Today:
- Multithreaded Algs.

COSC 581, Algorithms
March 13, 2014

Many of these slides are adapted from several online sources

Reading Assighments

e Today’s class:
— Chapter 27.1-27.2

e Reading assignment for next class:
— Chapter 27.3

e Announcement: Exam #2 on Tuesday, April 1

— Will cover greedy algorithms, amortized analysis
— HW 6-9

Scheduling

 The performance depends not just on the work and
span. Additionally, the strands must be scheduled
efficiently.

 The strands must be mapped to static threads, and
the operating system schedules the threads on the
processors themselves.

 The scheduler must schedule the computation with
no advance knowledge of when the strands will be
spawned or when they will complete; it must operate
online.

Greedy Scheduler

e We will assume a greedy scheduler in our analysis,
since this keeps things simple. A greedy scheduler
assigns as many strands to processors as possible in
each time step.

* On P processors, if at least P strands are ready to
execute during a time step, then we say that the step
is a complete step; otherwise we say that it is an
incomplete step.

Greedy Scheduler Theorem

e On an ideal parallel computer with P processors, a greedy
scheduler executes a multithreaded computation with
work T; and span T, in time:

Tp < —+ T,
FP=0p

e Given the fact the best we can hope for on P processors
isTp = Tl/p by the work law, and Tp =T, by the span
law, the sum of these two gives the lower bounds

Proof (1/3)

e Let’s consider the complete steps. In each complete
step, the P processors perform a total of P work.

e Seeking a contradiction, we assume that the number of
complete steps exceeds /p Then the total work of
the complete steps is at least

= Tl—(Tl IIlOdP)—I—P
> Tj

e Since this exceeds the total work required by the
computation, this is impossible.

Proof (2/3)

e Now consider an incomplete step. Let G be the
DAG representing the entire computation.
W.l.0.g. assume that each strand takes unit time
(otherwise replace longer strands by a chain of
unit-time strands).

e Let G’ be the subgraph of G that has yet to be
executed at the start of the incomplete step, and
let G be the subgraph remaining to be executed
after the completion of the incomplete step.

Proof (3/3)

* A longest path in a DAG must necessarily start at
a vertex with in-degree 0. Since an incomplete
step of a greedy scheduler executes all strands
with in-degree 0 in G’, the length of the longest

nath in G” must be 1 less than the length of the

ongest path in G'.

e Put differently, an incomplete step decreases the
span of the unexecuted DAG by 1. Thus, the
number of incomplete steps is at most T, .

e Since each step is either complete or incomplete,
the theorem follows. B

Corollary

e The running time of any multithreaded computation

scheduled by a greedy scheduler on an ideal parallel
computer with P processors is within a factor of 2 of optimal.

Proof: Let Tp" be the running time produced by an optimal
scheduler. Let T; be the work and T, be the span of the
computation. We know from work and span laws that:

Te > max(Ty/P, To).

By the theorem,
Tp < /p+ T < 2max("/p,Tw) < 275"

Slackness

 The parallel slackness of a multithreaded
computation executed on an ideal parallel computer
with P processors is the ratio of parallelism by P.

e Slackness = (T; / Ty) /P

e If the slackness is less than 1, we cannot hope to
achieve a linear speedup.

Achieving Near-Perfect Speedup

e Let Tp be the running time of a multithreaded
computation produced by a greedy scheduler on an
ideal computer with P processors. Let T; be the work
and T, be the span of the computation. If the

slackness is big, P << (T / T), then
Tr is approximately T1 /P [i.e, near-perfect speedup]

e Proof: If P<<(T; / Ty), then Ty, << T; / P. Thus, by the
theorem, Tp <T; / P+ Tw=T; / P. By the work law,
Tp >T; / P. Hence, Tp = Ty / P, as claimed.

Here, “big” means slackness of 10 —i.e., at least 10
times more parallelism than processors

Analyzing multithreaded algs.

* Analyzing work is no different than for serial

algorithms

* Analyzing span is more involved...

