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Short-Term Hourly Load Forecasting
Using Abductive Networks

Radwan E. Abdel-Aal, Member, IEEE

Abstract—Short-term load modeling and forecasting are
essential for operating power utilities profitably and securely.
Modern machine learning approaches, such as neural networks,
have been used for this purpose. This paper proposes using the
alternative technique of abductive networks, which offers the
advantages of simplified and more automated model synthesis
and analytical input-output models that automatically select
influential inputs, provide better insight and explanations, and
allow comparison with statistical and empirical models. Using
hourly temperature and load data for five years, 24 dedicated
models for forecasting next-day hourly loads have been developed.
Evaluated on data for the sixth year, the models give an overall
mean absolute percentage error (MAPE) of 2.67%. Next-hour
models utilizing available load data up to the forecasting hour
give a MAPE of 1.14%, outperforming neural network models
for the same utility data. Two methods of accounting for the load
growth trend achieve comparable performance. Effects of varying
model complexity are investigated and proposals made for further
improving forecasting performance.

Index Terms—Abductive networks, artificial intelligence, fore-
casting, GMDH, load forecasting, modeling, neural network appli-
cations, neural networks, power system planning, power systems.

I. INTRODUCTION

ACCURATE load forecasting is a key requirement for the
planning and economic and secure operation of modern

power systems. Short-term load forecasting (STLF) [one hour
to one week] [1] is important for scheduling functions, such
as generator unit commitment, hydrothermal coordination,
short-term maintenance, fuel allocation, power interchange,
transaction evaluation, as well as network analysis functions,
such as dispatcher power flow and optimal power flow. Another
area of application involves security and load flow studies,
including contingency planning, load shedding, and load
security strategies. With ever-increasing load capacities, a
given percentage forecasting error amounts to greater losses
in real terms. Recent changes in the structure of the utility
industry due to deregulation and increased competition also
emphasize greater forecasting accuracies. STLF activities
include forecasting the daily peak load, total daily energy, and
daily load curve as a series of 24 hourly forecasted loads.

Traditionally, power utilities have relied in the past on a few
highly experienced in-house human experts to perform judg-
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mental forecasts manually [2] using techniques such as the sim-
ilar-day method. Increased demand on the accuracy, speed, and
frequency of the forecasts have gradually led to forecast automa-
tion. Conventional techniques for forecasting the load curve in-
cluded both static and dynamic methods. Static methods model
the load as a linear combination of explicit time functions, usu-
ally in the form of sinusoids and polynomials [3]. The more ac-
curate dynamic models take into account other important factors
such as recent load behavior, weather parameters, and random
variations. Techniques in this category include univariate time
series models such as the Box-Jenkins integrated autoregressive
moving average (ARIMA) [4]. Such methods suffer from lim-
ited accuracy because they ignore important weather effects. In
addition to being time consuming, they also require extensive
user intervention and may be numerically unstable [5]. Mul-
tivariate causal models use multiple regression to express the
load as a function of exogenous inputs including weather and
social variables [6]. In addition to the complexity of the mod-
eling process, regression models are often linear devices that at-
tempt to model distinctly nonlinear relationships [7]. Even when
a nonlinear relationship is attempted, it is difficult to determine
empirically the correct complex relationship that exists between
the load and the other explanatory inputs.

