
Today:
− Amortized Analysis

COSC 581, Algorithms
March 6, 2014

Many of these slides are adapted from several online sources

Reading Assignments

• Today’s class:
– Chapter 17

• Reading assignment for next class:

– Chapter 17 (continued)
– (Later) Chapter 27 (Multithreaded algs)

• Announcement: Exam #2 on Tuesday, April 1

– Will cover greedy algorithms, amortized analysis
– HW 6-9

Amortized Analysis
• Don’t just consider one operation, but a sequence of operations on a

given data structure
• Average the cost over a sequence of operations

• Probabilistic analysis:

– Average case running time: average over all possible inputs for one
algorithm (operation).

– If using probability, called expected running time.

• Amortized analysis:
– No involvement of probability
– Average performance on a sequence of operations, even some operation is

expensive.
– Guarantee average performance of each operation among the sequence in

worst case.

Three Methods of Amortized Analysis

• (1) Aggregate analysis:
– Total cost of n operations/n

• (2) Accounting method:

– Assign each type of operation a (perhaps different) amortized cost
– Overcharge some operations,
– Store the overcharge as credit on specific objects,
– Then use the credit for compensation for some later operations.

• (3) Potential method:

– Almost same as accounting method
– But store the credit as “potential energy” on the whole data

structure.

Example for amortized analysis

• Stack operations:
– PUSH(S,x), O(1)
– POP(S), O(1)
– MULTIPOP(S,k), min(s,k)

while not STACK-EMPTY(S) and k>0
 do POP(S)
 k=k-1

• Let’s consider a sequence of n PUSH, POP, MULTIPOP.
– The worst case cost for MULTIPOP in the sequence is O(n),

since the stack size is at most n.
– Thus the cost of the sequence is O(n2). Correct, but not tight.

(1) Aggregate Analysis

In fact, a sequence of n operations on an initially empty stack costs
at most O(n). Why?

Each object can be POPed only once (including in MULTIPOP) for
each time it is PUSHed. #POPs is at most #PUSHs, which is at
most n.

Thus, the average cost of an operation is O(n)/n = O(1).

Amortized cost in aggregate analysis is defined to be average cost.

Another example:
Increasing a binary counter

Binary counter of length k, A[0..k-1] of bit array.

INCREMENT(A)
1. i0
2. while i<k and A[i]=1
3. do A[i]0 (flip, reset)
4. ii+1
5. if i<k
6. then A[i]1 (flip, set)

Analysis of INCREMENT(A)

• Cursory analysis:
– A single execution of INCREMENT takes O(k) in

the worst case (when A contains all 1s)
– So a sequence of n executions takes O(nk) in

worst case (suppose initial counter is 0).
– This bound is correct, but not tight.

• The tight bound is O(n) for n executions.

Amortized (Aggregate) Analysis of INCREMENT (A)
Observation: The running time is determined by #flips,
 but not all bits flip each time INCREMENT is called.

A[0] flips every time, total n times.
A[1] flips every other time, n/2 times.
A[2] flips every forth time, n/4 times.
….
for i=0,1,…,k-1, A[i] flips n/2i times.

Thus total #flips is:
∑i=0

k-1 n/2i < n ∑i=0
∞ 1/2i

 = 2n.

Amortized Analysis of INCREMENT(A)

• Thus the worst case running time is O(n) for a
sequence of n INCREMENTs.

• So the amortized cost per operation is O(1).

In-Class Exercise
Suppose we perform a sequence of n operations on a data structure in
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1
otherwise. Let c𝑖 be the cost of the ith operation. Use aggregate
analysis to determine the amortized costs per operation.

In-Class Exercise
Suppose we perform a sequence of n operations on a data structure in
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1
otherwise. Let c𝑖 be the cost of the ith operation. Use aggregate
analysis to determine the amortized costs per operation.

