
Today:  
− Amortized Analysis 

COSC 581, Algorithms 
March 6, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 17 

 
• Reading assignment for next class: 

– Chapter 17 (continued) 
– (Later) Chapter 27 (Multithreaded algs) 

 
• Announcement:  Exam #2 on Tuesday, April 1 

– Will cover greedy algorithms, amortized analysis 
– HW 6-9 



Amortized Analysis 
• Don’t just consider one operation, but a sequence of operations on a 

given data structure 
• Average the cost over a sequence of operations 

 
• Probabilistic analysis: 

– Average case running time: average over all possible inputs for one 
algorithm (operation). 

– If using probability, called expected running time.  
 

• Amortized analysis: 
– No involvement of probability 
– Average performance on a sequence of operations, even some operation is 

expensive. 
– Guarantee average performance of each operation among the sequence in 

worst case. 



Three Methods of Amortized Analysis 

• (1) Aggregate analysis: 
– Total cost of n operations/n 

 
• (2) Accounting method: 

– Assign each type of operation a (perhaps different) amortized cost 
– Overcharge some operations,  
– Store the overcharge as credit on specific objects,  
– Then use the credit for compensation for some later operations. 

 
• (3) Potential method: 

– Almost same as accounting method 
– But store the credit as “potential energy” on the whole data 

structure. 



Example for amortized analysis 

• Stack operations: 
– PUSH(S,x), O(1) 
– POP(S),  O(1) 
– MULTIPOP(S,k), min(s,k) 

while not STACK-EMPTY(S) and k>0 
     do POP(S) 
          k=k-1 

 

• Let’s consider a sequence of n PUSH, POP, MULTIPOP. 
– The worst case cost for MULTIPOP in the sequence is  O(n), 

since the stack size is at most n.  
– Thus the cost of the sequence is O(n2). Correct, but not tight. 



(1) Aggregate Analysis  

In fact, a sequence of n operations on an initially empty stack costs 
at most O(n). Why? 

Each object can be POPed only once (including in MULTIPOP) for  
each time it is PUSHed. #POPs is at most #PUSHs, which is at 
most n. 

Thus, the average cost of an operation is O(n)/n = O(1). 

Amortized cost in aggregate analysis is defined to be average cost. 



Another example:  
Increasing a binary counter 

Binary counter of length k, A[0..k-1] of bit array. 
 
INCREMENT(A) 
1. i0 
2. while i<k and A[i]=1 
3.        do A[i]0 (flip, reset) 
4.              ii+1 
5. if  i<k 
6. then A[i]1  (flip, set) 



Analysis of INCREMENT(A) 

• Cursory analysis:  
– A single execution of INCREMENT takes O(k) in 

the worst case (when A contains all 1s) 
– So a sequence of n executions takes O(nk) in 

worst case (suppose initial counter is 0).  
– This bound is correct, but not tight. 

 

• The tight bound is O(n) for n executions. 



Amortized (Aggregate) Analysis of INCREMENT (A) 
Observation:    The running time is determined by #flips, 
                           but not all bits flip each time INCREMENT is called. 

A[0] flips every time, total n times. 
A[1] flips every other time, n/2 times. 
A[2] flips every forth time, n/4 times. 
…. 
for i=0,1,…,k-1, A[i] flips  n/2i times. 

Thus total #flips is:  
∑i=0

k-1 n/2i  < n ∑i=0
∞ 1/2i 

              = 2n.  



Amortized Analysis of INCREMENT(A) 

• Thus the worst case running time is O(n) for a 
sequence of n INCREMENTs. 
 

• So the amortized cost per operation is O(1). 



In-Class Exercise 
Suppose we perform a sequence of n operations on a data structure in 
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1 
otherwise.  Let c𝑖 be the cost of the ith operation.  Use aggregate 
analysis to determine the amortized costs per operation. 



In-Class Exercise 
Suppose we perform a sequence of n operations on a data structure in 
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1 
otherwise.  Let c𝑖 be the cost of the ith operation.  Use aggregate 
analysis to determine the amortized costs per operation. 