A recent trend in handling such problems that are difficult
to solve analytically has been to resort to computational intelli-
gence approaches. The availability of large amounts of historical
load and weather data at power utilities has encouraged the use
of data-based modeling approaches such as genetic algorithms
and neural networks. With such techniques, the user does not
need to explicitly specify the model relationship. This enhances
their use in automatic knowledge discovery without bias or in-
fluence by prior assumptions. With neural networks, complex
nonlinear input-output relationships can be modeled automat-
ically through supervised learning using a database of solved
examples. Once synthesized, the model can generalize to per-
form predictions of outputs corresponding to new cases. Feed-
forward neural networks trained with error back-propagation
have been widely used for load modeling and forecasting (e.g.,
[7]–[10]). However, the technique suffers from a number of lim-
itations, including difficulty in determining optimum network
topology and training parameters [8]. There are many choices
to be made in determining numerous critical design parameters
with little guidance available [7], and designers often resort to
trial and error approaches [9], which can be tedious and time
consuming. Such design parameters include the number and
size of the hidden layers, the type of neuron transfer functions
for the various layers, the training rate, and momentum coeffi-
cient, and training stopping criteria to avoid overfitting and en-
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sure adequate generalization with new data. Another limitation
is the black box nature of neural network models. The models
give little insight into the modeled relationship and the relative
significance of various inputs, thus providing poor explanation
facilities [10]. The acceptability of and confidence in an auto-
mated load forecasting tool in an operational environment ap-
pear to be related to its transparency and its ability to justify
obtained results to human experts [11].

To overcome such limitations, we propose using abductive
networks [12] as an alternative machine learning technique to
electric load forecasting. We have previously used this approach
to model and forecast the monthly domestic electric energy con-
sumption [13], and in forecasting the minimum and maximum
daily temperatures [14], [15]. The approach is based on the self-
organizing group method of data handling (GMDH) [16]. The
potential for GMDH in load forecasting has been realized long
ago [17]. However, the technique was somewhat neglected in the
literature due to its heuristic nature and limited set of elemen-
tary functions [18], as well as the multiple-input-single-output
nature of the resulting models and the difficulty of fine-tuning
them. Compared to neural networks, however, the method offers
the advantages of faster model development requiring little or
no user intervention, faster convergence during model synthesis
without the problems of getting stuck in local minima, automatic
selection of relevant input variables, and automatic configura-
tion of model structures [8]. With the model represented as a
hierarchy of polynomial expressions, resulting analytical model
relationships can provide insight into the modeled phenomena,
highlight contributions of various inputs, and allow compar-
ison with previously used empirical or statistical models. The
technique automatically avoids overfitting by using a proven
regularization criterion based on penalizing model complexity,
without requiring a separate validation data set during training,
as in many neural network paradigms.

This paper applies modern GMDH implementations to hourly
load forecasting, illustrating modeling simplicity and adequate
forecasting accuracy and highlighting unique explanation capa-
bilities not provided by neural networks. Following a brief de-
scription of GMDH and the abductive network modeling tool in
Section II, the load and temperature data set used is described
in Section III. Next-day hourly load forecasters that predict the
full 24-h load curve for a day in one go at the end of the pre-
ceding day are described in Section IV. Models were developed
using two different approaches to account for the trend of load
growth. Next-hour load forecasters that predict the load hour
by hour utilizing all data available up to the forecasting hour are
presented in Section V. Results are also given when such models
are iteratively used to forecast the full next-day load curve. Sec-
tion VI makes comparisons with neural network models devel-
oped using the same data.

II. GMDH AND AIM ABDUCTIVE NETWORKS

Abductory inductive mechanism (AIM ) [19] is a supervised
inductive machine-learning tool for automatically synthesizing
abductive network models from a database of inputs and outputs
representing a training set of solved examples. As a GMDH al-
gorithm, the tool can automatically synthesize adequate models

that embody the inherent structure of complex and highly non-
linear systems. The automation of model synthesis not only
lessens the burden on the analyst but also safeguards the model
generated from being influenced by human biases and misjudg-
ments. The GMDH approach is a formalized paradigm for iter-
ated (multiphase) polynomial regression capable of producing
a high-degree polynomial model in effective predictors. The
process is “evolutionary” in nature, using initially simple (my-
opic) regression relationships to derive more accurate represen-
tations in the next iteration. To prevent exponential growth and
limit model complexity, the algorithm selects only relationships
having good predicting powers within each phase. Iteration is
stopped when the new generation regression equations start to
have poorer prediction performance than those of the previous
generation, at which point the model starts to become overspe-
cialized and, therefore, unlikely to perform well with new data.
The algorithm has three main elements: representation, selec-
tion, and stopping. It applies abduction heuristics for making
decisions concerning some or all of these three aspects.