𝑐𝑖 = �𝑖 if 𝑖 is an exact power of 2
1 otherwise

Operation Cost
1 1
2 2

3 1
4 4

5 1

6 1
7 1

8 8
9 1

10 1

… …

Cost of n operations:

�𝑐𝑖 ≤ 𝑛
𝑛

𝑖=1

+ � 2𝑗
lg 𝑛

𝑗=0

 = 𝑛 +
2lg 𝑛+1 − 1

2 − 1
 = 𝑛 + 2𝑛 − 1

 < 3𝑛

Thus, average cost of operations = Total cost
operations

 < 3.

By aggregate analysis, the amortized cost per
operation = O(1)

Amortized Analysis:
(2) Accounting Method

• Idea:
– Assign different charges to different operations.
– The amount of the charge is called amortized cost.
– amortized cost is more or less than actual cost.
– When amortized cost > actual cost, the difference is saved

in specific objects as credits.
– The credits can be used by later operations whose

amortized cost < actual cost.

• As a comparison, in aggregate analysis, all operations
have same amortized costs.

(2) Accounting Method (cont.)
• Conditions:

– Suppose actual cost is 𝑐𝑖 for the 𝑖th operation in the sequence,
and amortized cost is 𝑐𝑖′,

– ∑ 𝑐′𝑖 ≥ ∑ 𝑐𝑖𝑛
𝑖=1

𝑛
𝑖=1 should hold.
• Since we want to show the average cost per operation is

small using amortized cost, we need for the total amortized
cost to be an upper bound of total actual cost.

• Holds for all sequences of operations.

– Total credit is ∑ 𝑐′𝑖 − ∑ 𝑐𝑖𝑛
𝑖=1

𝑛
𝑖=1 , which should be nonnegative,

• Moreover, ∑ 𝑐′𝑖 − ∑ 𝑐𝑖𝑡
𝑖=1

𝑡
𝑖=1 ≥ 0 for any t > 0.

(2) Accounting Method: Stack Operations
• Actual costs:

– PUSH :1, POP :1, MULTIPOP: min(s,k).
• Let’s assign the following amortized costs:

– PUSH:2, POP: 0, MULTIPOP: 0.
• Similar to a stack of plates in a cafeteria.

– Suppose $1 represents a unit cost.
– When pushing a plate, use one dollar to pay the actual cost of

the push and leave one dollar on the plate as credit.
– Whenever POPing a plate, the one dollar on the plate is used

to pay the actual cost of the POP. (same for MULTIPOP).
– By charging PUSH a little more, do not charge POP or

MULTIPOP.
• The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus

O(1) average amortized cost for each operation.
• Conditions hold: total amortized cost ≥ total actual cost, and

amount of credits never becomes negative.

(2) Accounting method: binary counter

• Let $1 represent each unit of cost (i.e., the flip of one bit).
• Charge an amortized cost of $2 to set a bit to 1.
• Whenever a bit is set, use $1 to pay the actual cost, and store

another $1 on the bit as credit.
• When a bit is reset, the stored $1 pays the cost.
• At any point, a 1 in the counter stores $1, the number of 1s is

never negative, so the total credits are never negative.
• At most one bit is set in each operation, so the amortized cost of

an operation is at most $2.
• Thus, total amortized cost of n operations is O(n), and average

cost per operation is O(1).

(3) The Potential Method

• Similar to accounting method, something is
paid in advance

• But different from accounting method in that:
– The prepaid work is not considered credit, but

“potential energy”, or “potential”.
– The potential is associated with the data structure

as a whole rather than with specific objects within
the data structure.

(3) The Potential Method (cont.)

• Initial data structure D0,
• n operations, resulting in D0, D1,…, Dn with costs c1, c2,…, cn.
• A potential function Φ: {𝐷𝑖}  R (real numbers)
• Φ(𝐷𝑖) is called the potential of 𝐷𝑖.

• Amortized cost c𝑖' of the 𝑖th operation is:

c𝑖' = c𝑖 + Φ(𝐷𝑖) − Φ(D𝑖 -1
). (i.e., actual cost + potential change)

 ∑ c𝑖ʹ

𝑛
𝑖=1

 = ∑ (c𝑖+ Φ(𝐷𝑖) − Φ(D𝑖−1))𝑛
𝑖=1

 = ∑ c𝑖 + Φ(𝐷𝑛) − Φ(𝐷0))𝑛
𝑖=1

(3) The Potential Method (cont.)
• If Φ(Dn) ≥ Φ(D0), then the total amortized cost is an upper

bound of total actual cost.

