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DIAGNOSTIC METHODS
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Abstract - Methods to identify transformer fault conditions
before they deteriorate to a severe state include dissolved gas
analysis, liquid chromatography, acoustic analysis, and trans-
fer function techniques. All of these methods require some
experience in order to correctly interpret observations. Re-
searchers have applied artificial intelligence concepts in order
to encode these diagnostic techniques. These attempts have
concentrated on only a single technique and have failed to fully
manage the inherent uncertainty in the various methods. In
this paper, a theoretic fuszy information model is introduced.
An inference scheme which yields the “most” consistent con-
clusion is proposed. A framework is established that allows
various diagnostic methods to be combined in a systematic
way. Numerical examples demonstrate the developed system.
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1. INTRODUCTION

Proper functioning of power transformers is critical to secure
operation of the power system. Methods to identify fault
conditions before they deteriorate to a severe state have at-
tracted great research interest. While the most commonly ap-
plied method is dissolved gas analysis (DGA) [1], other useful
methods include liquid chromatography [2], acoustic analysis
(3], and transfer function techniques [4]. The best analysis
may arise from aggregating information from more than one
of these techniques. All of these methods are imprecise and
require experience in order to correctly interpret observations.
That is, there are no good strict and general rules which can
be applied in all cages. For example, the concentration of dis-
solved gases that would indicate a possible fault depends on
loading history, transformer construction, oil volume, and the
manufacturer, among other considerations.

Generally speaking, imprecision is characteristic of many com-
plex diagnostic problems. Broad experience with a technique
may be necessary to overcome this imprecision and perform
effective diagnosis. Representing this information in an ex-
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pert system requires an adequate model of uncertainty. Fuzgy
mathematics have been developed to manage just this type of

uncertainty. Recently, fuzzy mathematic applications within
power systems have been proposed in several areas, €.g., [5,6].

This inherent uncertainty in transformer diagnosis techniques
has led several researchers to apply fuzzy set methods. In [7,8],
fuzzy logic is used to implement DGA methods. An acoustic
technique also applied fuszy logic to representation of uncer-
tainties [9]. These approaches considered a single diagnostic
method. Furthermore, only a fairly simple form of fuzzy logic
was employed. In particular, the more general framework as-
sociated with fuszy measures and bodies of evidence was not
pursued. A more general approach is proposed here in order to
systematically manage uncertainties that arise from different
diagnostic techniques.

In the developed expert system, each diagnostic method is rep-
resented by a rule-base. Each rule consists of a fuzzy relation
and an expression of the importance of this relation. Within
any rule-base, conflicts arising between rules are resolved to
find the miost “consistent” solution. Analysis is performed
separately for each diagnostic method. Lastly, the diagnoses
are combined into a single analysis. During this aggregation,
more weight is attached to more certain diagnoses. Advan-
tages of the developed approach include robustness in the face
of missing or inaccurate data and easy expansion to new diag-
nostic methods. Furthermore, the fuzzy mathematics provide
an analytical basis for assessing performance which is lacking
in simple rule-based expert systems.

This paper is organized as follows. A brief introduction to
transformer diagnostic methods and fuzzy information theory
is presented. A new method for adapting fuszy information
theory to diagnostic problems is proposed. Specific implemen-
tation issues are detailed. Results of tests for the developed
expert system are discussed.

