
Today:  
− Linear Programming (con’t.) 

COSC 581, Algorithms 
April 3, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 29.2 

 

• Reading assignment for next Thursday’s class: 
– Chapter 29.3-4 

 



First, a bit of review… 

 



The General LP Problem 
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maximize Linear objective function  

Linear constraints (stated 
as inequalities) 



General Steps of LP 

 
Step 1: Determine the decision variables 
Step 2: Determine the objective function 
Step 3: Determine the constraints 
Step 4: Convert into standard or slack form 
Step 5: Solve 
     



Two Canonical Forms for LP:   
Standard and Slack 

• An LP is in standard form if it is the 
maximization of a linear function subject to 
linear inequalities 
 

• An LP is in slack form if it is the maximization 
of a linear function subject to linear equalities 
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Standard Form 
• We’re given: 

𝑛 real numbers 𝑐1, 𝑐2, … 𝑐𝑛 
𝑚 real numbers 𝑏1, 𝑏2, … 𝑏𝑚 
𝑚𝑛 real numbers 𝑎𝑖𝑖, for 𝑖 = 1, 2, …, 𝑚 and 𝑗 = 1, 2, … 𝑛 

 
• We want to find: 

         𝑛 real numbers 𝑥1, 𝑥2, … 𝑥𝑛 that: 
 
Maximize:   ∑ 𝑐𝑗𝑥𝑗𝑛

𝑗=1  
Subject to:   

�𝑎𝑖𝑖𝑥𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

   for 𝑖 = 1, 2, … ,𝑚 

𝑥𝑗 ≥ 0   for 𝑗 = 1, 2, … ,𝑛 



Compact Version of Standard Form 
• Let:    𝐴 = 𝑎𝑖𝑖  be 𝑚 × 𝑛 matrix 

𝑏 = 𝑏𝑖  be an 𝑚-vector 
𝑐 = 𝑐𝑗  be an 𝑛-vector 

𝑥 = 𝑥𝑗  be an 𝑛-vector 
 

• Rewrite LP as: 
Maximize:   𝑐𝑇𝑥 
Subject to:   

𝐴𝐴 ≤ 𝑏 
𝑥 ≥ 0 
 

• Now, we can concisely specify LP in standard form as (A, b, c) 



Slack Form – Useful for Simplex 
• In slack form, the only inequality constraints are the non-

negativity constraints 
– All other constraints are equality constraints 

• Let: 
  ∑ 𝑎𝑖𝑖𝑥𝑗 ≤ 𝑏𝑖𝑛

𝑗=1    
        be an inequality constraint 
 
• Introduce new variable s, and rewrite as: 

𝑠 = 𝑏𝑖 −�𝑎𝑖𝑖𝑥𝑗

𝑛

𝑗=1

 

𝑠 ≥ 0 
• s is a slack variable; it represents difference between left-hand 

and right-hand sides  



Slack Form (con’t.) 

• In general, we’ll use 𝑥𝑛+𝑖  (instead of s) to denote the 
slack variable associated with the 𝑖th inequality.  
 

• The 𝑖th constraint is therefore:  

𝑥𝑛+𝑖 = 𝑏𝑖 −�𝑎𝑖𝑖𝑥𝑖

𝑛

𝑗=1

 

     along with the non-negativity constraint 𝑥𝑛+𝑖 ≥ 0  



Example 

Standard form: 
 
Maximize 2𝑥1 − 3𝑥2 + 3𝑥3 
subject to: 

𝑥1 + 𝑥2 − x3 ≤ 7 
−x1 − x2 + x3 ≤ −7 

x1 − 2x2 + 2x3 ≤ 4      
x1, x2, x3 ≥ 0 

Slack form: 
 
Maximize 2𝑥1 − 3𝑥2 + 3𝑥3 
subject to: 
𝑥4 = 7 − 𝑥1 − 𝑥2 + 𝑥3       
𝑥5 = −7 + 𝑥1 + 𝑥2 − 𝑥3   
𝑥6 = 4 − 𝑥1 + 2𝑥2 − 2𝑥3 
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0 