To illustrate these steps for the classical GMDH approach,
consider an estimation database of observations (rows) and

columns for independent variables
and one dependent variable . In the first iteration, we assume
that our predictors are the actual input variables. The initial
rough prediction equations are derived by taking each pair of
input variables ( , ; , ) together with the
output and computing the quadratic regression polynomial
[16]:

(1)

Each of the resulting polynomials is evaluated
using data for the pair of variables used to generate it, thus pro-
ducing new estimation variables which
would be expected to describe better than the original vari-
ables. The resulting variables are screened according to some
selection criterion and only those having good predicting power
are kept. The original GMDH algorithm employs an additional
and independent selection set of observations for this pur-
pose and uses the regularity selection criterion based on the root
mean squared error over that data set, where

(2)

Only those polynomials (and associated variables) that have
below a prescribed limit are kept and the minimum value

obtained for is also saved. The selected variables rep-
resent a new database for repeating the estimation and selection
steps in the next iteration to derive a set of higher-level vari-
ables. At each iteration, is compared with its previous value
and the process is continued as long as decreases or until
a given complexity is reached. An increasing is an indi-
cation of the model becoming overly complex, thus overfitting
the estimation data and performing poorly in predicting the new
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selection data. Keeping model complexity checked is an impor-
tant aspect of GMDH-based algorithms, which keep an eye on
the final objective of constructing the model (i.e. using it with
new data previously unseen during training). The best model for
this purpose is that which provides the shortest description for
the data available [20]. Computationally, the resulting GMDH
model can be seen as a layered network of partial quadratic de-
scriptor polynomials, each layer representing the results of an
iteration.

A number of GMDH methods have been proposed which op-
erate on the whole training data set, thus avoiding the use of a
dedicated selection set. The adaptive learning network (ALN)
approach, AIM being an example, uses the predicted squared
error (PSE) criterion [20] for selection and stopping to avoid
model overfitting, thus eliminating the problem of determining
when to stop training in neural networks. The criterion mini-
mizes the expected squared error that would be obtained when
the network is used for predicting new data. AIM expresses the
PSE error as

(3)

where is the fitting squared error on the training data,
is a complexity penalty multiplier selected by the user,

is the number of model coefficients, is the number of samples
in the training set, and is a prior estimate for the variance of
the error obtained with the unknown model. This estimate does
not depend on the model being evaluated and is usually taken as
half the variance of the dependent variable [20]. As the model
becomes more complex relative to the size of the training set,
the second term increases linearly while the first term decreases.

goes through a minimum at the optimum model size that
strikes a balance between accuracy and simplicity (exactness
and generality). The user may optionally control this tradeoff
using the parameter. Larger values than the default value
of 1 lead to simpler models that are less accurate but may gener-
alize well with previously unseen data, while lower values pro-
duce more complex networks that may overfit the training data
and degrade actual prediction performance.

AIM builds networks consisting of various types of poly-
nomial functional elements. The network size, element types,
connectivity, and coefficients for the optimum model are auto-
matically determined using well-proven optimization criteria,
thus reducing the need for user intervention compared to neural
networks. This simplifies model development and considerably
reduces the learning/development time and effort. The models
take the form of layered feedforward abductive networks of
functional elements (nodes) [19], see Fig. 1. Elements in the
first layer operate on various combinations of the independent
input variables ( ’s) and the element in the final layer produces
the predicted output for the dependent variable . In addition
to the main layers of the network, an input layer of normalizers
convert the input variables into an internal representation as
scores with zero mean and unity variance, and an output unitizer
unit restores the results to the original problem space.