2. TRANSFORMER DIAGNOSTIC METHODS

Transformer diagnostic techniques are well-known and are
only briefly reviewed here. The most widely applied method
is DGA. Incipient electrical and thermal faults will release
gases into the transformer oil. Thus, high concentrations of
dissolved gas indicate possible fault conditions. Gas produc-
tion is dependent on the type and energy of a fault. The
ratios between different gas concentrations, then, can be used
to classify faults. In Table 1, the IEC criteria [1] are shown.
This standard allows classification of faults when measure-
ments fall into the specified categories. In addition to these
criteria, one must perform some sort of trend analysis. An
older or heavily loaded transformer with no fault will have a
high concentration of gases that have built up over a time.
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Case No. | Classification of Fault Type % 7"!__;‘ %:%—
0 No fault <0.1 0.1-1.0 < 1.0
1 Low energy partial discharges | < 0.1 < 0.1 < 1.0
2 High energy partial discharges | 0.1-3.0 < 0.1 <1.0
3 Low energy discharges 0.1-3to >3] 0.1-10 | < 1.0-3.0to > 3
4 High energy discharges 0.1-3 0.1-1.0 > 3.0
5 < 150°C thermal fault <0.1 0.1-1.0 1.0-3.0
6 150-300°C thermal fault <0.1 > 1.0 < 1.0
7 300-700°C thermal fault < 0.1 > 1.0 1.0-3.0
8 > 700°C thermal fault < 0.1 > 1.0 > 3.0

Table 1: IEC Criteria

Such factors can be accounted for by establishing trends with
regular gas samples. The above forms a reasonable starting
point for DGA, however, other considerations can be impor-
tant, including: measurements of other gases, so-called “key-
gas” methods and overall gas concentrations. Gas buildups
are a function of many factors, e.g., loading history, trans-
former construction, oil volume, and the manufacturer, among
other considerations. The influence of these factors cannot be
determined accurately. Thus, any DGA approach is inherently
imprecise and requires experience in order to obtain reason-
able results.

Recently, researchers have reported on levels of liquid furfural
as indicative of insulating paper degradation, e.g., [2]. Such
paper degradation is indicative of thermal ageing. At Vatten-
fall, tests have only just started on this technique. Another
method consists of using acoustic sensors to detect (and hope-
fully locate) discharge activity, e.g., [3]. Unfortunately, this
technique is sensitive to spurious environmental noises. It
may also be difficult to reproduce conditions which lead to
discharges. Others have proposed frequency response mea-
surements, e.g., [4]. This technique is still in the early de-
velopment stages and suffers from two limitations. First, the
transformer must be removed from service in order to perform
the test. Second, fault detection may be extremely difficult if
a fingerprint response of the transformer in normal condition
is not available for comparison. (Although, phase-to-phase
comparisons may provide a reasonable fingerprint.) If other
evidence of a fault is strong, a simple dc-impedance measure-
ment of each transformer phase as well as insulation resistance
measurements can be informative.

Clearly, each of these methods has advantages and drawbacks.
When any individual method indicates a problem, that ev-
idence may be clarified by other methods. For example, if
DGA analysis indicates discharge activity, it may be prudent
to perform an acoustic test before attempting any disruptive
inspection. Thus in this work, the various methods are inte-
grated to form a single coherent analysis.

3. FUZZY INFORMATION THEORY

In this section, a general theory of fuzsy information is re-
viewed. Two types of uncertainty are discussed: fuzzy sets
and fuzzy measures. A general framework combining these
types of uncertainty forms the basis of fuzzy information the-
ory. A more detailed development can be found in [10].

3.1 Fuszzy Sets

Uncertainties associated with the structure of a class or set
of objects can be represented by fuzzy sets. An element of
a fuzzy set is an ordered pair containing a set element and
the degree of membership in the fuzzy set. A membership
function is a mapping:

u:X —[0,1]
and for fuzzy set A:

A= {(z,pa(z))lz € X} (1)

where X is the universe and pa(z) represents the degree of
uncertainty, or, the degree to which z fits the characteristic
feature of the set A. A higher value of pa(z) indicates a
greater degree of membership. The following definitions of
fuzgy set operations are commonly used. If C = AN B,

ue(z) = min(pa(e), nn(2)) (2)

fC=AUB,

(3)

pc(z) = max(pa(z), us(z))

and if C = 4,

pe(z) =1 - pa(z) (4
Actually, minimum and maximum functions do not tend to
correspond well with the way people apply logic, so that, re-
searchers have used a variety of operators [11]. The general
framework of [12] is used in this work. Specifically:

1
— DA (s - 1),\)§

pplx)

re(z) = (5)

1+ (2

nalz)

The parameter ) determines the “nature” and “strictness” of
the operation. If A <0 (A > 0) then C = AUB (C = AN B).
The larger the magnitude of ), the greater the “strictness” of

~ A Notice as | A |- oo, (5) approaches (2) or (3).