• But we do not know how many operations there are, so
Φ(D𝑖) ≥ Φ(D0) is required for any 𝑖.

• It is convenient to define Φ(D0) = 0, so that Φ(D𝑖) ≥ 0, for all 𝑖.

• If the potential change is positive (i.e., Φ(D𝑖) − Φ(D𝑖 -1
) > 0), then

c𝑖' is an overcharge (so store the increase as potential),

• Otherwise, undercharge (discharge the potential to pay the
actual cost).

(3) Potential method: stack operation
• Potential for a stack is the number of objects in the stack.
• So Φ(D0) = 0, and Φ(D𝑖) ≥ 0
• Amortized cost of stack operations:

– PUSH:
• Potential change: Φ(D𝑖) − Φ(D𝑖 -1

) =(s+1) − s = 1.
• Amortized cost: c𝑖' = c𝑖 + Φ(D𝑖) − Φ(D𝑖 -1

) = 1+1 = 2.
– POP:

• Potential change: Φ(D𝑖) − Φ(D𝑖 -1
) = (s − 1) − s = −1.

• Amortized cost: c𝑖' = c𝑖 + Φ(D𝑖) − Φ(D𝑖-1) = 1+(−1) = 0.
– MULTIPOP(S,k): k‘ = min(s,k)

• Potential change: Φ(D𝑖) − Φ(D𝑖 -1
) = –k'.

• Amortized cost: c𝑖 ' = c𝑖 + Φ(D𝑖) − Φ(D𝑖 -1
) = k'+ (−k') = 0.

• So amortized cost of each operation is O(1), and total amortized
cost of n operations is O(n).

• Since total amortized cost is an upper bound of actual cost, the
worse case cost of n operations is O(n).

(3) Potential method: binary counter
• Define the potential of the counter after the 𝑖th INCREMENT as Φ(D𝑖) = b𝑖, the

number of 1s. Clearly, Φ(D𝑖) ≥ 0.
(Note: this is convenient for analysis, even when the counter doesn’t start at 0)

• Let us compute amortized cost of an operation.

– (Recall, there are k bits in counter)
– Suppose the 𝑖th operation resets t𝑖 bits.
– Actual cost c𝑖 of the operation is at most t𝑖 + 1.
– If b𝑖 = 0, then the 𝑖th operation resets all k bits, so b𝑖-1= t𝑖 = k.
– If b𝑖 > 0, then b𝑖 = b𝑖-1 − t𝑖 + 1
– In either case, b𝑖 ≤ b𝑖-1 − t𝑖 + 1.
– So the potential change is Φ(D𝑖) − Φ(D𝑖 -1

) ≤ b𝑖-1 − t𝑖 + 1 − b𝑖-1= 1 − t𝑖.
– So amortized cost is: c𝑖' = c𝑖 + Φ(D𝑖) − Φ(D𝑖 -1

) ≤ (t𝑖 + 1) + (1 − t𝑖) = 2.
• The total amortized cost of n operations is O(n).
• Thus, the worst case cost of n operations is O(n).

Amortized analyses: dynamic table

• A nice use of amortized analysis
• Table-insertion, table-deletion.
• Scenario:

– A table – maybe a hash table
– Do not know how large in advance
– May expend with insertion
– May contract with deletion
– Detailed implementation is not important

• Goal:
– O(1) amortized cost.
– Unused space always ≤ constant fraction of allocated space.

Dynamic table

• Load factor α = num/size, where
num = # items stored, size = allocated size.

• If size = 0, then num = 0. Call α = 1.
• Never allow α > 1.
• Keep α > a constant fraction

Dynamic table: expansion with insertion

• Table expansion
• Consider only insertion.
• When the table becomes full, double its size

and reinsert all existing items.
• Guarantees that α ≥ 1/2.
• Each time we actually insert an item into the

table, it’s an elementary insertion.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

// Num[t]
elementary
insertions

// one elementary insertion

Initially, num[T] = size[T] = 0.