The used version of AIM supports the following main func-
tional elements:

Fig. 1. Typical AIM abductive network model showing various types of
functional elements.

i) A white element which consists of a constant plus the
linear weighted sum of all outputs of the previous layer,
that is

White Output (4)

where are the inputs to the element and
are the element weights.

ii) Single, double, and triple elements which implement
a third-degree polynomial expression with all possible
cross-terms for one, two, and three inputs, respectively,
for example

Double Output

(5)

III. DATA SET

The data set used consists of measured hourly load and tem-
perature data for the Puget power utility, Seattle, WA, over the
period from January 1, 1985 to October 12, 1992. It is made
available in the public domain by Professor A. M. El-Sharkawi,
University of Washington, Seattle [21]. We used the data for five
years (1985–1989) for model synthesis and that of the following
year (1990) for model evaluation. A few missing load and tem-
perature data, indicated as 0’s in the data set, were filled in by in-
terpolating between neighboring values. Table I summarizes the
load data for the six-year period and indicates an average annual
growth rate of 3.5%. The mean hourly load decreased slightly
in 1986, but has then kept steadily increasing. For the evalua-
tion year of 1990, we use an estimated hourly mean because,
in practice, no actual data would be available for the evaluation
year. This mean was estimated using a straight line fit for the
mean hourly loads of only the previous four years (1986–1989)
having a steady increase in the load. Two approaches were at-
tempted in accounting for the trend of load growth. In the first
approach, all hourly load data were first normalized so that all
years have an annual hourly mean load equal to that of the last
training year (1989). Let the mean hourly load for year be ,
the normalization factor for that year is given by

(6)
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These normalization factors are given in the second column
from right in Table I. Normalization was performed by multi-
plying the hourly load values for each year by the corresponding
normalization factor. With the second approach, no normaliza-
tion of the hourly load data was necessary, and load growth was
represented by an additional model input defined for year as

(7)

Values for this input are given in the last column of Table I. This
approach reduces the data preprocessing work required.

IV. NEXT-DAY HOURLY LOAD FORECASTERS

We have developed 24 models that forecast the full hourly
load curve for the following day (d) in one go at the end of the
preceding day . A model is dedicated for forecasting
the load, EL (d,h), for each hour of the day. The models were
trained using data for five years (1985–1989) and evaluated on
the year 1990. All models use the same set of inputs which in-
cludes: 24 hourly loads at day , the
measured minimum (Tmin) and maximum (Tmax) air temper-
atures on day , the forecasted minimum (ETmin) and
maximum (ETmax) air temperatures on day (d), and the day
type for forecasting day (d). The day type was coded as four
mutually exclusive binary inputs representing a working day
(Monday to Friday) [WRK], a Saturday (SAT), a Sunday (SUN),
and an official holiday (HOLI). Tmin and Tmax were taken as
the minimum and maximum values of the 24 hourly tempera-
tures provided for the day. In the absence of forecasted data for
the minimum and maximum air temperatures for the following
day, we used actual values instead, which would be the case
with ideal temperature forecasts. We have investigated the ef-
fect of introducing Gaussian noise depicting temperature fore-
casting errors that would be present in practice. A record in the
training dataset for the model for hour h in-
cludes 32 input variables and takes the form of Table II. Prior to
training and evaluation, all hourly load data for inputs and output
were normalized to 1989 loads by multiplying by the normal-
ization factors shown in Table I. For model evaluation, the effect
of normalization was first removed by dividing forecasted loads
for the year 1990 by the estimated normalization factor for that
year, and then comparing the results with the year’s actual load.
To avoid the effect of discontinuities at year boundaries (input
loads for day being multiplied by a different normal-
ization factor from that of output load for day (d) as those two
days fall in different years), the first day of each year was ex-
cluded as a forecasted day in both training and evaluation. This
has left us with 1821 training records (1985–1989, 1988 being a
leap year) and 364 evaluation records in 1990. Training was per-
formed using the default value for the complexity
penalty multiplier.

Fig. 2 shows the abductive network model synthesized for
forecasting the load at hour 1 (midnight). This is a one-ele-
ment model that uses only loads L3, L20, and L24 of the pre-
ceding day. Neither temperature nor day-type inputs feature in
the model, which is a nonlinear function of the load time se-
ries only. Activities at that time of the day do not vary much

TABLE I
SUMMARY OF THE SIX-YEAR LOAD DATA SHOWING YEAR-TO-YEAR GROWTH

AND THE FACTORS USED BY THE TWO METHODS FOR DEALING WITH TREND

TABLE II
TRAINING RECORD LAYOUT FOR NEXT-DAY FORECASTING MODEL

FOR HOUR h

Fig. 2. Structure and equations for the next-day load forecaster for hour 1.

from day to day. The figure shows the resulting equations for
all functional elements, and the predicted output is calculated
by substituting in the given set of five equations. Equation of
the Triple element indicates the nonlinear nature of the model.

