
Today:
− Multithreaded Algs.

COSC 581, Algorithms
March 13, 2014

Many of these slides are adapted from several online sources

Reading Assignments

• Today’s class:
– Chapter 27.1-27.2

• Reading assignment for next class:

– Chapter 27.3

• Announcement: Exam #2 on Tuesday, April 1
– Will cover greedy algorithms, amortized analysis
– HW 6-9

Scheduling

• The performance depends not just on the work and
span. Additionally, the strands must be scheduled
efficiently.

• The strands must be mapped to static threads, and
the operating system schedules the threads on the
processors themselves.

• The scheduler must schedule the computation with
no advance knowledge of when the strands will be
spawned or when they will complete; it must operate
online.

Greedy Scheduler

• We will assume a greedy scheduler in our analysis,
since this keeps things simple. A greedy scheduler
assigns as many strands to processors as possible in
each time step.

• On P processors, if at least P strands are ready to
execute during a time step, then we say that the step
is a complete step; otherwise we say that it is an
incomplete step.

Greedy Scheduler Theorem

• On an ideal parallel computer with P processors, a greedy
scheduler executes a multithreaded computation with
work 𝑇1 and span 𝑇∞ in time:

𝑇𝑃 ≤
𝑇1
𝑃

+ 𝑇∞

• Given the fact the best we can hope for on P processors

is 𝑇𝑃 = 𝑇1
𝑃� by the work law, and 𝑇𝑃 = 𝑇∞ by the span

law, the sum of these two gives the lower bounds

Proof (1/3)
• Let’s consider the complete steps. In each complete

step, the P processors perform a total of P work.
• Seeking a contradiction, we assume that the number of

complete steps exceeds 𝑇1 𝑃� . Then the total work of
the complete steps is at least

• Since this exceeds the total work required by the
computation, this is impossible.

Proof (2/3)

• Now consider an incomplete step. Let G be the
DAG representing the entire computation.
W.l.o.g. assume that each strand takes unit time
(otherwise replace longer strands by a chain of
unit-time strands).

• Let G′ be the subgraph of G that has yet to be
executed at the start of the incomplete step, and
let G′′ be the subgraph remaining to be executed
after the completion of the incomplete step.

Proof (3/3)

• A longest path in a DAG must necessarily start at
a vertex with in-degree 0. Since an incomplete
step of a greedy scheduler executes all strands
with in-degree 0 in G′, the length of the longest
path in G′′ must be 1 less than the length of the
longest path in G′.

• Put differently, an incomplete step decreases the
span of the unexecuted DAG by 1. Thus, the
number of incomplete steps is at most 𝑇∞ .

• Since each step is either complete or incomplete,
the theorem follows.

Corollary
• The running time of any multithreaded computation

scheduled by a greedy scheduler on an ideal parallel
computer with P processors is within a factor of 2 of optimal.

• Proof: Let TP* be the running time produced by an optimal
scheduler. Let 𝑇1 be the work and 𝑇∞ be the span of the
computation. We know from work and span laws that:

 TP* ≥ max(𝑇1/P, 𝑇∞).

• By the theorem,

𝑇𝑃 ≤
𝑇1

𝑃� + 𝑇∞ ≤ 2 max 𝑇1
𝑃� ,𝑇∞ ≤ 2TP*

Slackness

• The parallel slackness of a multithreaded
computation executed on an ideal parallel computer
with P processors is the ratio of parallelism by P.

• Slackness = (𝑇1 / 𝑇∞) / P

• If the slackness is less than 1, we cannot hope to
achieve a linear speedup.

Achieving Near-Perfect Speedup
• Let 𝑇𝑃 be the running time of a multithreaded

computation produced by a greedy scheduler on an
ideal computer with P processors. Let 𝑇1 be the work
and 𝑇∞ be the span of the computation. If the
slackness is big, P << (𝑇1 / 𝑇∞), then
TP is approximately T1 / P [i.e, near-perfect speedup]

• Proof: If P << (𝑇1 / 𝑇∞), then 𝑇∞ << 𝑇1 / P. Thus, by the
theorem, 𝑇𝑃 ≤ 𝑇1 / P + 𝑇∞≈ 𝑇1 / P. By the work law,
𝑇𝑃 ≥ 𝑇1 / P. Hence, 𝑇𝑃 ≈ 𝑇1 / P, as claimed.

