Today:
— Amortized Analysis

COSC 581, Algorithms
March 6, 2014

Many of these slides are adapted from several online sources



Reading Assighments

e Today’s class:
— Chapter 17

 Reading assighment for next class:
— Chapter 17 (continued)
— (Later) Chapter 27 (Multithreaded algs)

e Announcement: Exam #2 on Tuesday, April 1

— Will cover greedy algorithms, amortized analysis
— HW 6-9



Amortized Analysis

Don’t just consider one operation, but a sequence of operations on a
given data structure

Average the cost over a sequence of operations

Probabilistic analysis:

— Average case running time: average over all possible inputs for one
algorithm (operation).

— If using probability, called expected running time.

Amortized analysis:
— No involvement of probability

— Average performance on a sequence of operations, even some operation is
expensive.

— Guarantee average performance of each operation among the sequence in
worst case.



Three Methods of Amortized Analysis

e (1) Aggregate analysis:
— Total cost of n operations/n

e (2) Accounting method:
— Assign each type of operation a (perhaps different) amortized cost
— QOvercharge some operations,
— Store the overcharge as credit on specific objects,
— Then use the credit for compensation for some later operations.

e (3) Potential method:
— Almost same as accounting method

— But store the credit as “potential energy” on the whole data
structure.



Example for amortized analysis

e Stack operations:
— PUSH(S,x), O(1)
— POP(S), 0O(1)
— MULTIPOP(S,k), min(s,k)
while not STACK-EMPTY(S) and k>0

do POP(S)
k=k-1

e Let’s consider a sequence of n PUSH, POP, MULTIPOP.

— The worst case cost for MULTIPOP in the sequence is O(n),
since the stack size is at most n.

— Thus the cost of the sequence is O(n?). Correct, but not tight.



(1) Aggregate Analysis

In fact, a sequence of n operations on an initially empty stack costs
at most O(n). Why?

Each object can be POPed only once (including in MULTIPOP) for
each time it is PUSHed. #POPs is at most #PUSHs, which is at

most n.

Thus, the average cost of an operation is O(n)/n = O(1).

Amortized cost in aggregate analysis is defined to be average cost.



Another example:
Increasing a binary counter

Binary counter of length k, A[O..k-1] of bit array.

INCREMENT(A)
i<0
while i<k and Ali]=1
do A[i] <0 (flip, reset)
i<i+l
if i<k
then A[/] <1 (flip, set)
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Analysis of INCREMENT(A)

e Cursory analysis:

— A single execution of INCREMENT takes O(k) in
the worst case (when A contains all 1s)

— So a sequence of n executions takes O(nk) in
worst case (suppose initial counter is 0).

— This bound is correct, but not tight.

 The tight bound is O(n) for n executions.



Amortized (Aggregate) Analysis of INCREMENT (A)

Observation: The running time is determined by #flips,
but not all bits flip each time INCREMENT is called.

Counter AN B D D DS S ['otal

value RS WRRORAET oot

S O S S A[O] flips every time, total n times.

2 000000 1001 3 A[1] flips every other time, | .n/2 ] times.
3 0000 00N 4 . . :

4 000001000 7 A[2] flips every forth time, |_n/4J times.
5 00000 1M 8

6 000001 18 10

7 0 0 0 00N 1 = - i1 fli I ti
ool I for i=0,1,...,k-1, A[i] flips |n/27] times.
9 0000 1 00N 16
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Figure 17.2  An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT
operations. Bits that flip to achieve the next value are shaded. The running cost for flipping bits is
shown at the right. Notice that the total cost is never more than twice the total number of INCREMENT
operations.



Amortized Analysis of INCREMENT(A)

e Thus the worst case running time is O(n) for a
sequence of n INCREMENTS.

e So the amortized cost per operation is O(1).



In-Class Exercise

Suppose we perform a sequence of n operations on a data structure in
which the ith operation costs i if i is an exact power of 2, and 1
otherwise. Let c; be the cost of the ith operation. Use aggregate
analysis to determine the amortized costs per operation.



In-Class Exercise

Suppose we perform a sequence of n operations on a data structure in
which the ith operation costs i if i is an exact power of 2, and 1
otherwise. Let c; be the cost of the ith operation. Use aggregate
analysis to determine the amortized costs per operation.
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operation = O(1)




Amortized Analysis:
(2) Accounting Method

e |dea:
— Assign different charges to different operations.
— The amount of the charge is called amortized cost.
— amortized cost is more or less than actual cost.

— When amortized cost > actual cost, the difference is saved
in specific objects as credits.

— The credits can be used by later operations whose
amortized cost < actual cost.

 As acomparison, in aggregate analysis, all operations
have same amortized costs.



