

Today:

- Multithreaded Algs.

COSC 581, Algorithms

March 13, 2014

Reading Assignments

- Today's class:
 - Chapter 27.1-27.2
- Reading assignment for next class:
 - Chapter 27.3
- Announcement: Exam #2 on Tuesday, April 1
 - Will cover greedy algorithms, amortized analysis
 - HW 6-9

Scheduling

- The performance depends not just on the work and span. Additionally, the **strands must be scheduled efficiently**.
- The strands must be mapped to static threads, and the operating system schedules the threads on the processors themselves.
- The scheduler must schedule the computation with no advance knowledge of when the strands will be spawned or when they will complete; it must operate online.

Greedy Scheduler

- We will assume a greedy scheduler in our analysis, since this keeps things simple. A **greedy scheduler** assigns as many strands to processors as possible in each time step.
- On P processors, if at least P strands are ready to execute during a time step, then we say that the step is a **complete step**; otherwise we say that it is an **incomplete step**.

Greedy Scheduler Theorem

- On an ideal parallel computer with P processors, a greedy scheduler executes a multithreaded computation with work T_1 and span T_∞ in time:

$$T_P \leq \frac{T_1}{P} + T_\infty$$

- Given the fact the best we can hope for on P processors is $T_P = T_1/P$ by the work law, and $T_P = T_\infty$ by the span law, the sum of these two gives the lower bounds

Proof (1/3)

- Let's consider the **complete steps**. In each complete step, the P processors perform a total of P work.
- Seeking a contradiction, we assume that the number of complete steps exceeds $\frac{T_1}{P}$. Then the total work of the complete steps is at least

$$\begin{aligned} P(\lfloor T_1/P \rfloor + 1) &= P\lfloor T_1/P \rfloor + P \\ &= T_1 - (T_1 \bmod P) + P \\ &> T_1 \end{aligned}$$

- Since this exceeds the total work required by the computation, this is impossible.

Proof (2/3)

- Now consider an **incomplete step**. Let G be the DAG representing the entire computation. W.l.o.g. assume that each strand takes unit time (otherwise replace longer strands by a chain of unit-time strands).
- Let G' be the subgraph of G that has **yet to be executed** at the start of the incomplete step, and let G'' be the subgraph **remaining to be executed** after the completion of the incomplete step.

Proof (3/3)

- A longest path in a DAG must necessarily start at a vertex with in-degree 0. Since an incomplete step of a greedy scheduler **executes all strands with in-degree 0** in G' , the length of the longest path in G'' must be 1 less than the length of the longest path in G' .
- Put differently, an incomplete step decreases the span of the unexecuted DAG by 1. Thus, the number of incomplete steps is at most T_∞ .
- Since each step is either complete or incomplete, the theorem follows. ■

Corollary

- The running time of any multithreaded computation scheduled by a greedy scheduler on an ideal parallel computer with P processors **is within a factor of 2 of optimal**.
- Proof: Let T_P^* be the running time produced by an optimal scheduler. Let T_1 be the work and T_∞ be the span of the computation. We know from work and span laws that:

$$T_P^* \geq \max(T_1/P, T_\infty).$$

- By the theorem,

$$T_P \leq T_1/P + T_\infty \leq 2 \max(T_1/P, T_\infty) \leq 2T_P^*$$

Slackness

- The parallel **slackness** of a multithreaded computation executed on an ideal parallel computer with P processors is the ratio of **parallelism** by P .
- $\text{Slackness} = (T_1 / T_\infty) / P$
- If the slackness is less than 1, we cannot hope to achieve a linear speedup.