Here, “big” means slackness of 10 – i.e., at least 10
times more parallelism than processors

Analyzing multithreaded algs.
• Analyzing work is no different than for serial

algorithms
• Analyzing span is more involved…

– Two computations in parallel
means you take maximum of
individual spans

– Two computations in series
means their spans add

Analyzing Parallel Fibonacci
Computation

• Parallel algorithm to compute Fibonacci numbers:

P-FIB(n)

if n ≤ 1 return n;
else x = spawn P-FIB (n-1); // parallel execution
 y = spawn P-FIB (n-2) ; // parallel execution
 sync; // wait for results of x and y

 return x + y;

Work of Fibonacci

• We want to know the work and span of the Fibonacci
computation, so that we can compute the parallelism
(work/span) of the computation.

• The work T1 is straightforward, since it amounts to
computing the running time of the serialized algorithm:

T1 = T(n-1) + T(n-2) + θ(1)

= Θ 1+ 5
2

𝑛

Span of Fibonacci

• Recall that the span 𝑇∞ is the longest path in the
computational DAG. Since FIB(n) spawns
FIB(n-1) and FIB(n-2),
we have:
𝑇∞ 𝑛 = max (𝑇∞ 𝑛 − 1 , 𝑇∞ 𝑛 − 2) + Θ 1

= 𝑇∞ 𝑛 − 1 + Θ 1
= Θ 𝑛

Parallelism of Fibonacci

• The parallelism of the Fibonacci computation is:

 𝑇1 𝑛
𝑇∞ 𝑛

= Θ 1+ 5
2

𝑛
/𝑛

which grows dramatically as n gets large.

• Therefore, even on the largest parallel
computers, a modest value of n suffices to
achieve near perfect linear speedup, since we
have considerable parallel slackness.

Parallel Loops
• Consider multiplying n x n matrix A by an n-vector x:

𝑦𝑖 = �𝑎𝑖𝑖𝑥𝑗

𝑛

𝑗=1

• Can be calculated by computing all entries of y in parallel:

MAT-VEC(A, x)
𝑛 = A.rows
let 𝑦 be a new vector of length 𝑛
parallel for 𝑖 = 1 to 𝑛
 𝑦𝑖 = 0
parallel for 𝑖 = 1 to 𝑛
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
return 𝑦

Here, parallel for is implemented
by the compiler as a divide-and-
conquer subroutine using nested
parallelism

Parallel Loops – Implementation
MAT-VEC(A, x)
𝑛 = A.rows
let 𝑦 be a new vector of length 𝑛
parallel for 𝑖 = 1 to 𝑛
 𝑦𝑖 = 0
parallel for 𝑖 = 1 to 𝑛
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
return 𝑦

Here, parallel for is implemented
by the compiler as a divide-and-
conquer subroutine using nested
parallelism

MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑖′)
if 𝑖 == 𝑖′
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
else mid = (𝑖 + 𝑖′)/2
 spawn MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑚𝑚𝑚)
 MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑚𝑚𝑚 + 1, 𝑖′)
 sync

Parallel Loops – Implementation
MAT-VEC(A, x)
𝑛 = A.rows
let 𝑦 be a new vector of length 𝑛
parallel for 𝑖 = 1 to 𝑛
 𝑦𝑖 = 0
parallel for 𝑖 = 1 to 𝑛
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
return 𝑦

Here, parallel for is implemented
by the compiler as a divide-and-
conquer subroutine using nested
parallelism

MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑖′)
if 𝑖 == 𝑖′
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
else mid = (𝑖 + 𝑖′)/2
 spawn MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑚𝑚𝑚)
 MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑚𝑚𝑚 + 1, 𝑖′)
 sync

Work:

Span:

Parallelism

Parallel Loops – Implementation
MAT-VEC(A, x)
𝑛 = A.rows
let 𝑦 be a new vector of length 𝑛
parallel for 𝑖 = 1 to 𝑛
 𝑦𝑖 = 0
parallel for 𝑖 = 1 to 𝑛
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
return 𝑦

Here, parallel for is implemented
by the compiler as a divide-and-
conquer subroutine using nested
parallelism

MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑖′)
if 𝑖 == 𝑖′
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
else mid = (𝑖 + 𝑖′)/2
 spawn MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑚𝑚𝑚)
 MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑚𝑚𝑚 + 1, 𝑖′)
 sync

Work: 𝑇1 𝑛 = 𝛩(𝑛2)

Span:

Parallelism

Parallel Loops – Implementation
MAT-VEC(A, x)
𝑛 = A.rows
let 𝑦 be a new vector of length 𝑛
parallel for 𝑖 = 1 to 𝑛
 𝑦𝑖 = 0
parallel for 𝑖 = 1 to 𝑛
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
return 𝑦

Here, parallel for is implemented
by the compiler as a divide-and-
conquer subroutine using nested
parallelism

MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑖′)
if 𝑖 == 𝑖′
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
else mid = (𝑖 + 𝑖′)/2
 spawn MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑚𝑚𝑚)
 MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑚𝑚𝑚 + 1, 𝑖′)
 sync

Work: 𝑇1 𝑛 = 𝛩(𝑛2)

Span: 𝑇∞ 𝑛 = 𝛩(lg𝑛) +𝛩(lg𝑛) + 𝛩 𝑛
 = 𝛩(𝑛)

Parallelism

Parallel Loops – Implementation
MAT-VEC(A, x)
𝑛 = A.rows
let 𝑦 be a new vector of length 𝑛
parallel for 𝑖 = 1 to 𝑛
 𝑦𝑖 = 0
parallel for 𝑖 = 1 to 𝑛
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
return 𝑦

Here, parallel for is implemented
by the compiler as a divide-and-
conquer subroutine using nested
parallelism

MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑖′)
if 𝑖 == 𝑖′
 for 𝑗 = 1 to 𝑛
 𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑖𝑥𝑗
else mid = (𝑖 + 𝑖′)/2
 spawn MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑖, 𝑚𝑚𝑚)
 MAT-VEC-MAIN-LOOP(A, x, y, n, 𝑚𝑚𝑚 + 1, 𝑖′)
 sync

Work: 𝑇1 𝑛 = 𝛩(𝑛2)

Span: 𝑇∞ 𝑛 = 𝛩(lg𝑛) +𝛩(lg𝑛) + 𝛩 𝑛
 = 𝛩(𝑛)

Parallelism = 𝛩(𝑛2)/𝛩 𝑛 = 𝛩(𝑛)

Race Conditions

• A multithreaded algorithm is deterministic if and
only if does the same thing on the same input, no
matter how the instructions are scheduled.

• A multithreaded algorithm is nondeterministic if its
behavior might vary from run to run.

• Often, a multithreaded algorithm that is intended to
be deterministic fails to be.

Determinacy Race

• A determinacy race occurs when two logically
parallel instructions access the same memory
location and at least one of the instructions performs
a write.

RACE-EXAMPLE()
x = 0
parallel for i = 1 to 2

 x = x+1
print x

Determinacy Race

• When a processor increments x, the operation
is not indivisible, but composed of a sequence
of instructions:

1) Read x from memory into one of the processor’s
 registers

2) Increment the value of the register
3) Write the value in the register back into x in

 memory

Determinacy Race

x = 0
assign r1 = 0
incr r1, so r1=1
assign r2 = 0
incr r2, so r2 = 1
write back x = r1
write back x = r2
print x // now prints 1 instead of 2

Example: Using work, span for design
• Consider a program prototyped on 32-processor computer, but aimed to run

on supercomputer with 512 processors
• Designers incorporated an optimization to reduce run time of benchmark on

32-processor machine, from 𝑇32 = 65 to 𝑇′32 = 40
• But, can show that this optimization made overall runtime on 512 processors

slower than the original! Thus, optimization didn’t help.
• Analysis for 32 processors:

Original:
𝑇1 = 2048
𝑇∞ = 1

𝑇𝑃 = 𝑇1
𝑃� + 𝑇∞

 ⇒ 𝑇32 = 2048 32⁄ + 1 = 65

• Analysis for 512 processors:
Original:

𝑇1 = 2048
𝑇∞ = 1

𝑇𝑃 = 𝑇1
𝑃� + 𝑇∞

 ⇒ 𝑇512 = 2048 512⁄ + 1 = 5

Optimized:
𝑇′1 = 1024
𝑇′∞ = 8

𝑇′𝑃 = 𝑇′1
𝑃� + 𝑇′∞

 ⇒ 𝑇′32 = 1024 32⁄ + 8 = 40

Optimized:
𝑇′1 = 1024
𝑇′∞ = 8

𝑇′𝑃 = 𝑇′1
𝑃� + 𝑇′∞

 ⇒ 𝑇′512 = 1024 512⁄ + 8 = 10

Difference depends on whether or not span dominates

In-Class Exercise
Prof. Karan measures her deterministic multithreaded algorithm on 4, 10, and 64 processors
of an ideal parallel computer using a greedy scheduler. She claims that the 3 runs yielded T4
= 80 seconds, T10 = 42 seconds, and T64 = 10 seconds. Are these runtimes believable?