(2) Accounting Method (cont.)

e Conditions:

— Suppose actual cost is ¢, for the ith operation in the sequence,
and amortized cost is ¢},

— D, C' . ¢; should hold.

e Since we want to show the average cost per operation is
small using amortized cost, we need for the total amortized
cost to be an upper bound of total actual cost.

e Holds for all sequences of operations.

— Total creditis )./, ¢'; — 21— ¢;, which should be nonnegative,

 Moreover, Y\, c¢'; — Yi_;c; =0 foranyt>0.



(2) Accounting Method: Stack Operations

Actual costs:
— PUSH :1, POP :1, MULTIPOP: min(s,k).
Let’s assign the following amortized costs:
— PUSH:2, POP: 0, MULTIPOP: 0.

Similar to a stack of plates in a cafeteria.
— Suppose S1 represents a unit cost.

— When pushing a plate, use one dollar to pay the actual cost of
the push and leave one dollar on the plate as credit.

— Whenever POPing a plate, the one dollar on the plate is used
to pay the actual cost of the POP. (same for MULTIPOP).

— By charging PUSH a little more, do not charge POP or
MULTIPOP.

The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus
O(1) average amortized cost for each operation.

Conditions hold: total amortized cost > total actual cost, and
amount of credits never becomes negative.



(2) Accounting method: binary counter

Let S1 represent each unit of cost (i.e., the flip of one bit).
Charge an amortized cost of $S2 to set a bit to 1.

Whenever a bit is set, use $S1 to pay the actual cost, and store
another S1 on the bit as credit.

When a bit is reset, the stored $1 pays the cost.

At any point, a 1 in the counter stores $1, the number of 1s is
never negative, so the total credits are never negative.

At most one bit is set in each operation, so the amortized cost of
an operation is at most S2.

Thus, total amortized cost of n operations is O(n), and average
cost per operation is O(1).



(3) The Potential Method

e Similar to accounting method, something is
paid in advance

e But different from accounting method in that:

— The prepaid work is not considered credit, but
“potential energy”, or “potential”.

— The potential is associated with the data structure
as a whole rather than with specific objects within
the data structure.



(3) The Potential Method (cont.)

Initial data structure D,,
n operations, resulting in D,, D,,..., D, with costs c¢,, c,,..., C,.
A potential function ®@: {D;} = R (real numbers)
®(D,) is called the potential of D.,.

Amortized cost ¢;’ of the ith operation is:
¢,;'=c;+D(D;) - DD, ,). (i.e., actual cost + potential change)

i=1¢'= Xi=1 (¢ ©(D) - (D4))

i=1"%i

= 2i=1 ¢ + ©(D,) - P(Dy))



(3) The Potential Method (cont.)

If ©(D,) = ®(D,), then the total amortized cost is an upper
bound of total actual cost.

But we do not know how many operations there are, so
®(D;) = ®(D,) is required for any i.

It is convenient to define ®(D,) =0, so that ®(D;) >0, for all i.

If the potential change is positive (i.e., ®(D;) - (D, ;) > 0), then
c;'is an overcharge (so store the increase as potential),

Otherwise, undercharge (discharge the potential to pay the
actual cost).



(3) Potential method: stack operation

e Potential for a stack is the number of objects in the stack.
e So®d(D,)=0,and O(D;) =0
e Amortized cost of stack operations:
— PUSH:
* Potential change: ®(D;) - ®(D, ,) =(s+1) -s=1.
e Amortized cost: ¢;"=c¢;+ ®(D,) - D(D, ;) = 1+1 = 2.
— POP:
* Potential change: ®(D;) - ®(D,; ;) =(s-1)-s= -1.
e Amortized cost: ¢;"=c;+ ©(D;) - ®(D, ;) = 1+(-1) = 0.
— MULTIPOP(S,k): k“= min(s,k)
 Potential change: ®(D;) - ®(D, ,) = —k".
e Amortized cost: ¢;'=c;+ ®(D;) - ©(D; ;) = k'+ (-k') = 0.
e So amortized cost of each operation is O(1), and total amortized
cost of n operations is O(n).

e Since total amortized cost is an upper bound of actual cost, the
worse case cost of n operations is O(n).



(3) Potential method: binary counter

e Define the potential of the counter after the ith INCREMENT as ®(D;) = b;, the
number of 1s. Clearly, ®(D;) > 0.

(Note: this is convenient for analysis, even when the counter doesn’t start at 0)

* Let us compute amortized cost of an operation.
— (Recall, there are k bits in counter)
— Suppose the ith operation resets t; bits.
— Actual cost ¢; of the operation is at most t; + 1.
— If b, = 0, then the ith operation resets all k bits, so b, ;= t; = k.
— Ifb;,>0,thenb,=b, , -t +1
— Ineithercase, b, <b, -t +1.
— So the potential change is ®(D;) - ®(D, ;) < b, ;,-t;+1-b,;=1-t;
— So amortized costis: ¢;"=¢;+ ®(D;,) - D(D; ;) < (t;+1)+(1-¢,)=2.
 The total amortized cost of n operations is O(n).
e Thus, the worst case cost of n operations is O(n).



