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Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 27.1-27.2 

 
• Reading assignment for next class: 

– Chapter 27.3 
 

• Announcement:  Exam #2 on Tuesday, April 1 
– Will cover greedy algorithms, amortized analysis 
– HW 6-9 



Scheduling 

• The performance depends not just on the work and 
span. Additionally, the strands must be scheduled 
efficiently.  

• The strands must be mapped to static threads, and 
the operating system schedules the threads on the 
processors themselves.  

• The scheduler must schedule the computation with 
no advance knowledge of when the strands will be 
spawned or when they will complete; it must operate 
online. 



Greedy Scheduler 

• We will assume a greedy scheduler in our analysis, 
since this keeps things simple. A greedy scheduler 
assigns as many strands to processors as possible in 
each time step.  
 

• On P processors, if at least P strands are ready to 
execute during a time step, then we say that the step 
is a complete step; otherwise we say that it is an 
incomplete step.  
 



Greedy Scheduler Theorem 

• On an ideal parallel computer with P processors, a greedy 
scheduler executes a multithreaded computation with 
work 𝑇1 and span 𝑇∞ in time: 
 

𝑇𝑃 ≤
𝑇1
𝑃

+ 𝑇∞ 

 
• Given the fact the best we can hope for on P processors 

is 𝑇𝑃 = 𝑇1
𝑃�  by the work law, and 𝑇𝑃    = 𝑇∞  by the span 

law, the sum of these two gives the lower bounds  



Proof (1/3) 
• Let’s consider the complete steps. In each complete 

step, the P processors perform a total of P work.  
• Seeking a contradiction, we assume that the number of 

complete steps exceeds 𝑇1 𝑃� . Then the total work of 
the complete steps is at least  
 
 
 
 

• Since this exceeds the total work required by the 
computation, this is impossible. 



Proof (2/3) 

• Now consider an incomplete step. Let G be the 
DAG representing the entire computation. 
W.l.o.g. assume that each strand takes unit time 
(otherwise replace longer strands by a chain of 
unit-time strands).  

• Let G′ be the subgraph of G that has yet to be 
executed at the start of the incomplete step, and 
let G′′ be the subgraph remaining to be executed 
after the completion of the incomplete step.  



Proof (3/3) 

• A longest path in a DAG must necessarily start at 
a vertex with in-degree 0. Since an incomplete 
step of a greedy scheduler executes all strands 
with in-degree 0 in G′, the length of the longest 
path in G′′ must be 1 less than the length of the 
longest path in G′.  

• Put differently, an incomplete step decreases the 
span of the unexecuted DAG by 1. Thus, the 
number of incomplete steps is at most 𝑇∞ . 

• Since each step is either complete or incomplete, 
the theorem follows.  



Corollary 
• The running time of any multithreaded computation 

scheduled by a greedy scheduler on an ideal parallel 
computer with P processors is within a factor of 2 of optimal.  
 

• Proof: Let TP* be the running time produced by an optimal 
scheduler. Let 𝑇1 be the work and 𝑇∞ be the span of the 
computation. We know from work and span laws that:                                        
  

 TP* ≥ max(𝑇1/P, 𝑇∞).  
 

• By the theorem, 

𝑇𝑃 ≤
𝑇1

𝑃� + 𝑇∞ ≤ 2 max 𝑇1
𝑃� ,𝑇∞ ≤ 2TP* 

  



Slackness 

• The parallel slackness of a multithreaded 
computation executed on an ideal parallel computer 
with P processors is the ratio of parallelism by P. 
 

• Slackness = (𝑇1 / 𝑇∞) / P  
 

• If the slackness is less than 1, we cannot hope to 
achieve a linear speedup.  



Achieving Near-Perfect Speedup 
• Let 𝑇𝑃 be the running time of a multithreaded 

computation produced by a greedy scheduler on an 
ideal computer with P processors. Let 𝑇1 be the work 
and 𝑇∞ be the span of the computation.  If the 
slackness is big, P << (𝑇1 / 𝑇∞), then  
TP  is approximately T1 / P    [i.e, near-perfect speedup] 
 

• Proof: If P << (𝑇1 / 𝑇∞), then 𝑇∞  << 𝑇1 / P. Thus, by the 
theorem, 𝑇𝑃 ≤ 𝑇1 / P + 𝑇∞≈ 𝑇1 / P. By the work law,    
𝑇𝑃 ≥ 𝑇1 / P. Hence, 𝑇𝑃 ≈ 𝑇1 / P, as claimed.  

