case

as shown in Figures (3) and (4) that show the angle time

trajectory at two different locations of the power grid using

the nonlinear system (9) and a linearized version of it.

Fig. 3. Time trajectory comparison between linearized and nonlinear
systems at a chosen space location in the power Grid. Not a satisfactory
agreement.

Fig. 4. Time trajectory comparison between linearized and nonlinear
systems at a different space location in the power Grid. Not a satisfactory
agreement.

For the constant voltage swing PDE (2) and for the

practical choice of θ = π
2

the only nonlinear term in the
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equation u2(∆δ )2 vanishes and the equation becomes linear

in the form:

∂ 2δ

∂ t2
+ν

∂δ

∂ t
− v2

∇
2δ = P

This form of the wave PDE can be analytically solved using

the transformation:

δ = ϕe
−νt

2

Then,

ν
∂δ

∂ t
= ν

∂ϕ

∂ t
e
−νt

2 −
ν2

2
e
−νt

2 ϕ

And

∂ 2δ

∂ t2
=

∂ 2ϕ

∂ t2
e
−νt

2 −
∂ϕ

∂ t

ν

2
e
−νt

2 +
ν2

4
e
−νt

2 ϕ −
∂ϕ

∂ t

ν

2
e
−νt

2

So the PDE becomes:

∂ 2ϕ

∂ t2
−

ν

4
ϕ − v2

∇
2ϕ = Pe

νt
2

The damping term doesn’t exist, this equation is called the

Klein Gordon Equation for which an analytical solution

exists.

III. DISTRIBUTED OPTIMAL CONTROL OF THE

CONSTANT VOLTAGE SWING PDE USING POWER AS THE

CONTROL INPUT

In this section we use the mechanical power P as the

control input that drives the angle δ (x,y) to track a reference

value δr(x,y) for the constant voltage swing PDE. So our

goal is to minimize the cost function:

J(P) =
1

2

∫ T

0

∫

Ω

[

|δ (x, t)−δr(x, t)|
2 +P(x, t)2

]

dxdt (10)

Subject to:

∂ 2δ

∂ t2
+ν

∂δ

∂ t
− v2

∇
2δ = P

δ (x, t) = 0 for δ ∈ ∂Ω× [0,T ]

δ (x,0) = δi

To derive necessary conditions for optimality, we need to

differentiate the cost function with respect to P, i.e. we need

to differentiate the map P 7→ J(P). However, δ contributes

to J(P) so we must also differentiate the map P 7→ δ (P).
Let

ψ = lim
ε−→0

δ (P+ εl)−δ (P)

ε
(11)

be the sensitivity of the state with respect to the control where

l is a variation function and ε > 0.

Then the PDE that corresponds to the control P+ εl is:

δ ε
tt +νδ ε

t − v2δ ε
xx = P+ εl (12)

Subtracting the constraint in (10) from (12) and dividing both

sides by ε yields:
(

δ ε −δ

ε

)

tt

+ν

(

δ ε −δ

ε

)

t

− v2

(

δ ε −δ

ε

)

xx

= l

ψtt +νψt − v2ψxx = l := Lψ

where ψ ∈ L2[0,T ]×H1
0 (Ω) := Ψ.

L : Ψ → R

L∗ : R∗ → Ψ
∗ = R→ Ψ.

The operator L and the adjoint operator L∗ are related by:

< λ ,Lψ >=< L∗λ ,ψ >

where < ., . > is the L2 inner product. For ψtt , integration

by parts twice gives:
∫ T

0

∫

Ω

λψttdxdt =
∫ T

0

∫

Ω

ψλttdxdt

For ψxx, integration by parts twice gives:
∫ T

0

∫

Ω

λψxxdxdt =
∫ T

0

∫

Ω

ψλxxdxdt

For ψt , integration by parts once gives:
∫ T

0

∫

Ω

λψtdxdt =−
∫ T

0

∫

Ω

ψλtdxdt

So the Adjoint operator will be:

L∗λ = λtt −νλt − v2λxx (13)

Then the Adjoint PDE is:

L∗λ =
∂ inegrand(J)

∂δ

λtt −νλt − v2λxx = δ ∗−δr (14)

The sensitivity and adjoint functions are used in the differ-

entiation of the map P 7→ δ (P).

lim
ε→0+

J(P∗+ εl)− J(P∗)