Amortized analyses: dynamic table

A nice use of amortized analysis
Table-insertion, table-deletion.

Scenario:
— A table — maybe a hash table
— Do not know how large in advance
— May expend with insertion
— May contract with deletion
— Detailed implementation is not important

Goal:

— 0O(1) amortized cost.
— Unused space always < constant fraction of allocated space.



Dynamic table

Load factor o = num/size, where
num = # items stored, size = allocated size.

If size =0, then num =0. Call a = 1.
Never allow a > 1.

Keep a > a constant fraction



Dynamic table: expansion with insertion

Table expansion
Consider only insertion.

When the table becomes full, double its size
and reinsert all existing items.

Guarantees that a > 1/2.

Each time we actually insert an item into the
table, it's an elementary insertion.



TABLE-INSERT(T, x)

=t e

l
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TABLE-INSERT function

Initially, num[T ] =size[T ] = 0.

if size[T]| =0
then allocate rable|T ]| with 1 slot
size|[T] « 1
if num|T | = size|T ]
then allocate new-table with 2 - size[T] slots
insert all items in table[T ] into new-table // Numlt]
free table[T ] elementary
table[T | < new-table nsertions
size|[T'] < 2 - size|T]
insert x into table[T ] // one elementary insertion
num|T | < num[T] + 1



Analysis using Aggregate Method

Charge 1 per elementary insertion. Count only elementary insertions,
since all other costs are constant per call.

c; = actual cost of ith operation
— If not full, ¢; = 1.

— If full, have i — 1 items in the table at the start of the ith operation.
Have to copy all i - 1 existing items, then insert ith item, = ¢; = i

Cursory analysis: n operations = ¢; = O(n) = O(n?) time for n
operations.

, . ~_ (it ifi —1isanexact power of 2
Of course, we don’t always expand: ¢ = {1 otherwise

So total cost for n operations is: n lig n

EciSn+ z ZJ
j=0

i=1
<n+2n
= 3n

Therefore, aggregate analysis says amortized cost per operation = 3.



Analysis using Accounting Method

Charge S3 per insertion of x.
— S$1 pays for x’s insertion.
— S$1 pays for x to be moved in the future.
— S$1 pays for some other item to be moved.

Suppose we’ve just expanded, size = m before next expansion,
size = 2m after next expansion.

Assume that the expansion used up all the credit, so that there’s no
credit stored after the expansion.

Will expand again after another m insertions.

Each insertion will put S1 on one of the m items that were in the
table just after expansion and will put S1 on the item inserted.

Have S2m of credit by next expansion, when there are 2m items to
move. Just enough to pay for the expansion, with no credit left
over!



Analysis using Potential method

D(T)=2-T.num - T.size
Initially, T.hnum=T.size=0= @ =0.
Just after expansion, Tnum =Tsize /2 = @ =0.

Just before expansion, T.num = T.size = @ = T.num =
have enough potential to pay for moving all items.

Need @ >0, always.

Always have:
I.size>2T.num=% T.size=>2 - T.num2T.size=> @D =20.



Potential method Analysis

e Amortized cost of ith operation:
num; = number in table after ith operation
size ; = size of table after ith operation,
@. = potential after ith operation .

e |f ith operation does not trigger an expansion:
size, = size;_,
num;, =num; _;+1
c;=1

e Then we have the amortized cost of the operation is:

CGi=¢+ @ —P;y

1+ (2 -num; — size;) — (2 -num;_4 — size;_1)
=1+ (2-num; — size;) — (2 (num;—1) — size;)
3



Potential method Analysis (con’t)

e |f ith operation does trigger expansion:
size; = 2 size;_,
size;_; = num,_; = num; -1
c;=num_; +1=num,

e Then we have:
Ci=c+ P —D;
= num; + (2 - num; — size;) — (2 - num;_, — size;_4)
= num; + (2 - num; — 2 - (num;—1))
—(2 - (num;—1) — (num;—1))
= num; + 2 — (num; — 1)
=3
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Figure 17.3 The effect of a sequence of n TABLE-INSERT operations on the number num; of items
in the table, the number size; of slots in the table, and the potential ®; = 2. num; — size;, each being
measured after the ith operation. The thin line shows num;, the dashed line shows size;, and the thick
line shows ®;. Notice that immediately before an expansion, the potential has built up to the number
of items in the table, and therefore it can pay for moving all the items to the new table. Afterwards,
the potential drops to 0, but it is immediately increased by 2 when the item that caused the expansion

is inserted.