Here, “big” means slackness of 10 – i.e., at least 10 
times more parallelism than processors 



Analyzing multithreaded algs. 
• Analyzing work is no different than for serial 

algorithms 
• Analyzing span is more involved… 

– Two computations in parallel 
means you take maximum of 
individual spans 

– Two computations in series 
means their spans add 



Analyzing Parallel Fibonacci 
Computation 

• Parallel algorithm to compute Fibonacci numbers: 
 
P-FIB(n) 

if n ≤ 1   return n;  
else x = spawn P-FIB (n-1);   // parallel execution 
         y = spawn P-FIB (n-2) ;  // parallel execution 
         sync;  // wait for results of x and y                          

               return x + y;  



Work of Fibonacci 

• We want to know the work and span of the Fibonacci 
computation, so that we can compute the parallelism 
(work/span) of the computation.  
 

• The work T1 is straightforward, since it amounts to 
computing the running time of the serialized algorithm: 
 
T1 = T(n-1) + T(n-2) + θ(1) 

= Θ 1+ 5
2

𝑛
 

 
 



Span of Fibonacci 

• Recall that the span 𝑇∞ is the longest path in the 
computational DAG.  Since FIB(n) spawns  
FIB(n-1) and FIB(n-2), 
we have: 
𝑇∞ 𝑛 = max (𝑇∞ 𝑛 − 1 , 𝑇∞ 𝑛 − 2 ) + Θ 1  

= 𝑇∞ 𝑛 − 1  + Θ 1  
= Θ 𝑛  
 



Parallelism of Fibonacci 

• The parallelism of the Fibonacci computation is:  

 𝑇1 𝑛
𝑇∞ 𝑛

= Θ 1+ 5
2

𝑛
/𝑛  

which grows dramatically as n gets large.  
 

• Therefore, even on the largest parallel 
computers, a modest value of n suffices to 
achieve near perfect linear speedup, since we 
have considerable parallel slackness.  
 



Parallel Loops 
• Consider multiplying n x n matrix A by an n-vector x: 

𝑦𝑖 = �𝑎𝑖𝑖𝑥𝑗

𝑛

𝑗=1

 

 
• Can be calculated by computing all entries of y in parallel: 

MAT-VEC(A, x) 
𝑛 = A.rows 
let 𝑦 be a new vector of length 𝑛 
parallel for 𝑖 = 1 to 𝑛 
 𝑦𝑖  = 0 
parallel for 𝑖 = 1 to 𝑛 
 for 𝑗 = 1 to 𝑛 
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗 
return 𝑦 

Here, parallel for is implemented 
by the compiler as a divide-and-
conquer subroutine using nested 
parallelism 



Parallel Loops – Implementation 
MAT-VEC(A, x) 
𝑛 = A.rows 
let 𝑦 be a new vector of length 𝑛 
parallel for 𝑖 = 1 to 𝑛 
 𝑦𝑖  = 0 
parallel for 𝑖 = 1 to 𝑛 
 for 𝑗 = 1 to 𝑛 
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗 
return 𝑦 

Here, parallel for is implemented 
by the compiler as a divide-and-
conquer subroutine using nested 
parallelism 

MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑖′) 
if 𝑖 == 𝑖′ 
  for 𝑗 = 1 to 𝑛 
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗 
else  mid = (𝑖 + 𝑖′)/2  
 spawn MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑚𝑚𝑚) 
 MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑚𝑚𝑚 + 1, 𝑖′) 
 sync 



Parallel Loops – Implementation 
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Work: 
 
Span: 
 
 
Parallelism 
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Span: 
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Parallel Loops – Implementation 
MAT-VEC(A, x) 
𝑛 = A.rows 
let 𝑦 be a new vector of length 𝑛 
parallel for 𝑖 = 1 to 𝑛 
 𝑦𝑖  = 0 
parallel for 𝑖 = 1 to 𝑛 
 for 𝑗 = 1 to 𝑛 
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗 
return 𝑦 

Here, parallel for is implemented 
by the compiler as a divide-and-
conquer subroutine using nested 
parallelism 

MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑖′) 
if 𝑖 == 𝑖′ 
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Race Conditions 

• A multithreaded algorithm is deterministic if and 
only if does the same thing on the same input, no 
matter how the instructions are scheduled.  
 

• A multithreaded algorithm is nondeterministic if its 
behavior might vary from run to run.  
 

• Often, a multithreaded algorithm that is intended to 
be deterministic fails to be.  



Determinacy Race 

• A determinacy race occurs when two logically 
parallel instructions access the same memory 
location and at least one of the instructions performs 
a write.  