ε
≥ 0 (15)

The numerator terms are:

J(P∗) =
1

2

∫ T

0

∫

Ω

[

|δ ∗−δr|
2 +(P∗)2

]

dxdt

J(P∗+ εl) =
1

2

∫ T

0

∫

Ω

[

|δ ε∗−δr|
2 +(P∗+ εl)2

]

dxdt

Then the limit (15) becomes:

= lim
ε→0+

1

2

∫ T

0

∫

Ω

[
(δ ε∗)2 − (δ ∗)2

ε
−

2δr(δ
ε∗−δ ∗)

ε

+2P∗l + εl2]dxdt

= lim
ε→0+

1

2

∫ T

0

∫

Ω

[
(δ ε∗−δ ∗)

ε
(δ ε∗+δ ∗)−

2δr(δ
ε∗−δ ∗)

ε

+2P∗l + εl2]dxdt

=
1

2

∫ T

0

∫

Ω

[ψ(2δ ∗)−2δrψ +2P∗l]dxdt

=
∫ T

0

∫

Ω

[ψ(δ ∗−δr)+P∗l]dxdt
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Then from (14) we get:

∫ T

0

∫

Ω

[ψ(L∗λ )+P∗l]dxdt = 0

∫ T

0

∫

Ω

[λLψ +P∗l]dxdt = 0

∫ T

0

∫

Ω

[λ l +P∗l]dxdt = 0

∫ T

0

∫

Ω

[l(λ +P∗)]dxdt = 0

So the optimal control becomes:

P∗ =−λ

Let P ∈ [0,M] is the admissible control set Uad , then the

optimal control is:

P∗ = min(max(−λ ,0),M) (16)

where λ is computed by solving the coupled PDE system:

λtt −νλt − v2λxx = δ ∗−δr

δ ∗
tt +νδ ∗

t − v2δ ∗
xx = min(max(−λ ,0),M)

The difficulty in solving these coupled PDEs arises from

the fact that the state PDE has initial conditions while the

adjoint PDE has final conditions. One method to solve such

coupled systems is the forward backward sweep method ex-

plained in [12] and [13]. The steps of the forward backward

sweep algorithm is as follows:

1) Start with an initial guess for the control P∗ over the

domain.

2) Using the state PDE initial conditions and the values

for P∗, solve δ ∗ forward in time.

3) Using the adjoint PDE final conditions and the values

for P∗ and δ ∗, solve λ backward in time.

4) Update P∗ by entering the new δ ∗ and λ into the

expression of the optimal control.

5) Check convergence. Stop if the difference is negligible

between this iteration and the previous one, otherwise

return to step 2.

Convergence and stability of this algorithm is discussed in

[16]. Figure (6) shows the numerical solution of a controlled

system for the initial disturbance shown in Figure (5).

IV. DISTRIBUTED OPTIMAL CONTROL OF THE

CONSTANT VOLTAGE SWING PDE USING VOLTAGE AS

THE CONTROL INPUT

Although constant Voltage is the assumption for the swing

PDE in this case, we can still use the voltage as a control

input if the deviation above or below a constant value is kept

minimum. We need to assume that the voltage varies only

within a narrow neighborhood around a constant value Vr

because letting it vary freely violates the original assumption

Fig. 5. Initial disturbance

Fig. 6. Controlled System

in deriving the swing PDE (2), then the cost function to be

minimized is :

J(V ) =
1

2

∫ T

0

∫

Ω

[

|δ (x, t)−δr(x, t)|
2 + |V (x, t)−Vr|

2
]

dxdt

(17)

Subject to:

∂ 2δ

∂ t2
+ν

∂δ

∂ t
−

ωV 2sinθ

2h|z|
∇

2δ =
ω(pm −GV 2)

2h

δ (x, t) = 0 for δ ∈ ∂Ω× [0,T ]

δ (x,0) = δi

where ν ,ω,h,z,θ , pm,G are all constants. The sensitivity of

the state with respect to the control input V is:

ψ := lim
ε−→0

δ (V + εl)−δ (V )

ε

= lim
ε−→0

δ ε −δ

ε
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For the control input V + εl we have:

∂ 2δ ε

∂ t2
+ν

∂δ ε

∂ t
−

ω(V + εl)2sinθ

2h|z|
∇

2δ ε =
ω(pm −G(V + εl)2)