Multithreaded Matrix Multiplication
First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)
𝑛=A.rows
let C be a new 𝑛 x 𝑛 matrix
parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 0
 for 𝑘 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑎𝑖𝑖 ∙ 𝑏𝑘𝑘
return C

Multithreaded Matrix Multiplication
First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)
𝑛=A.rows
let C be a new 𝑛 x 𝑛 matrix
parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 0
 for 𝑘 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑎𝑖𝑖 ∙ 𝑏𝑘𝑘
return C

Work:

Span:

Parallelism:

Multithreaded Matrix Multiplication
First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)
𝑛=A.rows
let C be a new 𝑛 x 𝑛 matrix
parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 0
 for 𝑘 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑎𝑖𝑖 ∙ 𝑏𝑘𝑘
return C

Work: 𝑇1 𝑛 = 𝛩(𝑛3)

Span:

Parallelism:

Multithreaded Matrix Multiplication
First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)
𝑛=A.rows
let C be a new 𝑛 x 𝑛 matrix
parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 0
 for 𝑘 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑎𝑖𝑖 ∙ 𝑏𝑘𝑘
return C

Work: 𝑇1 𝑛 = 𝛩(𝑛3)

Span: 𝑇∞ 𝑛 = 𝛩(lg𝑛) +𝛩(lg𝑛) + 𝛩 𝑛
 = 𝛩(𝑛)

Parallelism:

Multithreaded Matrix Multiplication
First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)
𝑛=A.rows
let C be a new 𝑛 x 𝑛 matrix
parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 0
 for 𝑘 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑎𝑖𝑖 ∙ 𝑏𝑘𝑘
return C

Work: 𝑇1 𝑛 = 𝛩(𝑛3)

Span: 𝑇∞ 𝑛 = 𝛩(lg𝑛) +𝛩(lg𝑛) + 𝛩 𝑛
 = 𝛩(𝑛)

Parallelism = 𝛩(𝑛3)/𝛩 𝑛 = 𝛩(𝑛2)

Now, let’s try divide-and-conquer

• Remember: Basic divide and conquer method:
To multiply two n x n matrices, A x B = C, divide
into sub-matrices:

𝐴11 𝐴12
𝐴21 𝐴22

∙ 𝐵11 𝐵12
𝐵21 𝐵22

= 𝐶11 𝐶12
𝐶21 𝐶22

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):
𝑛 = A.rows
if 𝑛 == 1:

𝑐11 = 𝑎11𝑏11
else:
 allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]
 partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)
 P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
 sync
 parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):
𝑛 = A.rows
if 𝑛 == 1:

𝑐11 = 𝑎11𝑏11
else:
 allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]
 partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)
 P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
 sync
 parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖

Work:

Span:

Parallelism:

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):
𝑛 = A.rows
if 𝑛 == 1:

𝑐11 = 𝑎11𝑏11
else:
 allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]
 partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)
 P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
 sync
 parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖

Work:
𝑇1 𝑛 = 8𝑇1

𝑛
2

+ Θ 𝑛2

= Θ 𝑛3

Span:

Parallelism:

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):
𝑛 = A.rows
if 𝑛 == 1:

𝑐11 = 𝑎11𝑏11
else:
 allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]
 partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)
 P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
 sync
 parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖

Work:
𝑇1 𝑛 = 8𝑇1

𝑛
2

+ Θ 𝑛2

= Θ 𝑛3

Span:

𝑇∞ 𝑛 = 𝑇∞
𝑛
2

+ Θ lg𝑛
= Θ 𝑙𝑙2𝑛

Parallelism:

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):
𝑛 = A.rows
if 𝑛 == 1:

𝑐11 = 𝑎11𝑏11
else:
 allocate a temporary matrix T[1 ... 𝑛, 1 ... 𝑛]
 partition A, B, C, and T into (𝑛/2) x (𝑛/2) submatrices
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
 spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)
 P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
 sync
 parallel for 𝑖 = 1 to 𝑛
 parallel for 𝑗 = 1 to 𝑛
 𝑐𝑖𝑖 = 𝑐𝑖𝑖 + 𝑡𝑖𝑖

Work:
𝑇1 𝑛 = 8𝑇1

𝑛
2

+ Θ 𝑛2

= Θ 𝑛3

Span:

𝑇∞ 𝑛 = 𝑇∞
𝑛
2

+ Θ lg𝑛
= Θ lg2𝑛

Parallelism: Θ 𝑛3

𝑙𝑙2𝑛�

Multithreading Strassen’s Alg

• Remember how Strassen works?