RACE-EXAMPLE() 
x = 0  
parallel for i = 1 to 2  

  x = x+1 
print x 



Determinacy Race 

• When a processor increments x, the operation 
is not indivisible, but composed of a sequence 
of instructions:  

1) Read x from memory into one of the processor’s 
 registers 

2) Increment the value of the register 
3) Write the value in the register back into x in 

 memory 

 



Determinacy Race 

x = 0  
assign r1 = 0  
incr r1, so r1=1 
assign r2 = 0 
incr r2, so r2 = 1 
write back x = r1 
write back x = r2 
print x  // now prints 1 instead of 2  



Example:  Using work, span for design 
• Consider a program prototyped on 32-processor computer, but aimed to run 

on supercomputer with 512 processors 
• Designers incorporated an optimization to reduce run time of benchmark on 

32-processor machine, from 𝑇32 = 65 to 𝑇′32 = 40  
• But, can show that this optimization made overall runtime on 512 processors 

slower than the original!  Thus, optimization didn’t help. 
• Analysis for 32 processors: 

Original:                  
𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇32 = 2048 32⁄ + 1 = 65 
 

• Analysis for 512 processors: 
Original:                  

𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇512 = 2048 512⁄ + 1 = 5 
 

 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′32 = 1024 32⁄ + 8 = 40 
 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′512 = 1024 512⁄ + 8 = 10 
 

Difference depends on whether or not span dominates 



In-Class Exercise 
Prof. Karan measures her deterministic multithreaded algorithm on 4, 10, and 64 processors 
of an ideal parallel computer using a greedy scheduler.  She claims that the 3 runs yielded T4 
= 80 seconds, T10 = 42 seconds, and T64 = 10 seconds.  Are these runtimes believable? 
 



Multithreaded Matrix Multiplication 
First, parallelize Square-Matrix-Multiply: 

 
P-SQUARE-MATRIX-MULTIPLY(A, B) 
𝑛=A.rows 
let C be a new 𝑛 x 𝑛 matrix 
parallel for 𝑖 = 1 to 𝑛 
 parallel for 𝑗 = 1 to 𝑛 
 𝑐𝑖𝑖 = 0 
 for 𝑘 = 1 to 𝑛 
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑎𝑖𝑖 ∙ 𝑏𝑘𝑘  
return C 



Multithreaded Matrix Multiplication 
First, parallelize Square-Matrix-Multiply: 

 
P-SQUARE-MATRIX-MULTIPLY(A, B) 
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return C 

Work: 
 
Span: 
  
 
Parallelism:  
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Span: 
 
  
Parallelism: 



Multithreaded Matrix Multiplication 
First, parallelize Square-Matrix-Multiply: 
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Multithreaded Matrix Multiplication 
First, parallelize Square-Matrix-Multiply: 
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Now, let’s try divide-and-conquer 

• Remember: Basic divide and conquer method: 
To multiply two n x n matrices, A x B = C, divide 
into sub-matrices: 

𝐴11 𝐴12
𝐴21 𝐴22

∙ 𝐵11 𝐵12
𝐵21 𝐵22

= 𝐶11 𝐶12
𝐶21 𝐶22

 

C11 = A11B11 + A12B21  

C12 = A11B12 + A12B22  

C21 = A21B11 + A22B21  

C22 = A21B12 + A22B22 



Parallelized Divide-and-Conquer 
Matrix Multiplication 

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B): 
𝑛 = A.rows 
if 𝑛 == 1: 

𝑐11 = 𝑎11𝑏11 
else: 
     allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]  
     partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices 
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11) 
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)  
     P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)  
     sync  
     parallel for 𝑖 = 1 to 𝑛  
 parallel for 𝑗 = 1 to 𝑛  
    𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖 
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Work:   
 
 
 
 
Span:   
 
 
  
Parallelism: 
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     spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)  
     P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)  
     sync  
     parallel for 𝑖 = 1 to 𝑛  
 parallel for 𝑗 = 1 to 𝑛  
    𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖 

Work:   
𝑇1 𝑛 = 8𝑇1

𝑛
2

+ Θ 𝑛2

= Θ 𝑛3  
 
Span:   
 
 
 
  
Parallelism: 



Parallelized Divide-and-Conquer 
Matrix Multiplication 

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B): 
𝑛 = A.rows 
if 𝑛 == 1: 

𝑐11 = 𝑎11𝑏11 
else: 
     allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]  
     partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices 
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11) 
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)  
     P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)  
     sync  
     parallel for 𝑖 = 1 to 𝑛  
 parallel for 𝑗 = 1 to 𝑛  
    𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖 