𝑐𝑖 = �𝑖 if 𝑖 is an exact power of 2
1 otherwise

 

Operation Cost 
1 1 
2 2 

3 1 
4 4 

5 1 

6 1 
7 1 

8 8 
9 1 

10 1 

… … 

Cost of n operations: 

�𝑐𝑖 ≤ 𝑛
𝑛

𝑖=1

+ � 2𝑗
lg 𝑛

𝑗=0

 

                         = 𝑛 +  
2lg 𝑛+1 − 1

2 − 1  
                     = 𝑛 + 2𝑛 − 1  

                           < 3𝑛 

Thus, average cost of operations = Total cost
# operations

 < 3. 

 
By aggregate analysis, the amortized cost per 
operation = O(1) 



Amortized Analysis:  
(2) Accounting Method 

• Idea: 
– Assign different charges to different operations. 
– The amount of the charge is called amortized cost. 
– amortized cost is more or less than actual cost. 
– When amortized cost > actual cost, the difference is saved 

in specific objects as credits. 
– The credits can be used by later operations whose 

amortized cost < actual cost. 
 

• As a comparison, in aggregate analysis, all operations 
have same amortized costs. 



(2) Accounting Method (cont.) 
• Conditions:  

– Suppose actual cost is 𝑐𝑖 for the 𝑖th operation in the sequence, 
and amortized cost is 𝑐𝑖′,  
 

– ∑ 𝑐′𝑖 ≥ ∑ 𝑐𝑖𝑛
𝑖=1

𝑛
𝑖=1   should hold. 
• Since we want to show the average cost per operation is 

small using amortized cost, we need for the total amortized 
cost to be an upper bound of total actual cost. 

• Holds for all sequences of operations. 
 

– Total credit is ∑ 𝑐′𝑖 − ∑ 𝑐𝑖𝑛
𝑖=1

𝑛
𝑖=1 , which should be nonnegative,  

• Moreover, ∑ 𝑐′𝑖 − ∑ 𝑐𝑖𝑡
𝑖=1

𝑡
𝑖=1  ≥ 0  for any t > 0. 



(2) Accounting Method: Stack Operations 
• Actual costs: 

– PUSH :1, POP :1, MULTIPOP: min(s,k). 
• Let’s assign the following amortized costs: 

– PUSH:2, POP: 0, MULTIPOP: 0. 
• Similar to a stack of plates in a cafeteria. 

– Suppose $1 represents a unit cost. 
– When pushing a plate, use one dollar to pay the actual cost of 

the push and leave one dollar on the plate as credit. 
– Whenever POPing a plate, the one dollar on the plate is used 

to pay the actual cost of the POP. (same for MULTIPOP). 
– By charging PUSH a little more, do not charge POP or 

MULTIPOP. 
• The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus 

O(1) average amortized cost for each operation. 
• Conditions hold:  total amortized cost  ≥ total actual cost, and 

amount of credits never becomes negative.  



(2) Accounting method: binary counter 

• Let $1 represent each unit of cost (i.e., the flip of one bit). 
• Charge an amortized cost of $2 to set a bit to 1. 
• Whenever a bit is set, use $1 to pay the actual cost, and store 

another $1 on the bit as credit. 
• When a bit is reset, the stored $1 pays the cost. 
• At any point, a 1 in the counter stores $1, the number of 1s is 

never negative, so the total credits are never negative. 
• At most one bit is set in each operation, so the amortized cost of 

an operation is at most $2. 
• Thus, total amortized cost of n operations is O(n), and average 

cost per operation is O(1). 



(3) The Potential Method 

• Similar to accounting method, something is 
paid in advance 
 

• But different from accounting method in that: 
– The prepaid work is not considered credit, but  

“potential energy”, or “potential”. 
– The potential is associated with the data structure 

as a whole rather than with specific objects within 
the data structure. 



(3) The Potential Method (cont.) 

• Initial data structure D0,  
• n operations, resulting in D0, D1,…, Dn with costs c1, c2,…, cn.  
• A potential function Φ: {𝐷𝑖}  R (real numbers) 
• Φ(𝐷𝑖) is called the potential of 𝐷𝑖. 