The forecasting model for hour 12 shown in Fig. 3 is a more
complex four-layer model that uses both forecasted extreme
temperatures and the SUN day-type input. The model also uses
the following loads for the preceding day: last load (L24), the
load at the same forecasting hour (L12), as well as L7 and L22.
Fig. 3 shows also the performance of the model in the form of
scatter and time series plots of the actual and forecasted data
at that hour over the evaluation year. The scatter plot shows a
best line fit and the value of the Pearson’s correlation coeffi-
cient as 0.98, and the time series plot shows the mean absolute
percentage error (MAPE) as 2.40%. Table III summarizes the
model structure for all of the 24 models, listing the model in-
puts selected and the number of layers and elements. The table
indicates that loads for hours 1 and 2 are not much affected by
weather or day type, but are primarily determined by the load
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Fig. 3. Structure and performance of the next-day load forecasting model for
hour 12 over the evaluation year.

time series. Forecasted temperature and day-type inputs feature
in all remaining models. Model complexity and nonlinearity in-
creases as the forecasting hour progresses and the lead time in-
creases. Loads for hours 11 and 12 are significantly influenced
by whether it is a Sunday. The second column in Table IV lists
the MAPE values for all hours, giving the average for the eval-
uation year as 2.67%.

Values in the third column of Table IV were obtained with the
other method of representing load growth trend as an additional
input variable having a different value for each year as given in
the last column of Table I and using actual non-normalized load
data for both training and evaluation. The additional trend input
was selected by all models except those for the first four hours
of the day. The results are comparable on average with those
for the data normalization method, but exhibit an exceptionally
larger error for hour 14. All remaining results in this paper were

TABLE III
SUMMARY OF THE ABDUCTIVE NETWORK MODELS FOR THE 24 NEXT-DAY

HOURLY LOAD FORECASTERS

obtained using the data normalization method for handling
the trend. To demonstrate the advantage over flat forecasting,
column 4 in Table IV shows the results when the load on the
forecasting day was assumed equal to that on the same day
of the previous week. Abductive network forecasts are about
2.5 times more accurate. Full-day load curves were forecasted
using all 24 models for four days of the evaluation year which
represent a working day, a Saturday, a Sunday, and a holiday in
the same season over the interval from August 8 to September 3,
1990, and the results are shown in Fig. 4. Forecasting accuracy
is best for the working day and poorest for the holiday due to
the fewer examples of holiday load patterns encountered during
training. However, average MAPE value for the ten holiday
days forecasted in the evaluation year is 5.12%. The third
generation of the ANNSTLF neural network load forecaster
employing a special holiday forecasting technique gives 9.68%
for some utilities [22].

We have investigated the effect of simulated errors in the ideal
forecasted extreme temperature values ETmin and ETmax for
the load-forecasting day. As seen from Table III, the model for
hour 12 is an example of 13 forecasters that use both ETmin and
ETmax, and would therefore be affected most by such errors.
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TABLE IV
HOURLY MAPE VALUES OVER THE EVALUATION YEAR FOR NEXT-DAY LOAD

FORECASTING MODELS USING TWO METHODS OF ACCOUNTING FOR LOAD

GROWTH TREND AND FOR A NAIVE FORECAST

There are nine other models (e.g., for hours 3 and 18), that use
either ETmin or ETmax only, and would be affected by such
errors to a lesser degree. The remaining two models for hours 1
and 2 do not use either variables. Simulated Gaussian random
errors of zero mean and standard deviation were added to
the ideal forecasted two temperature values in both the training
and evaluation datasets for the load forecaster for hour 12. The
MAPE of 2.40% for the noiseless case increased to 2.53% for

and to 2.60% for , indicating an acceptable
degradation in forecasting accuracy.