— Two computations in series
means their spans add

Work: T1 (AU B) = T,(A) + T1(B)
Span: Too(AU B) = Too(A) + T (B)

— Two computations in parallel
means you take maximum of
individual spans

A
< B >
Work: T (AU B) = T (A) + T\(B)
Span: T,(A U B) = max(T(A), Too(B))

Analyzing Parallel Fibonacci
Computation

e Parallel algorithm to compute Fibonacci numbers:

P-FiB(n)
ifn<1 returnn;
else x = spawn P-FiB (n-1); // parallel execution
y = spawn P-FiB (n-2) ; // parallel execution
sync; // wait for results of x and y
return x +vy,

Work of Fibonacci

e We want to know the work and span of the Fibonacci
computation, so that we can compute the parallelism
(work/span) of the computation.

e The work T1 is straightforward, since it amounts to
computing the running time of the serialized algorithm:

T, =T(n-1) + T(n-2) + 6(1)

6 ((12@)")

Span of Fibonacci

e Recall that the span T, is the longest path in the
computational DAG. Since FiB(n) spawns

FiB(n-1) and FiB(n-2),
we have:
Tow(m) = max(Toe(n — 1), To(n — 2)) + 6(1)
=T,(n—1)+06(1)
= 0(n)

Parallelism of Fibonacci

 The parallelism of the Fibonacci computation is:

Tn(n) 1+vV5\ "
Too(nf@((2) /")

which grows dramatically as n gets large.

 Therefore, even on the largest parallel
computers, a modest value of n suffices to

achieve near perfect linear speedup, since we
have considerable parallel slackness.

Parallel Loops

e Consider multiplying n x n matrix A by an n-vector x:

n

Yi = Z a;jXj

j=1

e Can be calculated by computing all entries of y in parallel:

MAT-VEC(A, x)

n =A.rows

let y be a new vector of length n
parallelfori =1ton

yi=0
parallelfori =1ton
forj=1ton

Vi =Yi T a;X;
return y

Here, parallel for is implemented
by the compiler as a divide-and-
conquer subroutine using nested
parallelism

Parallel Loops — Implementation

MAT-VEC(A, x)

n =A.rows
let y be a new vector of length n Here, parallel for is implemented
parallel fori = 1ton by the compiler as a divide-and-

yi=0 conqguer subroutine using nested
parallel fori =1ton parallelism

forj=1ton

Yi = Vi T ajjX;
return y MAT-VEC-MAIN-LOOP(A, x, ¥, n, i, i)
ifi==1i’
forj=1ton

Vi =Yi ta;jX;
else mid=|(i +1i")/2]
spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
MAT-VEC-MAIN-LOOP(A, x, y, n, mid + 1, i’)
sync

Parallel Loops — Implementation

MAT-VEC(A, x)

n =A.rows
let y be a new vector of length n Here, parallel for is implemented
parallel fori = 1ton by the compiler as a divide-and-
yi=0 conqguer subroutine using nested
parallel fori =1ton parallelism
forj=1ton
Yi = Vi T ajjX;
return y
MAT-VEC-MAIN-LOOP(A, x, ¥, n, i, i*)
ifi==1i’
forj=1ton
Vi =Yi Tt ajX;
Work: else mid=|(i+i")/2]
spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
Span: MAT-VEC-MAIN-LOOP(A, X, y, n, mid + 1, i)
sync

Parallelism

Parallel Loops — Implementation

MAT-VEC(A, x)

n =A.rows
let y be a new vector of length n Here, parallel for is implemented
parallel fori = 1ton by the compiler as a divide-and-
yi=0 conqguer subroutine using nested
parallel fori =1ton parallelism
forj=1ton
Yi = Vi T ajjX;
return y
MAT-VEC-MAIN-LOOP(A, x, ¥, n, i, i*)
ifi==1i’
forj=1ton
Vi =Yi Tt ajX;
Work: T;(n) = 6(n®) else mid=|(i +i")/2]
spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
Span: MAT-VEC-MAIN-LOOP(A, X, y, n, mid + 1, i)
sync

Parallelism

Parallel Loops — Implementation

MAT-VEC(A, x)

n =A.rows
let y be a new vector of length n Here, parallel for is implemented
parallel fori =1ton by the compiler as a divide-and-
yi=0 conquer subroutine using nested
parallel fori =1ton parallelism
forj=1ton
Yi = Vi T ajjX;
return y
MAT-VEC-MAIN-LOOP(A, x, ¥, n, i, i*)
ifi==1i’
forj=1ton
, Vi =Yi Tt ajX;
Work: Ty(n) = @(n*) else mid=|(i +i")/2]

spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
Span: T,(n) = O(Ign) + O(lgn) + O(n) MAT-VEC-MAIN-LOOP(A, X, y, n, mid + 1, i)
= 0(n) sync