Concise Representation of Slack Form 
• Can eliminate “maximize”, “subject to”, and non-negativity constraints (all are 

implicit) 
• And, introduce z as value of objective function: 

𝑧  = 2𝑥1 − 3𝑥2 + 3𝑥3 
𝑥4 = 7 − 𝑥1 − 𝑥2 + 𝑥3       
𝑥5 = −7 + 𝑥1 + 𝑥2 − 𝑥3   
𝑥6 = 4 − 𝑥1 + 2𝑥2 − 2𝑥3 
 

• Then, define slack form of LP as tuple (N, B, A, b, c, v) 
     where N = indices of nonbasic variables 
                 B = indices of basic variables 
 

• We can rewrite LP as: 

𝑧 = 𝑣 + �𝑐𝑗𝑥𝑗
𝑗∈𝑁

 

𝑥𝑖 = 𝑏𝑖 −�𝑎𝑖𝑖𝑥𝑗   for 𝑖 ∈ 𝐵
𝑗∈𝑁

 

 



Formatting problems as LPs 

• Single Source Shortest Path : 
– Input:  A weighted direct graph G=<V,E> with weighted 

function w: E→R, a source s and a destination t, compute d 
which is the weight of the shortest path from s to t. 

– Formulate as a LP: 
• For each vertex v, introduce a variable dv: the weight of the 

shortest path from s to v. 
• LP:   

maximize dt  
subject to: 

 dv ≤ du+ w(u,v)        for each edge (u,v)∈E 
 ds =0 
 
Q:  Why is this a maximization? 
Q:  How many variables?   
Q:  How many constraints?   



Formatting problems as LPs 

• Single Source Shortest Path : 
– Input:  A weighted direct graph G=<V,E> with weighted 

function w: E→R, a source s and a destination t, compute d 
which is the weight of the shortest path from s to t. 

– Formulate as a LP: 
• For each vertex v, introduce a variable dv: the weight of the 

shortest path from s to v. 
• LP:   

maximize dt  
subject to: 

 dv ≤ du+ w(u,v)        for each edge (u,v)∈E 
 ds =0 
 
Q:  Why is this a maximization? 
Q:  How many variables?   |V| 
Q:  How many constraints?   



Formatting problems as LPs – SSSP 

• Single Source Shortest Path : 
– Input:  A weighted direct graph G=<V,E> with weighted 

function w: E→R, a source s and a destination t, compute d 
which is the weight of the shortest path from s to t. 

– Formulate as a LP: 
• For each vertex v, introduce a variable dv: the weight of the 

shortest path from s to v. 
• LP:   

maximize dt  
subject to: 

 dv ≤ du+ w(u,v)        for each edge (u,v)∈E 
 ds =0 
 
Q:  Why is this a maximization? 
Q:  How many variables?   |V| 
Q:  How many constraints?  |E|+1 



Formatting problems as LPs – Max Flow 
• Recall (how could you forget?) Max-flow problem: 

– A directed graph G=<V,E>, a capacity function on 
each edge c(u,v) ≥0 and a source s and a sink t. A 
flow is a function f : V×V→R that satisfies: 

• Capacity constraints: for all u,v∈V, f(u,v)≤ c(u,v). 
• Skew symmetry: for all u,v∈V, f(u,v)= − f(v,u). 
• Flow conservation: for all u∈V −{s,t}, ∑v∈V f(u,v)=0 

– Find a maximum flow from s to t. 



Formatting Max-flow problem as LP 

maximize ∑v∈V fsv − ∑v∈V fvs  
subject to: 

fuv ≤ c(u,v)         for all u, v∈V           //capacity constraints 
∑v∈V fvu = ∑v∈V fuv    for all u ∈ V − {s,t}  //flow conservation 
fuv ≥ 0          for all u, v∈V          //non-negativity constraints 

Q:  How many variables?   
Q:  How many constraints?   