The effect of varying the complexity of the resulting fore-
casting models was investigated for the model for hour 12.
Table V shows the structure and performance of the resulting
more complex model with and simpler model
with , in comparison with the default model having

. It is noted that load input L12 features in all
three models, which indicates its importance in explaining the
modeled output. The level of model complexity varies widely
from a 37-input, four-layer nonlinear model at to
a simple two-input linear model at . While further
model simplification significantly degrades forecasting accu-
racy, there are signs that more complex models may improve

Fig. 4. Performance of the 24 next-day hourly forecasters on four typical days
representing a working day, a Saturday, a Sunday, and a public holiday during
the summer of the evaluation year.

performance compared to the default model. As indicated in the
table, more complex models require longer training times.

V. NEXT-HOUR LOAD FORECASTING

We have developed 24 models for forecasting the load at
the next hour (h) during day (d) using the full hourly load data
on day and all available hourly
load data on day (d) up to, and including, the preceding hour

as well as temperature and
day-type information. Contrary to the case of next-day hourly
forecasters, the number of load inputs here is not fixed, but
varies from 24 for hour 1 to 47 for hour 24. With the number
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TABLE V
EFFECT OF THE CPM PARAMETER ON THE COMPLEXITY AND PERFORMANCE OF NEXT–DAY LOAD FORECASTING MODELS FOR HOUR 12

TABLE VI
TRAINING RECORD LAYOUT FOR NEXT-HOUR FORECASTING MODEL

FOR HOUR (h)

of model inputs limited to 50 for the AIM version used, we had
only three inputs left to represent temperature and day-type
information. Temperature was represented using the average
temperature Ta on day and the forecasted average
temperature ETa for day (d). Again, ETa was taken as actual Ta
for day (d). Day type for the forecasting day (d) was represented
by a single binary input (WRK) that is 1 for a working day and
0 otherwise. A record in the training dataset for the model for
hour h takes the form of Table VI. Training
was performed on 1821 records (1985–1989) with the default
value for the complexity penalty multiplier and
364 evaluation records in 1990. All load data were normalized
to account for load growth as described in Section IV above.

Table VII summarizes the model structure for all the 24 hourly
models, listing the model inputs selected and the corresponding
time lags in the load time series and showing a sketch of the
model structure. Compared to models for next-day hourly
loads, next-hour models are much simpler, reflecting the rela-
tive ease of forecasting with previous load data as recent as the
previous hour being available. For example, the model for hour
12 is a three-input, one-element as compared to a seven-input
four-layer model for the corresponding next-day hourly model.
Dependence on previous day loads is reduced, with half of the
24 models totally ignoring them in favor of the more recent
loads on the forecasting day. The exogenous temperature
variable is used by only one model, and the day type by two
models. No use is made of the forecasted average temperature
ETa, and, therefore, results are not affected by any forecasting
errors in ETa in practice. The models are dominated by the
load time series, with the time lag of 1 h featured in all models.
The middle column in Table VIII lists the MAPE values for all
hours, giving the overall value for the evaluation year as 1.14%,
indicating the effectiveness of such models for very short-term
load forecasting. A neural network trained on three months of
the same utility data (working days only) was reported to give a
MAPE of 1.41% when evaluated on 22 days [23]. Inputs to the
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TABLE VII
ABDUCTIVE NETWORK MODELS FOR THE 24 NEXT-HOUR LOAD FORECASTERS

neural network included measured loads and temperatures at
the two immediately preceding hours, estimated temperature at
the forecasting hour, and an hour index. Table IX summarizes
the MAPE error histograms for all forecasting hours over the
evaluation year for both next-day and next-hour models.