 
• Amortized cost c𝑖' of the 𝑖th operation is: 

c𝑖' = c𝑖 + Φ(𝐷𝑖) − Φ(D𝑖 -1
).     (i.e., actual cost + potential change) 

 
 ∑ c𝑖ʹ

𝑛
𝑖=1

 = ∑ (c𝑖+ Φ(𝐷𝑖) − Φ(D𝑖−1))𝑛
𝑖=1   

    = ∑ c𝑖  + Φ(𝐷𝑛) − Φ(𝐷0))𝑛
𝑖=1  

               



(3) The Potential Method (cont.) 
• If Φ(Dn) ≥ Φ(D0), then the total amortized cost is an upper 

bound of total actual cost. 
 

• But we do not know how many operations there are, so       
Φ(D𝑖) ≥ Φ(D0) is required for any 𝑖. 
 

• It is convenient to define Φ(D0) = 0,  so that Φ(D𝑖) ≥ 0, for all 𝑖. 
 

• If the potential change is positive (i.e., Φ(D𝑖) − Φ(D𝑖 -1
) > 0), then  

c𝑖' is an overcharge (so store the increase as potential),  
 

• Otherwise, undercharge (discharge the potential to pay the 
actual cost).  
 



(3) Potential method: stack operation 
• Potential for a stack is the number of objects in the stack. 
• So Φ(D0) = 0, and  Φ(D𝑖) ≥ 0 
• Amortized cost of stack operations: 

– PUSH:  
• Potential change: Φ(D𝑖) − Φ(D𝑖 -1

) =(s+1) − s = 1. 
• Amortized cost: c𝑖' = c𝑖 + Φ(D𝑖) − Φ(D𝑖 -1

) = 1+1 = 2. 
– POP:  

• Potential change: Φ(D𝑖) − Φ(D𝑖 -1
) = (s − 1) − s =  −1. 

• Amortized cost: c𝑖' = c𝑖 + Φ(D𝑖) − Φ(D𝑖-1) = 1+(−1) = 0. 
– MULTIPOP(S,k):  k‘ = min(s,k) 

• Potential change: Φ(D𝑖) − Φ(D𝑖 -1
) = –k'. 

• Amortized cost: c𝑖 ' = c𝑖 + Φ(D𝑖) − Φ(D𝑖 -1
) = k'+ (−k') = 0. 

• So amortized cost of each operation is O(1),  and total amortized 
cost of n operations is O(n).  

• Since total amortized cost is an upper bound of actual cost, the 
worse case cost of n operations is O(n).  



(3) Potential method: binary counter 
• Define the potential of the counter after the 𝑖th INCREMENT as  Φ(D𝑖) = b𝑖, the 

number of 1s.    Clearly, Φ(D𝑖) ≥ 0. 
(Note:  this is convenient for analysis, even when the counter doesn’t start at 0) 

 
• Let us compute amortized cost of an operation.   

– (Recall, there are k bits in counter) 
– Suppose the 𝑖th operation resets t𝑖 bits. 
– Actual cost c𝑖 of the operation is at most t𝑖 + 1.  
– If b𝑖 = 0, then the 𝑖th operation resets all k bits, so b𝑖-1= t𝑖 = k. 
– If b𝑖 > 0, then b𝑖 = b𝑖-1 − t𝑖 + 1 
– In either case, b𝑖 ≤ b𝑖-1 − t𝑖 + 1. 
– So the potential change is Φ(D𝑖) − Φ(D𝑖 -1

)  ≤  b𝑖-1 − t𝑖 + 1 − b𝑖-1= 1 − t𝑖. 
– So amortized cost is: c𝑖' = c𝑖 + Φ(D𝑖) − Φ(D𝑖 -1

)  ≤  (t𝑖 + 1) + (1 − t𝑖) = 2. 
• The total amortized cost of n operations is O(n).  
• Thus, the worst case cost of n operations is O(n).  