Achieving Near-Perfect Speedup

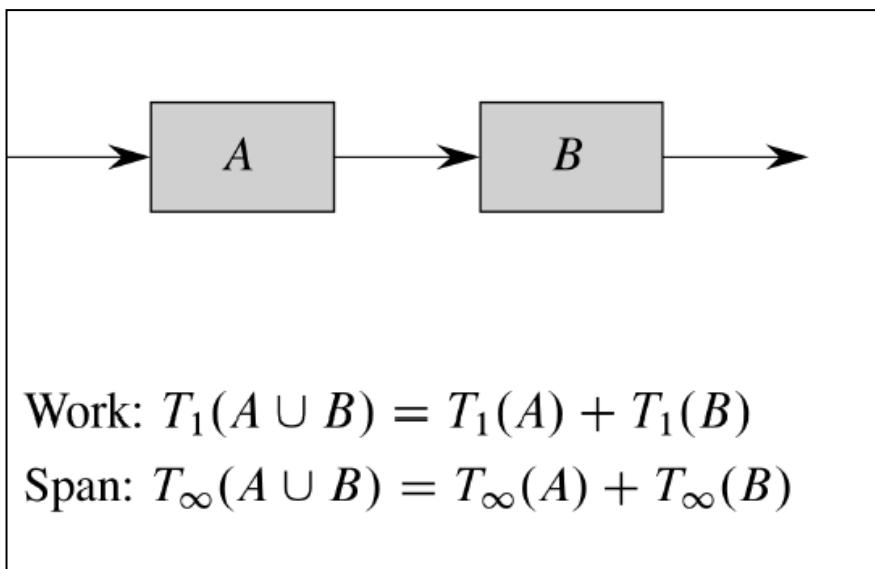
- Let T_P be the running time of a multithreaded computation produced by a greedy scheduler on an ideal computer with P processors. Let T_1 be the work and T_∞ be the span of the computation. If the slackness is **big**, $P \ll (T_1 / T_\infty)$, then
 T_P is approximately T_1 / P [i.e., near-perfect speedup]
- Proof: If $P \ll (T_1 / T_\infty)$, then $T_\infty \ll T_1 / P$. Thus, by the theorem, $T_P \leq T_1 / P + T_\infty \approx T_1 / P$. By the work law, $T_P \geq T_1 / P$. Hence, $T_P \approx T_1 / P$, as claimed.

Here, “big” means slackness of 10 – i.e., at least 10 times more parallelism than processors

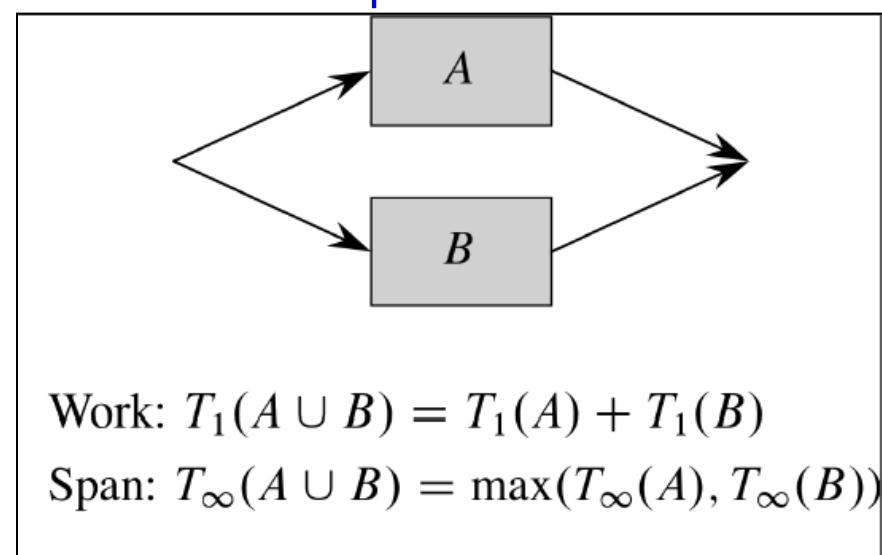
Analyzing multithreaded algs.

- Analyzing **work** is no different than for serial algorithms
- Analyzing **span** is more involved...

- Two computations in series means their spans *add*



- Two computations in parallel means you take *maximum* of individual spans



Analyzing Parallel Fibonacci Computation

- Parallel algorithm to compute Fibonacci numbers:

P-FIB(n)

```
if n ≤ 1 return n;  
else x = spawn P-FIB (n-1); // parallel execution  
    y = spawn P-FIB (n-2) ; // parallel execution  
    sync; // wait for results of x and y  
    return x + y;
```