The third column of Table VIII lists the MAPE values for
next-day (day (d)) forecasting obtained by repetitive use of the
next-hour models for all hours up to, and including, the fore-
casting hour (h). In practice, this would be performed at the end
of day , with the load forecasted for hour (i) being fed,
among other required inputs, to the next-hour model for hour

. As expected, performance of this type of next-day fore-
casting is inferior to that given in Table IV, with the overall av-
erage MAPE being 4.87% compared with 2.67%. This is be-
cause next-hour models are heavily dependent on recent hourly
loads on the forecasting day. With these values being forecasted
rather than measured, forecasting errors accumulate. As seen
from Table VII, next-hour models almost totally ignore temper-
ature and day-type information and, therefore, should not be ex-
pected to form as a basis for accurate next-day forecasting which
depends heavily on such parameters as indicated in Table III.

Four of the next-hour models in Table VII (hours 2, 3, 4,
and 8) take the simple 1-input “wire” form, in which the func-
tional element is a direct connection from the normalizer unit

TABLE VIII
PERFORMANCE OF THE NEXT-HOUR LOAD FORECASTERS (COLUMN 2) AND

NEXT-DAY LOAD FORECASTS USING SUCH FORECASTERS ITERATIVELY AT THE

END OF THE PRECEDING DAY (COLUMN 3)

of the input to the unitizer unit generating the output. In all four
cases, the model input is the load at the immediately preceding
hour, indicating some form of load persistence. However, due
to the equations of both the normalizer and unitizer units, the
input-output model relationship is not necessarily that of simple
persistence where the forecasted load is equal to that of the pre-
ceding hour. Table X lists the overall model equations derived
for the four wire models and compares their forecasting perfor-
mance with that of simple persistence. MAPE values for per-
sistence can be as high as seven times those for the synthesized
abductive wire models.

VI. COMPARISON WITH NEURAL NETWORK MODELS

The default abductive network models obtained with
for forecasting the load at hour 12 were compared

with the corresponding back propagation neural network
models using the same training and evaluation data. The
networks were the default function approximation models
synthesized by the NeuroExpert module of the NeuroSolutions
4 software for Windows. Twenty-percent of the training data
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TABLE IX
MAPE ERROR STATISTICS FOR NEXT-DAY AND NEXT-HOUR FORECASTS

TABLE X
PERFORMANCE COMPARISON BETWEEN THE FOUR NEXT-HOUR “WIRE”

MODELS IN TABLE VII WITH SIMPLE LOAD PERSISTENCE OVER

THE EVALUATION YEAR

TABLE XI
COMPARISON BETWEEN ABDUCTIVE AND NEURAL MODELS FOR HOUR 12

were used for cross validation. The networks used a single
hidden layer with neurons having a hyperbolic tangent transfer
function, and a linear function for the output neuron. Table XI
compares the structure and performance of the neural and
abductive network models obtained for both next-day and
next-hour forecasting. The table indicates that the abductive
models fare better for both the mean and maximum forecasting
errors, particularly for next hour forecasting. It may be possible
to further improve the performance of both techniques through
fine-tuning these default models. Neural networks for load
forecasting usually use the sigmoid transfer function for the
output neurons [7]. Making this change reduced the maximum
forecasting error by the next-day neural model in Table XI to
14%, but degraded the overall performance of the next-hour
model. Structure comparison shows the simpler and more
transparent nature of the abductive models. For example, the
next-hour neural model is a 38-input model that does not
readily give any indication of the most relevant inputs or the
pertinent model relationship. On the other hand, the abductive
model (Table VII) shows that the load at hour 12 is adequately

determined by only three previous hourly loads and gives a
manageable analytical relationship.

VII. CONCLUSION

We have demonstrated the use of abductive network machine
learning as an alternative tool for next-day and next-hour
electric load forecasting. Compared to neural networks, the
approach simplifies model development, automatically selects
effective inputs, gives better insight into the load function, and
allows comparison with previously used analytical models.
While next-day models utilized exogenous inputs such as tem-
perature and day-type variables, next-hour models developed
were largely influenced by the load time series. Forecasting
performance compares favorably with that of neural network
models. Future work will attempt to further improve the fore-
casting accuracy through the inclusion of hourly temperature
data and the development of dedicated seasonal models. The
technique will be extended to other applications including peak
load forecasting.
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