Parallelism

Parallel Loops — Implementation

MAT-VEC(A, x)

n =A.rows
let y be a new vector of length n Here, parallel for is implemented
parallel fori =1ton by the compiler as a divide-and-
yi=0 conquer subroutine using nested
parallel fori =1ton parallelism
forj=1ton
Yi = Vi T ajjX;
return y
MAT-VEC-MAIN-LOOP(A, x, ¥, n, i, i*)
ifi==1i’
forj=1ton
, Vi =Yi Tt ajX;
Work: Ty(n) = @(n*) else mid=|(i +i")/2]

spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)
Span: T,(n) = O(Ign) + O(lgn) + O(n) MAT-VEC-MAIN-LOOP(A, X, y, n, mid + 1, i)
= 0(n) sync

Parallelism = @(n?)/0(n) = 6(n)

Race Conditions

A multithreaded algorithm is deterministic if and
only if does the same thing on the same input, no
matter how the instructions are scheduled.

A multithreaded algorithm is nondeterministic if its
behavior might vary from run to run.

e Often, a multithreaded algorithm that is intended to
be deterministic fails to be.

Determinacy Race

A determinacy race occurs when two logically
parallel instructions access the same memory

location and at least one of the instructions performs
a write.

RACE-EXAMPLE()

Xx=0
parallel fori=1to 2
X =X+1

print x

Determinacy Race

 When a processor increments x, the operation
is not indivisible, but composed of a sequence
of instructions:

1) Read x from memory into one of the processor’s
registers

2) Increment the value of the register

3) Write the value in the register back into x in
memory

Determinacy Race

Xx=0

assignrl =0
incrrl, sorl=1
assignr2=0

incrr2,sor2=1
write back x =rl
write back x =r2
print x // now prints 1 instead of 2

Example: Using work, span for design

Consider a program prototyped on 32-processor computer, but aimed to run
on supercomputer with 512 processors

Designers incorporated an optimization to reduce run time of benchmark on
32-processor machine, from T3, = 65to T'3, = 40

But, can show that this optimization made overall runtime on 512 processors
slower than the original! Thus, optimization didn’t help.

Analysis for 32 processors:

Original: Optimized:
T, =2048 T'), =1024
To=1 T'w =8
T '
Ty ="fp+ . re =Y
= Ty, = 2048/32 + 1 o Ty, = 1024/32 + 8 @
Analysis for 512 processors: Obtimized
Original: P |Tn,1|zE 1624
T, =2048 T,l - 2
T, =1 o = "
Tp ="1/p+T., T'p =" 1/p+Ts

Difference depends on whether or not span dominates

In-Class Exercise

Prof. Karan measures her deterministic multithreaded algorithm on 4, 10, and 64 processors
of an ideal parallel computer using a greedy scheduler. She claims that the 3 runs yielded T,
= 80 seconds, T,, =42 seconds, and T, = 10 seconds. Are these runtimes believable?

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)
n=A.rows
let C be a new n x n matrix
parallel fori=1ton
parallel forj=1ton
Cij =0
fork=1ton
Cij = Cij + Qg * Dy

return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

n=A.rows

) Work:
let C be a new n x n matrix
parallel fori =1ton Span:
parallel forj=1ton
Cij =0 _
fork=1ton Parallelism:

Cij = Cij + Air * bk]
return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

n=A-rows Work: T;(n) = 0(n3)
let C be a new n x n matrix S
parallelfori=1ton Span:
parallel forj=1ton
Cij =0 _
fork=1ton Parallelism:

Cij = Cij + Air * bk]
return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

n=A.TOWS Work: T;(n) = 0(n3)
let C be a new n x n matrix o
parallel fori =1ton Span: T, (n) = O(gn) +0(Ign) + O(n)
parallel forj=1ton = 0(n)
Cij = 0 .
fork = 1ton Parallelism:

Cij = Cij + Air * bk]
return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-SQUARE-MATRIX-MULTIPLY(A, B)

n=A.rows Work: T, (n) = 6(n%)
let C be a new n x n matrix ori: fain) = B
parallel fori =1ton Span: T, (n) = O(gn) +0(Ign) + O(n)
parallel forj=1ton = 0(n)
¢ij =0 Parallelism = @ (n3)/0(n) = @(n?
fork=1ton arallelism =0 (n>)/0(n) = O(n*)

Cij = Cij + Air * bk]
return C

Now, let’s try divide-and-conquer

e Remember: Basic divide and conquer method:

To multiply two n x n matrices, A x B = C, divide
into sub-matrices:

A1 App
Az A

Bll BlZ
BZl BZZ

Cl 1 Cl 2
CZ 1 CZ 2

C,=A;B +ALB),

C,=A; B, +ALB),

€,y =AyB A8,

C,, =A, B, +A,B,),

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MuULTIPLY-RECURSIVE(C, A, B):

n = A.rows
ifn==1:

€11 = A11b11
else:

allocate a temporary matrix T[1...n, 1 ... n]
partition A, B, C, and T into (n/2) x (n/2) submatrices
spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)
P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
sync
parallel fori =1ton ey, 10,) b, N B)
parallel forj=1ton L Coy Co) - [k Ay Ag) ' (By Bss)
Cij = Cij + tjj _ { Ay By + ApByy Ay Big + AjaBoy)

\ A1Bi + ApBy As B + ApBa |

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MuULTIPLY-RECURSIVE(C, A, B):

n = A.rows
) Work:
ifn==1:
€11 = A11b14
else:

allocate a temporary matrix T[1...n, 1 ... n]

partition A, B, C, and T into (n/2) x (n/2) submatrices
spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12) Span:
spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22) Parallelism:

spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21)

P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
sync
parallel fori =1ton (Oy Cpp) f My e N B By Y
parallel fOl'j =1lton L Cor O) N {x Ay Apy) . (By B)
Cij = Cij + tij _ { AnBu + ApBy A Bia + AjpBa)

\ A1Bi + ApBy As B + ApBa |

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MuULTIPLY-RECURSIVE(C, A, B):

n= A.rows Work:
ifn==1: n

C11 = a11b1 T,(n) = 8T, (—) +0(n?)
else: 2
allocate a temporary matrix T[1...n, 1 ... n] = @(713)
partition A, B, C, and T into (n/2) x (n/2) submatrices
spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11) Span:
spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21) Parallelism:

P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
sync
parallel fori =1ton b,) e, M, & T B)
parallel forj=1ton L Coy Co) - [k Ay Ag) ' (By Bss)
Cij = Cij + tjj _ { AnBu + ApBy AnBi + A By)

\ A1Bi + ApBy As B + ApBa |

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MuULTIPLY-RECURSIVE(C, A, B):

n= A.rows Work:
ifn==1: n
C11 = a11b1 T,(n) = 8T, (—) +0(n?)
else: 2
allocate a temporary matrix T[1...n, 1 ... n] = @(713)
partition A, B, C, and T into (n/2) x (n/2) submatrices
spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11) Span:
spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12) n
spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11) To(n) = Ty (E) + 0(lgn)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12) — (I Zn)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21) 9
spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21) Parallelism:
P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22)
sync
parallelfori=1ton b,) foe i N Pl)
parallel forj=1ton L Co Co) - [k Ayy Ay) ' (By Bs;)

Cij = Cij + Ly - { Ay By + ApByy Ay Big + AjaBoy)

\ A1Bi + ApBy As B + ApBa |

Parallelized Divide-and-Conquer
Matrix Multiplication

P-MATRIX-MuULTIPLY-RECURSIVE(C, A, B):

;} T_l'i":rO\:NS Work:
C11 = a11b1 T,(n) = 8T, (E) +0(n?)
else: 2
allocate a temporary matrix T[1...n, 1 ... n] = @(713)
partition A, B, C, and T into (n/2) x (n/2) submatrices
spawn P-MATRIX-MULTIPLY-RECURSIVE (C11,A11,B11) Span:
spawn P-MATRIX-MULTIPLY-RECURSIVE (C12,A11,B12) n
spawn P-MATRIX-MULTIPLY-RECURSIVE (C21,A21,B11) To(n) = Ty (E) + 0(lgn)
spawn P-MATRIX-MULTIPLY-RECURSIVE (C22,A21,B12) -0 Zn)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T11,A12,B21) 5
spawn P-MATRIX-MULTIPLY-RECURSIVE (T12,A12,B22)
spawn P-MATRIX-MULTIPLY-RECURSIVE (T21,A22,B21) Parallelism: ® (n3/l))
P-MATRIX-MULTIPLY-RECURSIVE (T22,A22,B22) g
sync
parallelfori=1ton b,) foe i N Pl)
parallel forj=1ton L Co Co) - [k Ayy Ay) ' (By Bs;)