Work of Fibonacci

- We want to know the **work** and **span** of the Fibonacci computation, so that we can compute the parallelism (work/span) of the computation.
- The **work** T_1 is straightforward, since it amounts to computing the running time of the serialized algorithm:

$$T_1 = T(n-1) + T(n-2) + \Theta(1)$$

$$= \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$$

Span of Fibonacci

- Recall that the **span** T_∞ is the longest path in the computational DAG. Since $\text{FIB}(n)$ spawns $\text{FIB}(n-1)$ and $\text{FIB}(n-2)$, we have:

$$\begin{aligned} T_\infty(n) &= \max(T_\infty(n-1), T_\infty(n-2)) + \Theta(1) \\ &= T_\infty(n-1) + \Theta(1) \\ &= \Theta(n) \end{aligned}$$

Parallelism of Fibonacci

- The parallelism of the Fibonacci computation is:

$$\frac{T_1(n)}{T_\infty(n)} = \Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^n / n\right)$$

which grows dramatically as n gets large.

- Therefore, even on the largest parallel computers, a modest value of n suffices to achieve near perfect linear speedup, since we have considerable parallel slackness.

Parallel Loops

- Consider multiplying $n \times n$ matrix A by an n -vector x :

$$y_i = \sum_{j=1}^n a_{ij}x_j$$

- Can be calculated by computing all entries of y in parallel:

```
MAT-VEC( $A$ ,  $x$ )
```

```
 $n = A.rows$ 
```

```
let  $y$  be a new vector of length  $n$ 
```

```
parallel for  $i = 1$  to  $n$ 
```

```
     $y_i = 0$ 
```

```
parallel for  $i = 1$  to  $n$ 
```

```
    for  $j = 1$  to  $n$ 
```

```
         $y_i = y_i + a_{ij}x_j$ 
```

```
return  $y$ 
```

Here, **parallel for** is implemented by the compiler as a divide-and-conquer subroutine using nested parallelism

Parallel Loops – Implementation

MAT-VEC(A, x)

$n = A.rows$

let y be a new vector of length n

parallel for $i = 1$ **to** n

$y_i = 0$

parallel for $i = 1$ **to** n

for $j = 1$ **to** n

$y_i = y_i + a_{ij}x_j$

return y

Here, **parallel for** is implemented by the compiler as a divide-and-conquer subroutine using nested parallelism

MAT-VEC-MAIN-LOOP(A, x, y, n, i, i')

if $i == i'$

for $j = 1$ **to** n

$y_i = y_i + a_{ij}x_j$

else $mid = \lfloor (i + i')/2 \rfloor$

spawn **MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)**

MAT-VEC-MAIN-LOOP($A, x, y, n, mid + 1, i'$)

sync

Parallel Loops – Implementation

`MAT-VEC(A, x)`

$n = A.rows$

let y be a new vector of length n

parallel for $i = 1$ to n

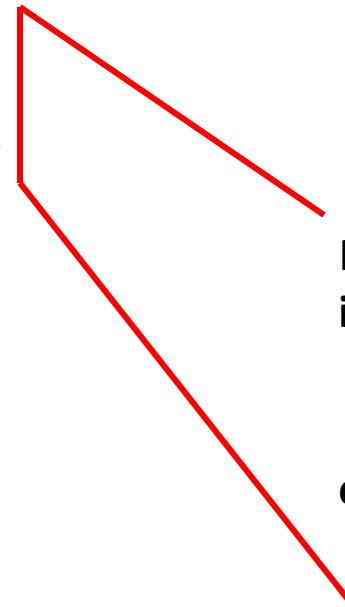
$y_i = 0$

parallel for $i = 1$ to n

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

return y



Here, **parallel for** is implemented by the compiler as a divide-and-conquer subroutine using nested parallelism

`MAT-VEC-MAIN-LOOP(A, x, y, n, i, i')`

if $i == i'$

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

else $mid = \lfloor (i + i')/2 \rfloor$

spawn `MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)`

`MAT-VEC-MAIN-LOOP($A, x, y, n, mid + 1, i'$)`

sync

Work:

Span:

Parallelism

Parallel Loops – Implementation

`MAT-VEC(A, x)`

$n = A.rows$

let y be a new vector of length n

parallel for $i = 1$ to n

$y_i = 0$

parallel for $i = 1$ to n

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

return y

Work: $T_1(n) = \Theta(n^2)$

Span:

Parallelism

Here, **parallel for** is implemented by the compiler as a divide-and-conquer subroutine using nested parallelism

`MAT-VEC-MAIN-LOOP(A, x, y, n, i, i')`

if $i == i'$

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

else $mid = \lfloor (i + i')/2 \rfloor$

spawn `MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)`

`MAT-VEC-MAIN-LOOP($A, x, y, n, mid + 1, i'$)`

sync

Parallel Loops – Implementation

`MAT-VEC(A, x)`

$n = A.rows$

let y be a new vector of length n

parallel for $i = 1$ to n

$y_i = 0$

parallel for $i = 1$ to n

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

return y

Work: $T_1(n) = \Theta(n^2)$

Span: $T_\infty(n) = \Theta(\lg n) + \Theta(\lg n) + \Theta(n)$
 $= \Theta(n)$

Here, **parallel for** is implemented by the compiler as a divide-and-conquer subroutine using nested parallelism

`MAT-VEC-MAIN-LOOP(A, x, y, n, i, i')`

if $i == i'$

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

else $mid = \lfloor (i + i')/2 \rfloor$

spawn `MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)`

`MAT-VEC-MAIN-LOOP($A, x, y, n, mid + 1, i'$)`

sync

Parallel Loops – Implementation

MAT-VEC(A, x)

$n = A.rows$

let y be a new vector of length n

parallel for $i = 1$ to n

$y_i = 0$

parallel for $i = 1$ to n

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

return y

Work: $T_1(n) = \Theta(n^2)$

Span: $T_\infty(n) = \Theta(\lg n) + \Theta(\lg n) + \Theta(n)$
 $= \Theta(n)$

Parallelism = $\Theta(n^2)/\Theta(n) = \Theta(n)$

Here, **parallel for** is implemented by the compiler as a divide-and-conquer subroutine using nested parallelism

MAT-VEC-MAIN-LOOP(A, x, y, n, i, i')

if $i == i'$

for $j = 1$ to n

$y_i = y_i + a_{ij}x_j$

else $mid = \lfloor (i + i')/2 \rfloor$

spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)

 MAT-VEC-MAIN-LOOP($A, x, y, n, mid + 1, i'$)

sync

Race Conditions

- A multithreaded algorithm is **deterministic** if and only if does the same thing on the same input, no matter how the instructions are scheduled.
- A multithreaded algorithm is **nondeterministic** if its behavior might vary from run to run.
- Often, a multithreaded algorithm that is intended to be deterministic fails to be.

Determinacy Race

- A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

RACE-EXAMPLE()

$x = 0$

parallel for $i = 1$ to 2

$x = x + 1$

print x

Determinacy Race

- When a processor increments x , the operation is not indivisible, but composed of a sequence of instructions:
 - 1) Read x from memory into one of the processor's registers
 - 2) Increment the value of the register
 - 3) Write the value in the register back into x in memory

Determinacy Race

x = 0

assign r1 = 0

incr r1, so r1=1

assign r2 = 0

incr r2, so r2 = 1

write back x = r1

write back x = r2

print x // now prints 1 instead of 2

Example: Using work, span for design

- Consider a program prototyped on 32-processor computer, but aimed to run on supercomputer with 512 processors
- Designers incorporated an optimization to reduce run time of benchmark on 32-processor machine, from $T_{32} = 65$ to $T'_{32} = 40$
- But, can show that this optimization made overall runtime on 512 processors slower than the original! Thus, optimization didn't help.
- Analysis for 32 processors:

Original:

$$T_1 = 2048$$

$$T_\infty = 1$$

$$T_P = T_1/P + T_\infty$$

$$\Rightarrow T_{32} = 2048/32 + 1 = 65$$

Optimized:

$$T'_1 = 1024$$

$$T'_\infty = 8$$

$$T'_P = T'_1/P + T'_\infty$$

$$\Rightarrow T'_{32} = 1024/32 + 8 = 40$$

- Analysis for 512 processors:

Original:

$$T_1 = 2048$$

$$T_\infty = 1$$

$$T_P = T_1/P + T_\infty$$

$$\Rightarrow T_{512} = 2048/512 + 1 = 5$$

Optimized:

$$T'_1 = 1024$$

$$T'_\infty = 8$$

$$T'_P = T'_1/P + T'_\infty$$

$$\Rightarrow T'_{512} = 1024/512 + 8 = 10$$

Difference depends on whether or not span dominates

In-Class Exercise

Prof. Karan measures her deterministic multithreaded algorithm on 4, 10, and 64 processors of an ideal parallel computer using a greedy scheduler. She claims that the 3 runs yielded $T_4 = 80$ seconds, $T_{10} = 42$ seconds, and $T_{64} = 10$ seconds. Are these runtimes believable?

