CS580 Homework 3 Fall 2024 September 4, 2024 (Due 4:10pm, September 11, 2024)

Email homework assignments to ldojcsak@vols.utk.edu by the beginning of class time.

- 1. Show whether each of the following languages is regular or not by either drawing a DFA or by applying the pumping lemma for regular sets. For each problem let $\sum = \{a, b\}$.
 - a. { $b^{4n+1} \mid n \ge 0$ }
 - b. $\{ b^n a^m b^{n+m} \mid n, m \ge 1 \}$
 - c. { $a^n b^m \mid 0 \le n < 2 < m$ }
 - d. { $a^n b^m \mid n, m > 0$ and either n or m is even, but not both}
 - e. { $a^p \mid p \text{ is prime}$ }
 - f. $\{x \mid x \text{ has an equal number of } a$'s and b's $\}$
 - g. $\{x \mid x \text{ has an equal number of } ab \text{ and } ba \text{ substrings}\}$
 - h. $\{xwx^R \mid x \in (a+b)^*, w \in (a+b), x^R \text{ is the reverse of } x\}$
 - i. $\{xwx^R \mid x, w \in (a+b)^*, x^R \text{ is the reverse of } x\}$
 - j. $\{xx \mid x \in (a+b)^*\}$
- 2. Prove each statement using closure properties of regular sets, or give a counterexample.
 - a. Let X, Y, and Z denote sets. Prove/disprove $X (Y \cup Z) = (X Y) \cap (X Z)$.
 - b. If $L_1 \cup L_2$ is regular and L_2 is regular, then L_1 is regular.
 - c. If all proper subsets of L are regular, then L is regular.