It is often very useful, to generate a crisp (non-fuzzy) set from
a fuzzy set. Define an a-cut as:

Aa={z| pa(z) > a}

(6)
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A, is a crisp set containing all elements of the fuzzy set A
which at least achieve the level a.

3.2 Fussy Measures

Uncertainty may arise from the value or identity of some ob-
ject as opposed to the structure of a set as in the preceding.
This uncertainty can be represented by fuszy measures. In
the following development, all sets are crisp unless otherwise
indicated. A fuszy measure g is defined over the power set (or
more generally a Borel field) of the universe X as follows:

g:P(X)—10,1]

Satisfying:

o Boundary Conditions: g(#) = 0 and g(X) =1

o Monotonicity: for every A4,B € P(X), if A C B, then
9(4) < ¢(B)

o Continuity: For any sequence 41 C A4z C ..., then
Jim g(4:) = o(fim A:)

With this general definition of a measure, one can define var-
ious special cases. If in addition to the above, the following
holds:

Bel(|JA) 2 ) Bel(4:) - S Bel(Ain ;) + -+
1 =1 i<y

+(~=1)"*"'Bel(A1NAzN---NAn) (T)

then g is a belief measure, represented here as Bel. Similarly
a plausibility measure, represented here as Pl, is defined if the
following holds instead of (7):

P’(h 4i) < iPl(Aa) - iPI(A.- UA)+---
1 i=1 i<
+(“1)n+1PI(A1 UA2U---UAy) (8)

When (7) and (8) are equalities rather than inequalities then
g is a probability measure, represented as P. Plausibility and
belief can also be calculated from:

PI(A) = 1 — Bel(4) (9)

Bel(A) =1 - PI(A) (10)

Notice, the plausibility of (belief in) an event is always greater
(less) than the probability of the event. While probability of
some event fixes a value for both truth and falsehood, plausi-
bility and belief measures do not specify a value for the com-
plement. This added flexibility can greatly aid representing
uncertainties in expert systems. As an illustrative example,
consider the least knowledgeable measurement assignments.
Here, the probability distribution would be uniform; plausi-
bility would be one for all non-empty sets; and belief would be
gero for all sets but the universe X. In summary, the following
hold for every A € P(X):

e Bel(A)+ Bel(4)< 1
e PI(A)+ Pi(4)>1
e P(A)+P(A)=1

o PI(A) > P(A) > Bel(A)

3.3 Body of Evidence

In a complex problem, information may be obtained from var-
jous sources. The most appropriate description, i.e., fuszy set
or one of the associated measures, depends on how the in-
formation is received. Thus, a method for combining differ-
ent sources of information and types of uncertainty is useful.
Fussy measures can also be defined in the following frame-
work:

m:P(X)—[0,1]

such that:

e m(#) =0 and Z m(A)=1

AEP(X)

Now, m(A) is interpreted as the evidence on A and only A and
is normally referred to as a basic assignment. (Much of the
literature uses the term basic probability assignment which,
unfortunately, is somewhat misleading.) A specific basic as-
signment over P(X) is often referred to as a body of evidence.
It can be shown [10] that:

Bel(4) = Y _ m(B) (11)
BCA

P4)= ) m(B) (12)
BnA#®
and conversely that:

m(A) = Z(—l)"-”'sez(a) (13)

BCA

The basic assignment acts as a common representation for
all information. Information from different sources can be
translated to a basic assignment and then combined using the
Dempster-Shafer rule of combination. That is, given two in-
dependent bodies of evidence m; and mgy:

S m(B)yma(C)

ml.Z(A) = Br\C=Al —% ,

A#D (14)

where:

K= Z ma(B)ma(C)

BnC=89

The factor K is a normalizing factor which accounts for evi-
dence which is unreconcilable.