Strassen’s Matrix Multiplication
 Strassen observed [1969] that the product of

two matrices can be computed in general as
follows:

C11 C12 A11 A12 B11 B12

 = *
C21 C22 A21 A22 B21 B22

 P5 + P4 - P2 + P6 P1 + P2
 =
 P3 + P4 P5 + P1 - P3 – P7

Formulas for Strassen’s Algorithm

P1 = A11 ∗ (B12 – B22)
P2 = (A11 + A12) ∗ B22
P3 = (A21 + A22) ∗ B11
P4 = A22 ∗ (B21 – B11)
P5 = (A11 + A22) ∗ (B11 + B22)
P6 = (A12 – A22) ∗ (B21 + B22)
P7 = (A11 – A21) ∗ (B11 + B12)

Multi-threaded version
of Strassen’s Algorithm

P1 = A11 ∗ (B12 – B22)
P2 = (A11 + A12) ∗ B22
P3 = (A21 + A22) ∗ B11
P4 = A22 ∗ (B21 – B11)
P5 = (A11 + A22) ∗ (B11 + B22)
P6 = (A12 – A22) ∗ (B21 + B22)
P7 = (A11 – A21) ∗ (B11 + B12)

First, create 10 matrices,
each of which is n/2 x n/2.

Work = Θ 𝑛2

Span = Θ lg𝑛 ,
using doubly-nested
parallel for loops

Formulas for Strassen’s Algorithm

P1 = A11 ∗ (B12 – B22)
P2 = (A11 + A12) ∗ B22
P3 = (A21 + A22) ∗ B11
P4 = A22 ∗ (B21 – B11)
P5 = (A11 + A22) ∗ (B11 + B22)
P6 = (A12 – A22) ∗ (B21 + B22)
P7 = (A11 – A21) ∗ (B11 + B12)

First, create 10
matrices, each of
which is n/2 x n/2.

Work = Θ 𝑛2

Then, recursively
compute 7 matrix
products

Then add together, using
doubly-nested parallel for loops

 C11 C12 A11 A12 B11 B12

 = *
 C21 C22 A21 A22 B21 B22

 P5 + P4 - P2 + P6 P1 + P2
 =
 P3 + P4 P5 + P1 - P3 – P7

Work = Θ 𝑛2

Span = Θ lg𝑛 ,

Resulting Runtime for
Multithreaded Strassens’ Alg

Work:
𝑇1 𝑛 = Θ 1 + Θ 𝑛2 + 7𝑇1 𝑛

2 + Θ 𝑛2
 = 7𝑇1 𝑛

2 + Θ 𝑛2
= Θ 𝑛lg 7

Span:

𝑇∞ 𝑛 = 𝑇∞
𝑛
2

+ Θ lg𝑛

 = Θ lg2𝑛

Parallelism: Θ 𝑛lg 7
lg2𝑛�

Reading Assignments

• Reading assignment for next class:
– Chapter 27.3

• Announcement: Exam #2 on Tuesday, April 1
– Will cover greedy algorithms, amortized analysis
– HW 6-9

	Today: �− Multithreaded Algs.
	Reading Assignments
	Scheduling
	Greedy Scheduler
	Greedy Scheduler Theorem
	Proof (1/3)
	Proof (2/3)
	Proof (3/3)
	Corollary
	Slackness
	Achieving Near-Perfect Speedup
	Analyzing multithreaded algs.
	Analyzing Parallel Fibonacci Computation
	Work of Fibonacci
	Span of Fibonacci
	Parallelism of Fibonacci
	Parallel Loops
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Race Conditions
	Determinacy Race
	Determinacy Race
	Determinacy Race
	Example: Using work, span for design
	In-Class Exercise
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Now, let’s try divide-and-conquer
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Multithreading Strassen’s Alg
	Strassen’s Matrix Multiplication
	Formulas for Strassen’s Algorithm
	Multi-threaded version �of Strassen’s Algorithm
	Formulas for Strassen’s Algorithm
	Then add together, using �doubly-nested parallel for loops
	Resulting Runtime for �Multithreaded Strassens’ Alg
	Reading Assignments