Amortized analyses: dynamic table 

• A nice use of amortized analysis 
• Table-insertion, table-deletion. 
• Scenario: 

– A table – maybe a hash table 
– Do not know how large in advance 
– May expend with insertion 
– May contract with deletion 
– Detailed implementation is not important 

• Goal:  
– O(1) amortized cost. 
– Unused space always ≤ constant fraction of allocated space. 

 



Dynamic table 

• Load factor α = num/size, where                  
num = # items stored, size = allocated size. 

• If size = 0, then num = 0. Call α = 1. 
• Never allow α > 1. 
• Keep α > a constant fraction 



Dynamic table: expansion with insertion 

• Table expansion 
• Consider only insertion. 
• When the table becomes full, double its size 

and reinsert all existing items. 
• Guarantees that α ≥ 1/2. 
• Each time we actually insert an item into the 

table, it’s an elementary insertion. 
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// Num[t] 
elementary 
insertions 

// one elementary insertion 

Initially, num[T ] = size[T ] = 0. 

TABLE-INSERT function 



Analysis using Aggregate Method 
• Charge 1 per elementary insertion. Count only elementary insertions, 

since all other costs are constant per call. 
• 𝑐𝑖 = actual cost of ith operation 

– If not full, 𝑐𝑖 = 1. 
– If full, have 𝑖 − 1 items in the table at the start of the ith operation. 

Have to copy all 𝑖 − 1 existing items, then insert ith item, ⇒ 𝑐𝑖 = 𝑖  
• Cursory analysis: n operations ⇒ 𝑐𝑖 = O(n) ⇒ O(n2) time for n 

operations. 
• Of course, we don’t always expand: 
• So total cost for n operations is: 

 
 
 

• Therefore, aggregate analysis says amortized cost per operation = 3. 

𝑐𝑖 = �𝑖 if 𝑖 − 1 is an exact power of 2
1 otherwise

 

�𝑐𝑖

𝑛

𝑖=1

≤ 𝑛 + � 2𝑗
lg 𝑛

𝑗=0

 

              < 𝑛 + 2𝑛 
              = 3𝑛 



Analysis using Accounting Method 
• Charge $3 per insertion of x. 

–  $1 pays for x’s insertion. 
–  $1 pays for x to be moved in the future. 
–  $1 pays for some other item to be moved. 

• Suppose we’ve just expanded, size = m before next expansion,     
size = 2m after next expansion. 

• Assume that the expansion used up all the credit, so that there’s no 
credit stored after the expansion. 

• Will expand again after another m insertions. 
• Each insertion will put $1 on one of the m items that were in the 

table just after expansion and will put $1 on the item inserted. 
• Have $2m of credit by next expansion, when there are 2m items to 

move.   Just enough to pay for the expansion, with no credit left 
over! 

 



Analysis using Potential method 

• Φ(T ) = 2 ⋅ T.num − T.size 
 

• Initially, T.num = T.size = 0 ⇒ Φ  = 0. 
 

• Just after expansion, T.num = T.size / 2 ⇒ Φ  = 0. 
 

• Just before expansion, T.num = T.size ⇒ Φ  =  T.num ⇒  
have enough potential to pay for moving all items. 
 

• Need Φ  ≥ 0, always. 
 

• Always have: 
 T.size ≥ T.num ≥ ½ T.size ⇒ 2 ⋅ T.num ≥ T.size ⇒ Φ  ≥ 0 . 



Potential method Analysis 
• Amortized cost of 𝒊th operation: 

num𝑖 = number in table after 𝑖th operation  
size 𝑖 = size of table after 𝑖th operation , 
Φi = potential after 𝑖th operation . 
 