In a given body of evidence, there may be conflicting or impre-
cise information. Assessments of such qualities can be com-
puted similar to entropy within probabilistic information the-
ory. Define:

C(m)= - Z m(A)log Bel(A)
m(A)#£0

(15)




Vim)= 3 m(4)log| 4| (16)

m{A)#0

where | - | is cardinality. C(m) and V(m) are referred to as
confusion and vagueness, respectively. These measures pro-
vide an assessment of the quality of information in the basic
assignment. For example, they can be used to determine the
amount of information gain obtained from some observation.
Furthermore, they are useful in informing the user of the qual-
ity of the conclusion obtained by analysis.

4. MAIN RESULT

In the preceding, a description of diagnostic techniques and a
very general framework for information aggregation have been
described. In this section, the proposed application of these
information techniques to diagnostic problems is detailed. A
rule structure is defined. Each relation can be used to de-
termine a fuzzy value based on some observation. Since the
various diagnostic rules may provide conflicting information,
a basic assignment is sought which best resolves conflicts be-
tween the rules. Consistency is based on a fault tree for the
diagnostic problem. Finally, an information measure is ap-
plied in order to assess performance.

4.1 Representing Knowledge - Rule Format

A fundamental characteristic of knowledge-based systems is
the simplicity of adding, removing or modifying existing
knowledge in the system. Further, missing or erroneous mea-
surements should not invalidate the analysis. In this sense,
each relationship in the knowledge-base should be indepen-
dent. The basic structure of the rule-base in the proposed
system uses a fuzzy set description for each relation and a
measure of the importance of this relation. A specific measure-
ment is taken and a fugzy measure of the truth of a relation is
calculated from this measurement. For example, consider the
following rule:

Rule - Excessive H,

IF the level of H; is high

THEN this is indicative of a fault
REQUIRED to degree 0.4

This rule can be understood as follows; if the H; concentration
is high then it will support other evidence which indicates
a fault. The REQUIRED clause represents situations where
even though the Hj level is not high there may still be a fault.
In such cases, other evidence must strongly indicate a fault
in order to still reach such a conclusion. The term “high” is
represented by a fuzzy set which is dependent on the history
of the transformer. In general, the rule format is as follows:

Rule R,’

IF fuzzy condition A4;

THEN conclusion By,
REQUIRED r (a belief measure)

Given some measurement, a fuzzy value can be determined for
Aj;. Based on this value and r, a fuzzy value for the conclusion,
Bi, can be calculated. The intersection of all rules which
apply to this same conclusion must be computed. Thus, the
plausibility of a conclusion By is calculated at each inference.
The initial value PI°(By) is one and evidence is gathered in
order to disprove the plausibility of some proposition. In this
way, missing data can be ignored and will not decrease the
plausibility of any conclusion. The above is governed by the
logical expression:
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Figure 1: Fault Tree for Transformer Diagnostics
PI*Y(By) = PUI'(Bi) N (PI™(By) U r(R:)) (17)

for rule R; applied after ! inferences (each application of a rule
to the same conclusion is one inference). The logical operators
are those defined for fuzzy sets in (4) and (5).

In section 3, logical operators were defined for fuszy set mem-
bership values only. However with care, logical operators can
be applied to combine these values with fuzzy measures. The
degree of membership p should be on the same scale of con-
fidence as some plausibility measure. For example, consider
pa(zo) = a, an a-cut Aq, and its complement As. Then,
one plausibility measure (which is normally called a possibil-
ity measure) over A, is:

PU(A;) = max pa(s:) = o (18)
2 €A
Now, from (10) and (18) we can calculate:
Bel(do)=1-«a (19)

In this way, fuzzy sets and fuzzy measures yield values which
are comparable if the same relative scale is used for both.
Logical operators will be assumed to apply to fuszy values
regardless of whether they arise from a fuszy set or a fuzsy
measure.

4.2 Resolving Conflicts and Overall Inference

Since each rule acts independently, there is no guarantee that
each rule will yield the same conclusion. Conflicts will arise in
many cases (normally all but the obvious situations). Thus,
a scheme for resolving conflicts must be determined. It is
proposed to find the most consistent basic assignment with
the aid of a fault tree.