2h
(18)

while for the control input V we have:

∂ 2δ

∂ t2
+ν

∂δ

∂ t
−

ωV 2sinθ

2h|z|
∇

2δ =
ω(pm −GV 2)

2h
(19)

Subtracting (19) from (18) and dividing both sides by ε
yields:

(

δ ε −δ

ε

)

tt

+ν

(

δ ε −δ

ε

)

t

−
ωV 2sinθ

2h|z|
∇

2

(

δ ε −δ

ε

)

−
ωl(2V + εl)sinθ

2h|z|
∇

2δ ε =−
ωGl(2V + εl)

2h

ψtt +νψt −
ωV 2sinθ

2h|z|
∇

2ψ −
ωl(2V )sinθ

2h|z|
∇

2δ =−
2ωGlV

2h

Defining the operator Lψ := ψtt + νψt −
ωV 2sinθ

2h|z|
∇

2ψ we

have:

Lψ =
ωl(2V )sinθ

2h|z|
∇

2δ −
2ωGlV

2h
(20)

Then the adjoint operator will be:

L∗λ = λtt −νλt −
ωV 2sinθ

2h|z|
∇

2λ (21)

= δ ∗−δr

Now the sensitivity and adjoint functions will be used in the

differentiation of the map V 7→ δ (V ).

lim
ε→0+

J(V ∗+ εl)− J(V ∗)

ε
≥ 0 (22)

where

J(V ∗) =
1

2

∫ T

0

∫

Ω

[|δ ∗−δr|
2 + |V ∗−Vr|

2]dxdt

J(V ∗+ εl) =
1

2

∫ T

0

∫

Ω

[|δ ε∗−δr|
2 + |V ∗−Vr + εl|2]dxdt

Then the limit (22) becomes:

lim
ε→0+

1

2

∫ T

0

∫

Ω

[
(δ ε∗)2 − (δ ∗)2

ε
−

2δr(δ
ε∗−δ ∗)

ε

+2V ∗l + εl2]dxdt

= lim
ε→0+

1

2

∫ T

0

∫

Ω

[
(δ ε∗−δ ∗)

ε
(δ ε∗+δ ∗)−

2δr(δ
ε∗−δ ∗)

ε

+2(V ∗−Vr)l + εl2]dxdt

=
1

2

∫ T

0

∫

Ω

[ψ(2δ ∗)−2δrψ +2(V ∗−Vr)l]dxdt

=
∫ T

0

∫

Ω

[ψ(δ ∗−δr)+(V ∗−Vr)l]dxdt

=
∫ T

0

∫

Ω

[ψL∗λ +(V ∗−Vr)l]dxdt

=
∫ T

0

∫

Ω

[λLψ +(V ∗−Vr)l]dxdt

=
∫ T

0

∫

Ω

[

λ

(

ωl2V ∗sinθ

2h|z|
∇

2δ −
2ωGlV ∗

2h

)

+(V ∗−Vr)l

]

dxdt

=
∫ T

0

∫

Ω

l

[

λV ∗

(

ωsinθ

h|z|
∇

2δ −
ωG

h

)

+(V ∗−Vr)

]

dxdt

And then the optimal control input V ∗ in terms of the adjoint

variable λ would be:

V ∗ =
Vr

λ

(

ωsinθ

h|z|
∇2δ −

ωG

h

)

−1

(23)

And remember that the variation for V ∗ should be limited

around Vr for practical results. Substituting the expression for

V ∗ in (23) into the adjoint PDE (21), then substituting also

in the state PDE (19) yields the coupled state and adjoint

PDEs:

λtt −νλt −
ωV ∗2sinθ

2h|z|
∇

2λ = δ ∗−δr

δ ∗
tt +νδ ∗

t −
ωV ∗2sinθ

2h|z|
∇

2δ ∗ =
ω(pm −GV ∗2)

2h
(24)

V. CONCLUSIONS

In this paper, we generalized the electromechanical wave

propagation model in electric power systems to account for

the general and practical variant voltage case. The new PDE

includes more complicated nonlinearities to the extent that

linearization techniques don’t capture the system behavior

anymore. We designed two optimal controllers; one was for

the case of using mechanical power and the second was for

voltage control input. Due to page size limits we present the

optimal control results for the variant voltage swing PDE in

a different paper.
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