Cij = Cij + Ly - { Ay By + ApByy Ay Big + AjaBoy)

\ A1Bi + ApBy As B + ApBa |

Multithreading Strassen’s Alg

 Remember how Strassen works?

Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of
two matrices can be computed in general as

follows:

, I 4 I 4 I
C11 ‘Clz A11 ‘Alz Bll‘ Blz
— *

\CZl szJ \A21 ‘ Azy _ le‘ Bzy

Formulas for Strassen’s Algorithm

P =Aq; * (B, —Byy)
P, = (A + Ap) * By,
P3 = (Ay + Ay) * By
Py = Ay * (By — Byy)
Ps = (A + Ay) * (Byy + By
Pe = (Ajy = Ay) * (Byy + By))
P, = (Ag; — Ayp) * (Byy + Byy)

D =
1
D=
2
D_ =
3
D =
4

D

5

D _ =
6

D

7

Multi-threaded version
of Strassen’s Algorithm

Ay *

(Blz B Bzz)

(A, +A)

(A, + Ay))

Ay, *

(321 — B11)

(A +A))

*

(A12 - Azz)

*

(A11 - A21)

*

First, create 10 matrices,
each of which is n/2 x n/2.

Work = O@(n?)
Span =0(gn),

using doubly-nested
parallel for loops

D =
1

2

Formulas for Strassen’s Algorithm

A11 * (Blz B Bzz)

(A, + Alz)l>x<

(Ay; + Azz)ll>x<

BZZ
Bll

Azz * (321 —

Byy)

(B,, + B,,)

(B,, + B,,)

(B, + Byy)

First, create 10
matrices, each of
which is n/2 x n/2.

Work = O@(n?)
Then, recursively

compute 7 matrix
products

Then add together, using

doubly-nested parallel for loops

" c N

11 ‘ Ci

\C21 ‘ CZZJ

/A11 ‘ A;

Work = O(n?)

Span =0(lgn),

Resulting Runtime for
Multithreaded Strassens’ Alg

Work:
Ti(n) = 0(1) + 0(n?) + 7T4(2) + 6(n?)
=7T;(2) + 0(n?)

=0(n'87)
Span:
To(n) = T (5) + ©(g 1)
2
= 0(Ig?n)

Parallelism: © (”lg 7/1g2n)

Reading Assighments

e Reading assignment for next class:
— Chapter 27.3

e Announcement: Exam #2 on Tuesday, April 1

— Will cover greedy algorithms, amortized analysis
— HW 6-9

	Today: �− Multithreaded Algs.
	Reading Assignments
	Scheduling
	Greedy Scheduler
	Greedy Scheduler Theorem
	Proof (1/3)
	Proof (2/3)
	Proof (3/3)
	Corollary
	Slackness
	Achieving Near-Perfect Speedup
	Analyzing multithreaded algs.
	Analyzing Parallel Fibonacci Computation
	Work of Fibonacci
	Span of Fibonacci
	Parallelism of Fibonacci
	Parallel Loops
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Parallel Loops – Implementation
	Race Conditions
	Determinacy Race
	Determinacy Race
	Determinacy Race
	Example: Using work, span for design
	In-Class Exercise
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Multithreaded Matrix Multiplication
	Now, let’s try divide-and-conquer
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Parallelized Divide-and-Conquer�Matrix Multiplication
	Multithreading Strassen’s Alg
	Strassen’s Matrix Multiplication
	Formulas for Strassen’s Algorithm
	Multi-threaded version �of Strassen’s Algorithm
	Formulas for Strassen’s Algorithm
	Then add together, using �doubly-nested parallel for loops
	Resulting Runtime for �Multithreaded Strassens’ Alg
	Reading Assignments