Consider the fault tree in Fig. 1. The fault tree contains infor-
mation about the relationship between different fault types.
For example, if there is evidence that there is no thermal fault,
then all subsets (the different temperature ranges for a ther-
mal fault) are also not solutions. This can also be related to
any given strict logical assumption. For example, if there is
convincing evidence that there is an electrical fault then, un-
der the assumption of a single fault type, there is convincing
evidence of no thermal fault . Whereas without such an as-
sumption, one can draw no inference about the thermal fault.
Conflict resolution in this work consists of applying general
logic rules to the fuzzy values calculated from a given rule
base and adjusting the plausibility and belief measures, ac-
cordingly. While practically conflict resolution cannot elimi-
nate conflicts, one can at least “increase” the consistency in
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a fuzzy information sense. An algorithm has been developed
which applies the above reasoning [13].

For each diagnostic method, rules are applied and conflict res-
olution performed. The resulting body of evidence from each
method is combined using (14). The algorithm is detailed
below:

Inference Method

1. Select a diagnostic method.

2. Initialize the plausibility of all conclusions to 1.0 and
belief to 0.0.

3. Based on given measurements, apply the individual re-
lations of the selected method to the appropriate node
in the fault tree using (17).

4. Perform conflict resolution.

5. Calculate m(A) for all nodes in the fault tree from the
plausibility and belief measures.

6. Repeat steps 1-5 for each diagnostic method where mea-
surements are available.

7. Aggregate diagnostic methods using (14). (Note: the
fault tree structure simplifies computations.)

4.3 Establishing Fuzzy Values

A basic problem in using fuzzy mathematics is establishing
fugzy values. In probability, one can rely on statistics. In fuzzy
domains, statistics are not directly applicable and clearly, the
fuzzy values are more subjective. On the other hand, the
actual fugzy value is not so important as the relative values
assigned. Thus, the most important consideration is to be
consistent about assigning values.

In this work, the structure proposed in [14] is used due to its
generality and consistency with the logical operation of (5).
Specifically, for z € [a,b]:

I ¢ ) s
w(z) = a- u)“"(z: —a) + PA-1(b - z)

(20)

where four parameters characterige each transition from 0 to 1:
the lower limit @, the upper limit b, the transition rate ), and
the inflection point v. Decreasing functions and other more
complex functions can be constructed from this basic form.
Fig. 2 illustrates some typical function shapes. Increasing A
quickens the transition and increasing v shifts the inflection
point to the right.

In the developed system for the DGA method, some parameter
values are determined from a statistical analysis of gas data.
The upper and lower Limits are determined by the range of
gas measurements. The inflection point is selected so that
the 90 percent level represents the normal. Similarly for ratio
rules, the inflection point was set to give about 50 percent
leeway on the ration range. Based on several trials, an initial
transition rate of X = 2 was used for both the membership
functions and the logical operators. In cases where a rule
incorrectly classifies some relevant case, the inflection point
and transition rate were modified to cover this situation. In a
few rules, the upper and lower limits were also adjusted.

The above trial-and-error approach is not entirely satisfactory.
Where experimental data is available, curve fitting algorithms
can be applied to calculate the four parameters in the fuzzy
model (e.g., linear regression on a logarithmic transformation

b}

°.7}r
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[ X} 3

04}
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[ 244

[ 314 . - <

» .
Figure 2: Effect of ) and v in Membership Functions

[14]). Experience to date suggests that such an approach is of
little practical value for two reasons. First, insufficient fault
data exists to perform meaningful curve fitting. Second, the
diagnostic system is insensitive to minor changes in fuzzy val-
ues. Of course, insensitivity is a desired result. It would be
inappropriate to develop a system sensitive to values which
can only be approximated. The utility of fuzzy mathematics
lies in providing sensical answers despite uncertainties not in
fixing values for these uncertainties. Still, more sophisticated
approaches to assigning fuzzy values are under consideration.