Work:   
𝑇1 𝑛 = 8𝑇1

𝑛
2

+ Θ 𝑛2

= Θ 𝑛3  
 
Span:   

𝑇∞ 𝑛 = 𝑇∞
𝑛
2

+ Θ lg𝑛
= Θ 𝑙𝑙2𝑛  

  
Parallelism: 



Parallelized Divide-and-Conquer 
Matrix Multiplication 

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B): 
𝑛 = A.rows 
if 𝑛 == 1: 

𝑐11 = 𝑎11𝑏11 
else: 
     allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]  
     partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices 
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11) 
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)  
     spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)  
     P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)  
     sync  
     parallel for 𝑖 = 1 to 𝑛  
 parallel for 𝑗 = 1 to 𝑛  
    𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖 

Work:   
𝑇1 𝑛 = 8𝑇1

𝑛
2

+ Θ 𝑛2

= Θ 𝑛3  
 
Span:   

𝑇∞ 𝑛 = 𝑇∞
𝑛
2

+ Θ lg𝑛
= Θ lg2𝑛  

  
Parallelism: Θ 𝑛3

𝑙𝑙2𝑛�  



Multithreading Strassen’s Alg 

• Remember how Strassen works?   



Strassen’s Matrix Multiplication 
    Strassen observed [1969] that  the product of 

two matrices can be computed in general as 
follows: 
 

C11     C12                 A11    A12                B11    B12 

                              =                              * 
C21      C22                 A21    A22                B21    B22 
 
 
                        P5   + P4  - P2 + P6                        P1 + P2  
                        =                   
                          P3 + P4                                               P5   + P1  - P3 – P7  

 



Formulas for Strassen’s Algorithm 

P1 = A11 ∗ (B12 – B22) 
P2 = (A11 + A12) ∗ B22 
P3 = (A21 + A22) ∗ B11 
P4 =  A22 ∗ (B21 – B11) 
P5 = (A11 + A22) ∗ (B11 + B22) 
P6 = (A12 – A22) ∗ (B21 + B22) 
P7 = (A11 – A21) ∗ (B11 + B12) 



Multi-threaded version  
of Strassen’s Algorithm 

P1 = A11 ∗ (B12 – B22) 
P2 = (A11 + A12) ∗ B22 
P3 = (A21 + A22) ∗ B11 
P4 =  A22 ∗ (B21 – B11) 
P5 = (A11 + A22) ∗ (B11 + B22) 
P6 = (A12 – A22) ∗ (B21 + B22) 
P7 = (A11 – A21) ∗ (B11 + B12) 

First, create 10 matrices, 
each of which is n/2 x n/2. 
 
Work = Θ 𝑛2  
 
Span = Θ lg𝑛 ,  
using doubly-nested 
parallel for loops 



Formulas for Strassen’s Algorithm 

P1 = A11 ∗ (B12 – B22) 
P2 = (A11 + A12) ∗ B22 
P3 = (A21 + A22) ∗ B11 
P4 =  A22 ∗ (B21 – B11) 
P5 = (A11 + A22) ∗ (B11 + B22) 
P6 = (A12 – A22) ∗ (B21 + B22) 
P7 = (A11 – A21) ∗ (B11 + B12) 

First, create 10 
matrices, each of 
which is n/2 x n/2. 
 
Work = Θ 𝑛2  

Then, recursively 
compute 7 matrix 
products 



Then add together, using  
doubly-nested parallel for loops 

 
  C11     C12                 A11    A12               B11    B12 

                              =                              * 
  C21      C22                 A21    A22               B21    B22 
 
 
                        P5   + P4  - P2 + P6                        P1 + P2  
                        =                   
                          P3 + P4                                               P5   + P1  - P3 – P7  

 

Work = Θ 𝑛2  
 
Span = Θ lg𝑛 ,  
 



Resulting Runtime for  
Multithreaded Strassens’ Alg 

Work: 
𝑇1 𝑛 = Θ 1 + Θ 𝑛2 + 7𝑇1 𝑛

2 + Θ 𝑛2   
 = 7𝑇1 𝑛

2 + Θ 𝑛2              
= Θ 𝑛lg 7  

 
Span: 

𝑇∞ 𝑛 = 𝑇∞
𝑛
2

+ Θ lg𝑛  

  = Θ lg2𝑛  
 

Parallelism: Θ 𝑛lg 7
lg2𝑛�  

 



Reading Assignments 

• Reading assignment for next class: 
– Chapter 27.3 

 
 

• Announcement:  Exam #2 on Tuesday, April 1 
– Will cover greedy algorithms, amortized analysis 
– HW 6-9 
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