Expansion and contraction

Expansion and contraction

When a drops too low, contract the table.
— Allocate a new, smaller one.

— Copy all items.

Still want

— a bounded from below by a constant,

— amortized cost per operation = O(1).

Measure cost in terms of elementary
insertions and deletions.



Obvious strategy (but doesn’t work)

Since we double size when inserting into a full table (when a =1, so
that after insertion a would become <1)...

Perhaps we should halve the size when deletion would make table
less than half full (when a = 1/2, so that after deletion o would
become >= 1/2).

Then always have 1/2 < a < 1.
But ... suppose we fill the table ...
— Then insert = double
— 2 deletes = halve
— 2 inserts = double
— 2 deletes = halve

— Cost of each expansion or contraction is ®(n), so cost of n
operations will be ®(n 2).

Problem : Not performing enough operations after expansion or
contraction to pay for the next one.



Simple solution

Double as before: when inserting with a = 1 = after doubling,
oa=1/2.

But now, halve size when deleting with a = 1/4 = after halving,
oa=1/2.

Thus, immediately after either expansion or contraction, have
oa=1/2.

Always have 1/4 < a < 1.

Intuition:

— Want to make sure that we perform enough operations
between consecutive expansions/contractions to pay for the
change in table size.

— Need to delete half the items before contraction.
— Need to double number of items before expansion.

— Either way, number of operations between
expansions/contractions is at least a constant fraction of
number of items copied.



Potential function

2-T.num —T.size ifa(T)=1/2
P = { rsize _T.num  ifa(T) < 1/2
T empty = ®O(T) =0and a(T) = 1.
a=1/2 = T.num =% T.size

— 2 T.num = T.size

—>® =0

a=1 = T.num = Tsize = ®(T) = Tnum = potential
can pay for an expansion if item is inserted
a=1/4= Tsize=4-T.num = O©(T) = Thum =
potential can pay for contraction if item is deleted




Intuition behind Potential function

Potential measures how far from a = 1/2 we are.

—a=1/2 = @=2num-2num = 0.

—a=1= @=2num-num = num.

— a=1/4 = D=size /2 - num = 4num /2 - num = num.
Therefore, when we double or halve, have enough potential to pay for
moving all num items.

Potential increases linearly between oo =1/2 and a = 1, and it also
increases linearly between o = 1/2 and o = 1/4.

Since a has different distances to go to get to 1 or 1/4, starting from
1/2, rate of increase differs.

For o to go from 1/2 to 1, num increases from size /2 to size, for a total
increase of size /2. @ increases from 0 to size. Thus, @ needs to
increase by 2 for each item inserted. That’s why there’s a coefficient of
2 on the num[T ] term in the formula for when a > 1/2.

For o to go from 1/2 to 1/4, num decreases from size /2 to size /4, for a
total decrease of size /4. @ increases from O to size /4. Thus, @ needs

to increase by 1 for each item deleted. That’s why there’s a coefficient

of =1 on the num[T ] term in the formula for when a < 1/2.



Amortized cost for each operation, for n
insert and delete operations

e Amortized costs: have to consider several cases
— insert, delete
—a21/2,a<1/2

e We define:

c;= actual cost of ith operation

;= amortized cost with respect to ©

num; = # items stored after ith operation
size; = total size of table after ith operation
o ; = load factor of table after ith operation
@, = potential after ith operation



Amortized analysis (con’t.)

If ith operation is an insert:
e Ifa,;,=%:

l
— Analysis is identical to what we saw earlier (i.e.
amortized cost is 3)

e Ifa, <%
Ci=c¢+ P —D;4

size; size;_
=1+( — = numi)—( > L — numi_l)

size; size;

=1+ ( — numi) — — (num; — 1)
2 2

=0




Amortized analysis (con’t.)

If a; , <% but a; = %:
Ci=c¢+ P —D;4
Size;_4
2

=1+ (2-num; — size;) — ( — num;_)
=14+ (2(num;_;y+ 1) — size;_,)

sizej_q
— > — num;_q

= 3-num;_q — ESiZGi—1 + 3

3 . 3 .
< ESLzei_l — ESlZQi—1 + 3

=3 Thus, amortized cost of insert is at most 3.




Amortized analysis (con’t.)

e Similar analysis for when ith operation is a
delete

e Three cases:
(1) a; 4 <% but no contraction

(2) a;, <7 and contraction triggered
(3) o, , =27



Summary

e Amortized analysis

— Different from probabilistic analysis
e Three methods and their differences

e We've looked at how to analyze using these
methods



Reading Assighments

e Today’s class:
— Chapter 17

 Reading assighment for next class:
— Chapter 17 (continued)
— (Later) Chapter 27 (Multithreaded algs)

e Announcement: Exam #2 on Tuesday, April 1

— Will cover greedy algorithms, amortized analysis
— HW 6-9
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