4.4 Interpreting the Analysis

It would be specious to suggest that fugzy mathematics in
its raw form can be easily interpreted by the user. The var-
ious computations must be interpreted in some rpeaningful
way. The plausibility and belief measures provide a range of
likeliness for the various fault types. This range of values is
important information. Some actions can proceed based on
a plausibility (e.g., & non-disruptive test) while some actions
require firm beliefs (e.g., & disruptive test). Beyond the belief
and plausibility measures, there exist the information mea-
sures. It is quite possible to have strong supporting evidence
on conflicting conclusions. This could imply bad measure-
ments or that some initial assumption (e.8-, single fault type)
is wrong. An interesting observation is that the information
measures are useful guides for both the developer and the end-
user.

In the developed system, fuzzy values are given a linguistic
value when they fall within some range. (In the current imple-
mentation, the terms “little”, “some”, “significant”, “strong”
are used). The belief measure provides a lower limit to the
uncertainty and the plausibility an upper limit. Thus, a typ-
ical conclusion would be “little - some supporting evidence.”
Furthermore, the information measures are presented to the
user. Based on the confusion and vagueness measures the in-
formation is classified as: “confusing”, “fault type not clear”,
“reasonable” or “clear”. This scheme is simple but provides
the basic information. A more detailed interpretation in the
same vein could be easily developed.

4.5 Implementation

A rule base for DGA has been implemented. Rules are writ-
ten for the gas ratios and also to account for historical data
for a given transformer according to the experience at Vatten-
fall. Relations for non-DGA methods have also been written,
however, these methods require much more development.

Two fundamental considerations were deemed important in



the encoding of the proposed system. First, the programming
style should allow for simple modifications and easy imple-
mentation. Second, it should be easy to verify the correctness
of code. The basic techniques developed in this paper are
not particularly difficult to program in a traditional program-
ming style, however, object oriented programming (OOP)
techniques were seen as helpful towards attaining these two
goals. A strict implementation of OOP techniques was fol-
lowed. In particular, all class instance variables are protected
(i.e., values can only be manipulated by member functions).
This ensures that code can be modified and tested on a strictly
local basis. Here, absolutely no “global” variables are allowed.
The purpose of this guideline is to ensure that the code cor-
rectly implements the developed method without any difficult
to find “bugs.” Further, the rules and fault tree are stored
in a database. This allows for simple modification to the
knowledge-base.

5. NUMERICAL RESULTS

Table 2 shows the results of analysis for several cases. These
cases represent a overview of the type of decisions reached by
the proposed system. For each case, the gas concentrations
and years in service of the transformer are given, followed by
the analysis from the proposed system. Ranges of fuszy values
for the terms discussed in section 4.4 were fixed. For exam-
ple, strong supporting evidence indicates a fuzsy value greater
than 0.76. The values of the information measures (confusion
and vagueness) are shown for completeness. Notice that con-
clusions provide information at several levels. A classification
of the fault is given in terms of certainty. Depending on the
data, this classification may be very specific, such as, high en-
ergy full discharge, or it may be more general, such as, thermal
fault. This conclusion is enhanced further by identifying the
quality of the evidence, that is, whether there was significant
conflicting information in the measurements.

The first 3 cases consider only DGA. In case A, the gas ratios
clearly indicate a discharge fault. The relatively high level
of gases further suggest the fault is of high energy, although,
this conclusion is less certain. Case B depicts a typical case of
an older transformer with gas build-up that is still operating
normally. In case C, there is sirongly supportive evidence
of a thermal fault. However, the gas ratios cannot clearly
identify the temperature of such a fault. Information analysis
identifies the lack of a specific conclusion from the high value
of the vagueness measure.

Case D is a hypothetical analysis assuming a furfural measure-
ment has been taken. The furfural concentration strongly in-
dicates accelerated paper degradation. Using this information
the analysis more clearly indicates a fault. Notice, the confu-
sion measure decreases after this additional information. The
vagueness measure slightly increases as a specific conclusion,
“no fault,” has been eliminated with only a slight increase in
the confidence of the hot spot conclusion.