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

$n = A.\text{rows}$

let C be a new $n \times n$ matrix

parallel for $i = 1$ to n

parallel for $j = 1$ to n

$c_{ij} = 0$

for $k = 1$ to n

$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

$n = A.\text{rows}$

let C be a new $n \times n$ matrix

parallel for $i = 1$ to n

parallel for $j = 1$ to n

$$c_{ij} = 0$$

for $k = 1$ to n

$$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$$

return C

Work:

Span:

Parallelism:

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

$n = A.\text{rows}$

let C be a new $n \times n$ matrix

parallel for $i = 1$ to n

parallel for $j = 1$ to n

$c_{ij} = 0$

for $k = 1$ to n

$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

return C

Work: $T_1(n) = \Theta(n^3)$

Span:

Parallelism:

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

$n = A.\text{rows}$

let C be a new $n \times n$ matrix

parallel for $i = 1$ **to** n

parallel for $j = 1$ **to** n

$c_{ij} = 0$

for $k = 1$ **to** n

$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

return C

Work: $T_1(n) = \Theta(n^3)$

Span: $T_\infty(n) = \Theta(\lg n) + \Theta(\lg n) + \Theta(n)$
 $= \Theta(n)$

Parallelism:

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

$n = A.\text{rows}$

let C be a new $n \times n$ matrix

parallel for $i = 1$ **to** n

parallel for $j = 1$ **to** n

$c_{ij} = 0$

for $k = 1$ **to** n

$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$

return C

Work: $T_1(n) = \Theta(n^3)$

Span: $T_\infty(n) = \Theta(\lg n) + \Theta(\lg n) + \Theta(n)$
 $= \Theta(n)$

Parallelism = $\Theta(n^3)/\Theta(n) = \Theta(n^2)$

Now, let's try divide-and-conquer

- Remember: Basic divide and conquer method:
To multiply two $n \times n$ matrices, $A \times B = C$, divide into sub-matrices:

$$\begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} \cdot \begin{vmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{vmatrix} = \begin{vmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{vmatrix}$$

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Parallelized Divide-and-Conquer Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):

n = A.rows

if *n* == 1:

$$c_{11} = a_{11}b_{11}$$

else:

allocate a temporary matrix T[1 ... *n*, 1 ... *n*]

partition A, B, C, and T into $(n/2) \times (n/2)$ submatrices

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₁, A₁₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₂, A₁₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₁, A₂₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₂, A₂₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₁, A₁₂, B₂₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₂, A₁₂, B₂₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₂₁, A₂₂, B₂₁)

P-MATRIX-MULTIPLY-RECURSIVE (T₂₂, A₂₂, B₂₂)

sync

parallel for *i* = 1 **to** *n*

parallel for *j* = 1 **to** *n*

$$c_{ij} = c_{ij} + t_{ij}$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

Parallelized Divide-and-Conquer Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):

n = A.rows

if *n* == 1:

$$c_{11} = a_{11}b_{11}$$

else:

allocate a temporary matrix T[1 ... *n*, 1 ... *n*]

partition A, B, C, and T into $(n/2) \times (n/2)$ submatrices

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₁, A₁₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₂, A₁₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₁, A₂₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₂, A₂₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₁, A₁₂, B₂₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₂, A₁₂, B₂₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₂₁, A₂₂, B₂₁)

P-MATRIX-MULTIPLY-RECURSIVE (T₂₂, A₂₂, B₂₂)

sync

parallel for *i* = 1 **to** *n*

parallel for *j* = 1 **to** *n*

$$c_{ij} = c_{ij} + t_{ij}$$

Work:

Span:

Parallelism:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

Parallelized Divide-and-Conquer Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):

n = A.rows

if *n* == 1:

$$c_{11} = a_{11}b_{11}$$

else:

allocate a temporary matrix T[1 ... *n*, 1 ... *n*]

partition A, B, C, and T into $(n/2) \times (n/2)$ submatrices

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₁, A₁₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₂, A₁₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₁, A₂₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₂, A₂₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₁, A₁₂, B₂₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₂, A₁₂, B₂₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₂₁, A₂₂, B₂₁)

P-MATRIX-MULTIPLY-RECURSIVE (T₂₂, A₂₂, B₂₂)

sync

parallel for *i* = 1 **to** *n*

parallel for *j* = 1 **to** *n*

$$c_{ij} = c_{ij} + t_{ij}$$

Work:

$$\begin{aligned} T_1(n) &= 8T_1\left(\frac{n}{2}\right) + \Theta(n^2) \\ &= \Theta(n^3) \end{aligned}$$

Span:

Parallelism:

$$\begin{aligned} \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} &= \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \\ &= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \end{aligned}$$

Parallelized Divide-and-Conquer Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):

$n = A.\text{rows}$

if $n == 1$:

$$c_{11} = a_{11}b_{11}$$

else:

allocate a temporary matrix $T[1 \dots n, 1 \dots n]$

partition A, B, C, and T into $(n/2) \times (n/2)$ submatrices

spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{11}, A_{11}, B_{11})

spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{12}, A_{11}, B_{12})

spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{21}, A_{21}, B_{11})

spawn P-MATRIX-MULTIPLY-RECURSIVE (C_{22}, A_{21}, B_{12})

spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{11}, A_{12}, B_{21})

spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{12}, A_{12}, B_{22})

spawn P-MATRIX-MULTIPLY-RECURSIVE (T_{21}, A_{22}, B_{21})

P-MATRIX-MULTIPLY-RECURSIVE (T_{22}, A_{22}, B_{22})

sync

parallel for $i = 1$ **to** n

parallel for $j = 1$ **to** n

$$c_{ij} = c_{ij} + t_{ij}$$

Work:

$$\begin{aligned} T_1(n) &= 8T_1\left(\frac{n}{2}\right) + \Theta(n^2) \\ &= \Theta(n^3) \end{aligned}$$

Span:

$$\begin{aligned} T_\infty(n) &= T_\infty\left(\frac{n}{2}\right) + \Theta(\lg n) \\ &= \Theta(\lg^2 n) \end{aligned}$$

Parallelism:

$$\begin{aligned} \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} &= \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \\ &= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \end{aligned}$$

Parallelized Divide-and-Conquer Matrix Multiplication

P-MATRIX-MULTIPLY-RECURSIVE(C, A, B):

$n = A.\text{rows}$

if $n == 1$:

$$c_{11} = a_{11}b_{11}$$

else:

allocate a temporary matrix $T[1 \dots n, 1 \dots n]$

partition A, B, C, and T into $(n/2) \times (n/2)$ submatrices

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₁, A₁₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₁₂, A₁₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₁, A₂₁, B₁₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (C₂₂, A₂₁, B₁₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₁, A₁₂, B₂₁)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₁₂, A₁₂, B₂₂)

spawn P-MATRIX-MULTIPLY-RECURSIVE (T₂₁, A₂₂, B₂₁)

P-MATRIX-MULTIPLY-RECURSIVE (T₂₂, A₂₂, B₂₂)

sync

parallel for $i = 1$ **to** n

parallel for $j = 1$ **to** n

$$c_{ij} = c_{ij} + t_{ij}$$

Work:

$$\begin{aligned} T_1(n) &= 8T_1\left(\frac{n}{2}\right) + \Theta(n^2) \\ &= \Theta(n^3) \end{aligned}$$

Span:

$$\begin{aligned} T_\infty(n) &= T_\infty\left(\frac{n}{2}\right) + \Theta(\lg n) \\ &= \Theta(\lg^2 n) \end{aligned}$$

Parallelism: $\Theta\left(\frac{n^3}{\lg^2 n}\right)$

$$\begin{aligned} \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} &= \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \\ &= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \end{aligned}$$

Multithreading Strassen's Alg

- Remember how Strassen works?