TABLE-INSERT function

Analysis using Aggregate Method
• Charge 1 per elementary insertion. Count only elementary insertions,

since all other costs are constant per call.
• 𝑐𝑖 = actual cost of ith operation

– If not full, 𝑐𝑖 = 1.
– If full, have 𝑖 − 1 items in the table at the start of the ith operation.

Have to copy all 𝑖 − 1 existing items, then insert ith item, ⇒ 𝑐𝑖 = 𝑖
• Cursory analysis: n operations ⇒ 𝑐𝑖 = O(n) ⇒ O(n2) time for n

operations.
• Of course, we don’t always expand:
• So total cost for n operations is:

• Therefore, aggregate analysis says amortized cost per operation = 3.

𝑐𝑖 = �𝑖 if 𝑖 − 1 is an exact power of 2
1 otherwise

�𝑐𝑖

𝑛

𝑖=1

≤ 𝑛 + � 2𝑗
lg 𝑛

𝑗=0

 < 𝑛 + 2𝑛
 = 3𝑛

Analysis using Accounting Method
• Charge $3 per insertion of x.

– $1 pays for x’s insertion.
– $1 pays for x to be moved in the future.
– $1 pays for some other item to be moved.

• Suppose we’ve just expanded, size = m before next expansion,
size = 2m after next expansion.

• Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

• Will expand again after another m insertions.
• Each insertion will put $1 on one of the m items that were in the

table just after expansion and will put $1 on the item inserted.
• Have $2m of credit by next expansion, when there are 2m items to

move. Just enough to pay for the expansion, with no credit left
over!

Analysis using Potential method

• Φ(T) = 2 ⋅ T.num − T.size

• Initially, T.num = T.size = 0 ⇒ Φ = 0.

• Just after expansion, T.num = T.size / 2 ⇒ Φ = 0.

• Just before expansion, T.num = T.size ⇒ Φ = T.num ⇒
have enough potential to pay for moving all items.

• Need Φ ≥ 0, always.

• Always have:
 T.size ≥ T.num ≥ ½ T.size ⇒ 2 ⋅ T.num ≥ T.size ⇒ Φ ≥ 0 .

Potential method Analysis
• Amortized cost of 𝒊th operation:

num𝑖 = number in table after 𝑖th operation
size 𝑖 = size of table after 𝑖th operation ,
Φi = potential after 𝑖th operation .

• If 𝑖th operation does not trigger an expansion:
size𝑖 = size𝑖−1
num𝑖 = num𝑖 −1 + 1
c𝑖 = 1

• Then we have the amortized cost of the operation is:

𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1
= 1 + 2 ∙ 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖 − 2 ∙ 𝑛𝑛𝑛𝑖−1 − 𝑠𝑠𝑠𝑠𝑖−1
= 1 + 2 ∙ 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖 − (2 ∙ (𝑛𝑛𝑛𝑖−1) − 𝑠𝑠𝑠𝑠𝑖)
= 3

Potential method Analysis (con’t)

• If 𝑖th operation does trigger expansion:
size𝑖 = 2 size𝑖−1
size𝑖−1 = numi−1 = num𝑖 −1
c𝑖 = numi−1 + 1 = num𝑖

• Then we have:
 𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1

= 𝑛𝑛𝑛𝑖 + 2 ∙ 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖 − 2 ∙ 𝑛𝑛𝑛𝑖−1 − 𝑠𝑠𝑠𝑠𝑖−1
= 𝑛𝑛𝑛𝑖 + 2 ∙ 𝑛𝑛𝑛𝑖 − 2 ∙ (𝑛𝑛𝑛𝑖−1)

−(2 ∙ (𝑛𝑛𝑛𝑖−1) − (𝑛𝑛𝑛𝑖−1))
= 𝑛𝑛𝑛𝑖 + 2 – (𝑛𝑛𝑛𝑖 – 1)
= 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Plot of num𝑖 , size 𝑖

,
and Φ 𝑖 versus 𝑖

Note how potential
builds to pay for
expanding table

Expansion and contraction

• Expansion and contraction
• When α drops too low, contract the table.