The developed system has been applied to gas data available
on 400kV transformers covering several years (over 800 gas
samples) at Vattenfall. It is difficult to know the transformer
condition at the time of each gas sample. However, subse-
quent performance of the transformer will indicate if a serious
fault was missed. This information can be used to verify the
analysis. In this way, the system provides correct analysis for
all of this gas data except in cases of a bad oil samples (usually
this results from mishandling in gathering the sample). It is
planned to design a filter to identify these bad samples. In-
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Year of Installation: 1983
Gas concentrations (ppm): H3=1058 CH,=446
C;H;=1000 C;H,=460 C;H¢=56 CO=807 CO3=167

Analysis of transformer condition:

Full discharge (arcing): Strong supporting evidence
High energy (arcing): Some - strong supporting evidence
Low energy (arcing): Little - some supporting evidence

Analysis of information: Reasonable.
(Confusion = 0.858 Vagueness = 0.366)

(A) Transformer with Discharge Fault

Year of Installation: 1953
Gas concentrations (ppm): H;=50 CH,=32 C;H,=3.7
C,H =110 C3H¢=22 CO=1500 CO;=20000

Analysis of transformer condition:
Hot spot ( < 150°C): Some supporting evidence
Normal: Significant supporting evidence

Analysis of information: Reasonable.
(Confusion = 0.835 Vagueness = 0.079)

(B) Old Transformer with High Gas Levels

Year of Installation: 1956
Gas concentrations (ppm): H,=100 CH,=230 C3H2=5.4
C3H, =270 C;H¢=120 CO=880 CO;=8400

Analysis of transformer condition:

Thermal (hot spot): Strong supporting evidence

Hot spot (> 700°C): Little - significant supporting evidence
Hot spot (300-700°C): Little - strong supporting evidence
Hot spot (150-300°C): Little - significant supporting evidence
Hot spot (< 150°C): Little - some supporting evidence

Analysis of information: Reliable but fault classification is
not clear.
(Confusion = 1.037 Vagueness = 1.245)

(C) Indeterminate Fault Type

Year of Installation: 1972
Gas concentrations (ppm): H;=200 CH,=680 C;H,=88
C;H,=1600 C2H¢=190 CO=1100 CO;=15000

Analysis of transformer condition (DGA only):
Hot spot (> 700°C): Significant supporting evidence
Normal: Some supporting evidence

Analysis of information: Reasonable.
(Confusion = 0.873 Vagueness = 0.081)

Analysis of transformer condition (DGA and Furfural
test):
Hot spot (> 700°C): Significant supporting evidence

Analysis of information: Reasonable.
(Confusion = 0.845 Vagueness = 0.109)

(D) Thermal Ageing with/without Furfural Test

Table 2: Results of Several Analyses
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adequate experience at Vattenfall with non-DGA techniques
prevents meaningful assessment of the these methods.

6. CONCLUSIONS

This paper has introduced a framework for performing diag-
nostics using fugzy information theory. Fuzzy relations are
combined with a fault tree to provide the “best” analysis pos-
sible. DGA has been implemented with satisfying results.
Simple prototypes for other diagnostic methods have been im-
plemented. Several areas require further development:

o In the current implementation, only diagnostic analysis
has been performed. It would also be desirable to sug-
gest further measurements which could help clarify the
diagnosis in marginal cases.

o As more experience with non-DGA techniques is gained,
the knowledge for each these techniques will be refined.
Current implementations of the non-DGA methods are
trivial.

o While performance is not highly sensitive to the various
parameters in the fugzy model, performance improve-
ment can possibly be obtained by tuning the fuzzy pa-
rameters. Only modest improvement is expected due to
the limited amount of fault data.

o Validating the proposed system performance consists of
presenting cases to an expert for verification. Perfor-
mance measures need to be developed so that, the de-
veloped system can be applied to available data without
the need for a human expert to assess the correctness
of each solution.

It is clear from the results to date that the developed informa-
tion techniques provide a powerful and effective representation
of diagnostic knowledge. As such, it is felt that this framework
can provide a good foundation for performing diagnostics on
a variety of power system equipment.
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DISCUSSION
P.K. Kalra and S.C. Srivastava (Indian
Inatitute of Technology, Kanpur) : Ue

authors for extremely well
and advancing the subject of
transformers. Authors’

congratulate
written paper
health monitoring of

responsge to following querlies will be
appreciated.