• If 𝑖th operation  does not  trigger an expansion: 
size𝑖 = size𝑖−1  
num𝑖 = num𝑖 −1 + 1 
c𝑖 = 1  
 

• Then we have the amortized cost of the operation is: 
 

𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1 
= 1 + 2 ∙ 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖 − 2 ∙ 𝑛𝑛𝑛𝑖−1 − 𝑠𝑠𝑠𝑠𝑖−1  
= 1 + 2 ∙ 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖 − (2 ∙ (𝑛𝑛𝑛𝑖−1) − 𝑠𝑠𝑠𝑠𝑖) 
= 3   



Potential method Analysis (con’t) 

• If 𝑖th operation  does trigger expansion: 
size𝑖 = 2 size𝑖−1  
size𝑖−1 = numi−1 = num𝑖 −1  
c𝑖 = numi−1 + 1 = num𝑖  
 

• Then we have: 
  𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1 

= 𝑛𝑛𝑛𝑖 + 2 ∙ 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖 − 2 ∙ 𝑛𝑛𝑛𝑖−1 − 𝑠𝑠𝑠𝑠𝑖−1  
= 𝑛𝑛𝑛𝑖 + 2 ∙ 𝑛𝑛𝑛𝑖 − 2 ∙ (𝑛𝑛𝑛𝑖−1)  

−(2 ∙ (𝑛𝑛𝑛𝑖−1) − (𝑛𝑛𝑛𝑖−1)) 
= 𝑛𝑛𝑛𝑖  + 2 – (𝑛𝑛𝑛𝑖  – 1) 
= 3 
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Plot of num𝑖 , size 𝑖 

, 
and Φ 𝑖 versus 𝑖 

Note how potential 
builds to pay for 
expanding table 



Expansion and contraction 

• Expansion and contraction 
• When α drops too low, contract the table. 

– Allocate a new, smaller one. 
– Copy all items. 

• Still want 
– α bounded from below by a constant, 
– amortized cost per operation = O(1). 

• Measure cost in terms of elementary 
insertions and deletions. 



Obvious strategy (but doesn’t work) 
• Since we double size when inserting into a full table (when α = 1, so 

that after insertion α would become <1)… 
• Perhaps we should halve the size when deletion would make table 

less than half full (when α = 1/2, so that after deletion α would 
become >= 1/2). 

• Then always have 1/2 ≤ α ≤ 1. 
• But … suppose we fill the table … 

– Then insert ⇒ double 
– 2 deletes ⇒ halve 
– 2 inserts ⇒ double 
– 2 deletes ⇒ halve  
– ・ ・ ・ 
– Cost of each expansion or contraction is Θ(n), so cost of n 

operations will be Θ(n 2). 
• Problem : Not performing enough operations after expansion or 

contraction to pay for the next one. 



Simple solution 
• Double as before: when inserting with α = 1 ⇒ after doubling, 

α = 1/2. 
• But now, halve size when deleting with α = 1/4 ⇒ after halving, 

α = 1/2. 
• Thus, immediately after either expansion or contraction, have 

α = 1/2. 
• Always have 1/4 ≤ α ≤ 1. 
• Intuition: 

– Want to make sure that we perform enough operations 
between consecutive expansions/contractions to pay for the 
change in table size. 

– Need to delete half the items before contraction. 
– Need to double number of items before expansion. 
– Either way, number of operations between 

expansions/contractions is at least a constant fraction of 
number of items copied.  



Potential function 

Φ(𝑇) = �
2 ∙ 𝑇.𝑛𝑛𝑛 − 𝑇. 𝑠𝑠𝑠𝑠 if 𝛼(𝑇) ≥ 1/2

𝑇.𝑠𝑠𝑠𝑠
2 − 𝑇.𝑛𝑛𝑛 if 𝛼(𝑇) < 1/2 

• T empty ⇒ Φ(T) = 0 and α(T) = 1. 
• α = 1/2 ⇒ T.num = ½ T.size  
         ⇒ 2 T.num = T.size  
                  ⇒ Φ  = 0 
• α = 1     ⇒ T.num = T.size ⇒ Φ(T) = T.num ⇒ potential 

can pay for an expansion if item is inserted 
• α = 1/4 ⇒ T.size = 4 ∙ T.num  ⇒ Φ(T) = T.num ⇒ 

potential can pay for contraction if item is deleted 
 
 
 



Intuition behind Potential function 
• Potential measures how far from α = 1/2 we are. 

– α = 1/2 ⇒ Φ = 2num−2num = 0. 
– α = 1 ⇒ Φ = 2num−num = num. 
– α = 1/4 ⇒ Φ = size /2 − num = 4num /2 − num = num. 