– Allocate a new, smaller one.
– Copy all items.

• Still want
– α bounded from below by a constant,
– amortized cost per operation = O(1).

• Measure cost in terms of elementary
insertions and deletions.

Obvious strategy (but doesn’t work)
• Since we double size when inserting into a full table (when α = 1, so

that after insertion α would become <1)…
• Perhaps we should halve the size when deletion would make table

less than half full (when α = 1/2, so that after deletion α would
become >= 1/2).

• Then always have 1/2 ≤ α ≤ 1.
• But … suppose we fill the table …

– Then insert ⇒ double
– 2 deletes ⇒ halve
– 2 inserts ⇒ double
– 2 deletes ⇒ halve
– ・ ・ ・
– Cost of each expansion or contraction is Θ(n), so cost of n

operations will be Θ(n 2).
• Problem : Not performing enough operations after expansion or

contraction to pay for the next one.

Simple solution
• Double as before: when inserting with α = 1 ⇒ after doubling,

α = 1/2.
• But now, halve size when deleting with α = 1/4 ⇒ after halving,

α = 1/2.
• Thus, immediately after either expansion or contraction, have

α = 1/2.
• Always have 1/4 ≤ α ≤ 1.
• Intuition:

– Want to make sure that we perform enough operations
between consecutive expansions/contractions to pay for the
change in table size.

– Need to delete half the items before contraction.
– Need to double number of items before expansion.
– Either way, number of operations between

expansions/contractions is at least a constant fraction of
number of items copied.

Potential function

Φ(𝑇) = �
2 ∙ 𝑇.𝑛𝑛𝑛 − 𝑇. 𝑠𝑠𝑠𝑠 if 𝛼(𝑇) ≥ 1/2

𝑇.𝑠𝑠𝑠𝑠
2 − 𝑇.𝑛𝑛𝑛 if 𝛼(𝑇) < 1/2

• T empty ⇒ Φ(T) = 0 and α(T) = 1.
• α = 1/2 ⇒ T.num = ½ T.size
 ⇒ 2 T.num = T.size
 ⇒ Φ = 0
• α = 1 ⇒ T.num = T.size ⇒ Φ(T) = T.num ⇒ potential

can pay for an expansion if item is inserted
• α = 1/4 ⇒ T.size = 4 ∙ T.num ⇒ Φ(T) = T.num ⇒

potential can pay for contraction if item is deleted

Intuition behind Potential function
• Potential measures how far from α = 1/2 we are.

– α = 1/2 ⇒ Φ = 2num−2num = 0.
– α = 1 ⇒ Φ = 2num−num = num.
– α = 1/4 ⇒ Φ = size /2 − num = 4num /2 − num = num.

• Therefore, when we double or halve, have enough potential to pay for
moving all num items.

• Potential increases linearly between α = 1/2 and α = 1, and it also
increases linearly between α = 1/2 and α = 1/4.

• Since α has different distances to go to get to 1 or 1/4, starting from
1/2, rate of increase differs.

• For α to go from 1/2 to 1, num increases from size /2 to size, for a total
increase of size /2. Φ increases from 0 to size. Thus, Φ needs to
increase by 2 for each item inserted. That’s why there’s a coefficient of
2 on the num[T] term in the formula for when α ≥ 1/2.

• For α to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a
total decrease of size /4. Φ increases from 0 to size /4. Thus, Φ needs
to increase by 1 for each item deleted. That’s why there’s a coefficient
of −1 on the num[T] term in the formula for when α < 1/2.

• Amortized costs: have to consider several cases
– insert, delete
– α ≥ 1/2, α < 1/2

• We define:
𝑐𝑖= actual cost of 𝑖th operation
𝑐𝑖�= amortized cost with respect to Φ
num𝑖 = # items stored after 𝑖th operation
size𝑖 = total size of table after 𝑖th operation
α 𝑖 = load factor of table after 𝑖th operation
Φ 𝑖 = potential after 𝑖th operation

Amortized cost for each operation, for n
insert and delete operations

Amortized analysis (con’t.)