(i) Paper has presented general framework
for fuzzy theory for implementing more

generalized membership functlon n(x) for fault
diagnostics. It could have been interesting to

report results of misclassifications for
various values of A and VY . This study could
have helped authors to choose optimum value of
A and ¥ rather than using trial and error
method.

(ii) Labeling Figure-2 may improve the
understanding of membership function.

(iii) It appears that the authors have estab-

lished the robustness of fuzzy theory for
insufficient and uncertain data. Further, it
has been suggested that fuzzy theory has been
effective in conflict resolution. It may be
worthwhile to compare the approach presented

in the paper with induction based decision [A]
making approach. Both approaches need learning

examples for fast and reliable decisions.
WUhereas mathematically involved induction
based decision making is much less complicated
and tree structure for «classification is

inbuilt. Further the induction based decision
making is more robust and can accomodate
insufficient and uncertain data for
classification.

(iv) Exponential type membership functions may
produce results which are comparable to
membership functions reported. It lis also
interesting to observe from Figure-~2 that
sigmoldal function used for Neural Neta may be
one of the good candidates for membership
functions.

(v) Case-based reasoning mechanism {B] may
prove to be more effective rather than rule
based approach implemented in object oriented
programming.

(vi) Did authors use any mechanism to minimize
the size of the decision tree? How value of
'a' affects the misclassification of faults.

(vii) Function C(m) and V(m) have been defined
similar to entropy. Did authors use gain in
information from C(m) and V(m) to build
decision tree?
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{B] Kolodner, J.L., "Improving Human Decision

Making Through Case-Based Decision Aid-
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K. TOMSOVIC, M. TAPPER and T. INGVARSSON:
The authors wish to thank the discussors for their careful
reading of the paper and their interesting comments. The
responses are labeled to correspond to the discussors’ ques-
tions.

(i).- A study of misclassifications is more difficult than the
discussors suggest. In order to modify membership functions,
one must identify which rule or group of rules was the primary
cause of the error and modify the rule(s) without creating new
misclassifications. In general, attempts at “optimising”® mem-
bership functions are ill-advised. To suggest that clear well-
defined decision regions can be established and thus, classifi-
cation functions optimised, runs counter to the motivation for
employing fussy logic. In fact, an indication that a system is
well designed and suitable for fussy logic is the relative insen-
sitivity of the output to changes in the membership functions.
Exactly the opposite of what is desired in an optimisation
problem. However, one can use the “entropy” measures to
guide modifications. (See comments below.)

(ii). Figure 2 is separated into two figures and reprinted below
(the scale is expanded to [0,1000] in x).

(iii) and (v). The two methods suggested by the discussors, in-
ductive learning and case-based reasoning, both tend to work
best with a relatively large number of training examples. In
the transformer diagnostic problem, there are relatively few
fault cases on which to base learning. However, the under-
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lying processes leading to failure are understood well enough
that some rules can be established. Thus, the rule-based ap-
proach appears to be more suitable for this application. On
the other hand, it is often difficult to compare approaches in
Al until both approaches have been implemented for the prob-
lem 2t hand. With this in mind, the authors would not want
to be too discouraging about considering other Al methods.

(iv). The point is well-taken; the relationship to threshold
functions in neursl nets seems worthy of exploration. In
fact, there are many good candidates for membership func-
tion types. The form chosen here was selected for consistency
with the intersection and union operators. It is believed that
using similar forms for operators and membership functions
may alleviate some undesired behavior (in particular, high
sensitivity near a decision point).

(vi) and (vii). The classification tree as it is used in this work
is not as the discussors suggest. The trec is fixed in sise and
relatively small, so, no trimming or building of the tree is nec-
essary. The “entropy measures” C(m) and V(m) can be used
to analyse the quality of the information as well as the gain
in information. The emphasis in this psper is on the quality
of information. A measure of the gain in information secems
to be useful as a guide for deciding when to pursue further
measurements. The most effective use of these measures is
part of our on-going research.

Manuscript received September 25, 1992.