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed in general as follows:

$$\begin{pmatrix} C_{11} & | & C_{12} \\ \hline C_{21} & & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & | & A_{12} \\ \hline A_{21} & & A_{22} \end{pmatrix} * \begin{pmatrix} B_{11} & | & B_{12} \\ \hline B_{21} & & B_{22} \end{pmatrix}$$

$$= \begin{pmatrix} P_5 + P_4 - P_2 + P_6 & P_1 + P_2 \\ P_3 + P_4 & P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

Formulas for Strassen's Algorithm

$$P_1 = A_{11} * (B_{12} - B_{22})$$

$$P_2 = (A_{11} + A_{12}) * B_{22}$$

$$P_3 = (A_{21} + A_{22}) * B_{11}$$

$$P_4 = A_{22} * (B_{21} - B_{11})$$

$$P_5 = (A_{11} + A_{22}) * (B_{11} + B_{22})$$

$$P_6 = (A_{12} - A_{22}) * (B_{21} + B_{22})$$

$$P_7 = (A_{11} - A_{21}) * (B_{11} + B_{12})$$

Multi-threaded version of Strassen's Algorithm

$$P_1 = A_{11} * (B_{12} - B_{22})$$

$$P_2 = (A_{11} + A_{12}) * B_{22}$$

$$P_3 = (A_{21} + A_{22}) * B_{11}$$

$$P_4 = A_{22} * (B_{21} - B_{11})$$

$$P_5 = (A_{11} + A_{22}) * (B_{11} + B_{22})$$

$$P_6 = (A_{12} - A_{22}) * (B_{21} + B_{22})$$

$$P_7 = (A_{11} - A_{21}) * (B_{11} + B_{12})$$

First, create 10 matrices,
each of which is $n/2 \times n/2$.

Work = $\Theta(n^2)$

Span = $\Theta(\lg n)$,
using doubly-nested
parallel for loops

Formulas for Strassen's Algorithm

$$P_1 = A_{11} \boxed{*} (B_{12} - B_{22})$$

$$P_2 = (A_{11} + A_{12}) \boxed{*} B_{22}$$

$$P_3 = (A_{21} + A_{22}) \boxed{*} B_{11}$$

$$P_4 = A_{22} \boxed{*} (B_{21} - B_{11})$$

$$P_5 = (A_{11} + A_{22}) \boxed{*} (B_{11} + B_{22})$$

$$P_6 = (A_{12} - A_{22}) \boxed{*} (B_{21} + B_{22})$$

$$P_7 = (A_{11} - A_{21}) \boxed{*} (B_{11} + B_{12})$$

First, create 10 matrices, each of which is $n/2 \times n/2$.

Work = $\Theta(n^2)$

Then, recursively compute 7 matrix products

Then add together, using
doubly-nested parallel for loops

$$\begin{pmatrix} C_{11} & C_{12} \\ \hline C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{pmatrix} * \begin{pmatrix} B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} P_5 + P_4 - P_2 + P_6 \\ P_3 + P_4 \end{pmatrix} \begin{pmatrix} P_1 + P_2 \\ P_5 + P_1 - P_3 - P_7 \end{pmatrix}$$

$$\text{Work} = \Theta(n^2)$$

$$\text{Span} = \Theta(\lg n),$$

Resulting Runtime for Multithreaded Strassens' Alg

Work:

$$\begin{aligned}T_1(n) &= \Theta(1) + \Theta(n^2) + 7T_1\left(\frac{n}{2}\right) + \Theta(n^2) \\&= 7T_1\left(\frac{n}{2}\right) + \Theta(n^2) \\&= \Theta(n^{\lg 7})\end{aligned}$$

Span:

$$\begin{aligned}T_\infty(n) &= T_\infty\left(\frac{n}{2}\right) + \Theta(\lg n) \\&= \Theta(\lg^2 n)\end{aligned}$$

Parallelism: $\Theta\left(\frac{n^{\lg 7}}{\lg^2 n}\right)$

Reading Assignments

- Reading assignment for next class:
 - Chapter 27.3
- Announcement: Exam #2 on Tuesday, April 1
 - Will cover greedy algorithms, amortized analysis
 - HW 6-9