If 𝑖th operation is an insert:
• If α𝑖-1 ≥ ½:

– Analysis is identical to what we saw earlier (i.e.
amortized cost is 3)

• If α𝑖-1 < ½:

𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1

= 1 + 𝑠𝑠𝑠𝑠𝑖
2

− 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖−1
2

− 𝑛𝑛𝑛𝑖−1

= 1 +

𝑠𝑠𝑠𝑠𝑖
2 − 𝑛𝑛𝑛𝑖 −

𝑠𝑠𝑠𝑠𝑖
2 − 𝑛𝑛𝑛𝑖 − 1

= 0

Amortized analysis (con’t.)
If α𝑖-1 < ½ but α𝑖 ≥ ½:

𝑐𝑖� = 𝑐𝑖 + Φ𝑖 − Φ𝑖−1

= 1 + (2 ∙ 𝑛𝑛𝑛𝑖 − 𝑠𝑠𝑠𝑠𝑖) − (
𝑠𝑠𝑠𝑠𝑖−1

2
− 𝑛𝑛𝑛𝑖−1)

= 1 + 2 𝑛𝑛𝑛𝑖−1 + 1 − 𝑠𝑠𝑠𝑠𝑖−1

 − 𝑠𝑠𝑠𝑠𝑖−1

2
− 𝑛𝑛𝑛𝑖−1

= 3 ∙ 𝑛𝑛𝑛𝑖−1 −

3
2 𝑠𝑠𝑠𝑠𝑖−1 + 3

<

3
2 𝑠𝑠𝑠𝑠𝑖−1 −

3
2 𝑠𝑠𝑠𝑠𝑖−1 + 3

= 3 Thus, amortized cost of insert is at most 3.

Amortized analysis (con’t.)

• Similar analysis for when 𝑖th operation is a
delete

• Three cases:
(1) α𝑖-1 < ½ but no contraction
(2) α𝑖-1 < ½ and contraction triggered
(3) α𝑖-1 ≥ ½

Summary

• Amortized analysis
– Different from probabilistic analysis

• Three methods and their differences
• We’ve looked at how to analyze using these

methods

Reading Assignments

• Today’s class:
– Chapter 17

• Reading assignment for next class:

– Chapter 17 (continued)
– (Later) Chapter 27 (Multithreaded algs)

• Announcement: Exam #2 on Tuesday, April 1

– Will cover greedy algorithms, amortized analysis
– HW 6-9

	Today: �− Amortized Analysis
	Reading Assignments
	Amortized Analysis
	Three Methods of Amortized Analysis
	Example for amortized analysis
	(1) Aggregate Analysis
	Another example: �Increasing a binary counter
	Analysis of INCREMENT(A)
	Amortized (Aggregate) Analysis of Increment (A)
	Amortized Analysis of Increment(A)
	In-Class Exercise
	In-Class Exercise
	Amortized Analysis: �(2) Accounting Method
	(2) Accounting Method (cont.)
	(2) Accounting Method: Stack Operations
	(2) Accounting method: binary counter
	(3) The Potential Method
	(3) The Potential Method (cont.)
	(3) The Potential Method (cont.)
	(3) Potential method: stack operation
	(3) Potential method: binary counter
	Amortized analyses: dynamic table
	Dynamic table
	Dynamic table: expansion with insertion
	Slide Number 25
	Analysis using Aggregate Method
	Analysis using Accounting Method
	Analysis using Potential method
	Potential method Analysis
	Potential method Analysis (con’t)
	Slide Number 31
	Expansion and contraction
	Obvious strategy (but doesn’t work)
	Simple solution
	Potential function
	Intuition behind Potential function
	Amortized cost for each operation, for n insert and delete operations
	Amortized analysis (con’t.)
	Amortized analysis (con’t.)
	Amortized analysis (con’t.)
	Summary
	Reading Assignments