• Therefore, when we double or halve, have enough potential to pay for 
moving all num items. 

• Potential increases linearly between α = 1/2 and α = 1, and it also 
increases linearly between α = 1/2 and α = 1/4.  

• Since α has different distances to go to get to 1 or 1/4, starting from 
1/2, rate of increase differs. 

• For α to go from 1/2 to 1, num increases from size /2 to size, for a total 
increase of size /2. Φ  increases from 0 to size. Thus, Φ  needs to 
increase by 2 for each item inserted. That’s why there’s a coefficient of 
2 on the num[T ] term in the formula for  when α ≥ 1/2. 

• For α to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a 
total decrease of size /4. Φ  increases from 0 to size /4. Thus, Φ  needs 
to increase by 1 for each item deleted. That’s why there’s a coefficient 
of −1 on the num[T ] term in the formula for  when α < 1/2. 



• Amortized costs: have to consider several cases 
– insert, delete 
– α ≥ 1/2, α < 1/2  

• We define: 
𝑐𝑖= actual cost of 𝑖th operation 
𝑐𝑖�= amortized cost with respect to Φ 
num𝑖 = # items stored after 𝑖th operation 
size𝑖 = total size of table after 𝑖th operation 
α 𝑖 = load factor of table after 𝑖th operation 
Φ 𝑖 = potential after 𝑖th operation 

 

Amortized cost for each operation, for n 
insert and delete operations 



Amortized analysis (con’t.) 

If 𝑖th operation is an insert: 
• If α𝑖-1 ≥ ½: 

– Analysis is identical to what we saw earlier (i.e. 
amortized cost is 3) 

• If α𝑖-1 < ½: 
 
 

𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1 
 

= 1 + 𝑠𝑠𝑠𝑠𝑖
2

−  𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖−1
2

−  𝑛𝑛𝑛𝑖−1   
 
= 1 +

𝑠𝑠𝑠𝑠𝑖
2 −  𝑛𝑛𝑛𝑖 −

𝑠𝑠𝑠𝑠𝑖
2 − 𝑛𝑛𝑛𝑖 − 1  

= 0 



Amortized analysis (con’t.) 
If α𝑖-1 < ½ but α𝑖 ≥ ½: 
 

 
 

𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1 
 

= 1 + (2 ∙ 𝑛𝑛𝑛𝑖  −  𝑠𝑠𝑠𝑠𝑖) − (
𝑠𝑠𝑠𝑠𝑖−1

2
−  𝑛𝑛𝑛𝑖−1) 

 
= 1 + 2 𝑛𝑛𝑛𝑖−1 + 1 − 𝑠𝑠𝑠𝑠𝑖−1  
 
                  − 𝑠𝑠𝑠𝑠𝑖−1

2
−  𝑛𝑛𝑛𝑖−1  

 
= 3 ∙ 𝑛𝑛𝑛𝑖−1 −

3
2 𝑠𝑠𝑠𝑠𝑖−1 + 3 

 
<

3
2 𝑠𝑠𝑠𝑠𝑖−1 −

3
2 𝑠𝑠𝑠𝑠𝑖−1 + 3 

 
= 3 Thus, amortized cost of insert is at most 3. 



Amortized analysis (con’t.) 

• Similar analysis for when 𝑖th operation is a 
delete 

• Three cases: 
(1) α𝑖-1 < ½ but no contraction 
(2) α𝑖-1 < ½ and contraction triggered 
(3) α𝑖-1 ≥ ½ 

 
 



Summary 

• Amortized analysis 
– Different from probabilistic analysis  

• Three methods and their differences 
• We’ve looked at how to analyze using these 

methods 



Reading Assignments 

• Today’s class:  
– Chapter 17 

 
• Reading assignment for next class: 

– Chapter 17 (continued) 
– (Later) Chapter 27 (Multithreaded algs) 

 
• Announcement:  Exam #2 on Tuesday, April 1 

– Will cover greedy algorithms, amortized analysis 
– HW 6-9 
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