Formatting Max-flow problem as LP 

maximize ∑v∈V fsv − ∑v∈V fvs  
subject to: 

fuv ≤ c(u,v)         for all u, v∈V           //capacity constraints 
∑v∈V fvu = ∑v∈V fuv    for all u ∈ V − {s,t}  //flow conservation 
fuv ≥ 0          for all u, v∈V          //non-negativity constraints 

Q:  How many variables?    |V|2   
Q:  How many constraints?   



Formatting Max-flow problem as LP 

maximize ∑v∈V fsv − ∑v∈V fvs  
subject to: 

fuv ≤ c(u,v)         for all u, v∈V           //capacity constraints 
∑v∈V fvu = ∑v∈V fuv    for all u ∈ V − {s,t}  //flow conservation 
fuv ≥ 0          for all u, v∈V          //non-negativity constraints 

Q:  How many variables?    |V|2   
Q:  How many constraints?    2|V|2 + |V| − 2 



Lots of “standard” problems can be 
formulated as LPs 

• Question:   
When do you use specialized algorithms (like 
Dijkstra for SSSP), and when do you use LP (like the 
LP formulation we just made for SSSP)? 



Lots of “standard” problems can be 
formulated as LPs 

• Question:   
When do you use specialized algorithms (like Dijkstra for 
SSSP), and when do you use LP (like the LP formulation 
we just made for SSSP)? 
 

• Answer: 
– Specialized solutions often provide better runtime 

performance 
– But, when specialized solutions aren’t available, LP 

gives a “generic” approach applicable to many  types 
of problems 



The Simplex algorithm for LP 

• Classical method for solving LP problems 
• Very simple 
• Worst case run time is not polynomial 
• But, often very fast in practice 



Recall Important Observation: 
Optimal Solutions are at a Vertex or Line Segment 
• Intersection of objective function and feasible region is either 

vertex or line segment 
 
 
 
 
 
 
 

• Feasible region is convex – makes optimization much easier! 
• Simplex algorithm finds LP solution by: 

– Starting at some vertex 
– Moving along edge of simplex to neighbor vertex whose value is at 

least as large 
– Terminates when it finds local maximum 

• Convexity ensures this local maximum is globally optimal 

Optimum 
(x,y,z)=(0,0,3) 

x 

y 

z 

Feasible 
Region 



Example for Simplex algorithm 
Maximize 3x1+x2+2x3  
Subject to:  

x1+x2+3x3 ≤ 30      
2x1+2x2+5x3 ≤ 24      
4x1+x2+2x3 ≤ 36      
x1, x2, x3≥0  
    

Change to slack form: 
z= 3x1+x2+2x3    
x4=30- x1-x2-3x3     
x5=24- 2x1-2x2-5x3      
x6=36- 4x1-x2-2x3     
x1, x2, x3,  x4, x5, x6 ≥0  



Recall, regarding Slack Form… 

Slack form: 
 
Maximize 2𝑥1 − 3𝑥2 + 3𝑥3 
subject to: 
𝑥4 = 7 −𝑥1 −𝑥2 + 𝑥3       
𝑥5 = −7 + 𝑥1 + 𝑥2 − 𝑥3   
𝑥6 = 4 − 𝑥1 + 2𝑥2 − 2𝑥3 
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0 

Basic variables – variables 
on left-hand side 

Non-basic variables – 
variables on right-hand side 



Simplex algorithm steps 

• Recall:  “Feasible solutions” (infinite number of them):  
– A feasible solution is any whose values satisfy constraints 
– In previous example, solution is feasible as long as all of x1, x2, x3,  x4, x5, 

x6 are nonnegative 
• Basic solution:  

– set all nonbasic variables to 0 and compute all basic variable values 
• Iteratively rewrite the set of equations such that: 

– There is no change to the underlying LP problem (i.e., new form is 
equivalent to old) 

– Feasible solutions stay the same 
– The basic solution is changed, to result in a greater objective value: 

• Select a nonbasic variable xe whose coefficient in the objective function is 
positive 

• Increase value of xe as much as possible without violating any of the 
constraints  

• Make xe a basic variable 
• Select some other variable to become nonbasic 

z= 3x1+x2+2x3  
x4=30- x1-x2-3x3    
x5=24- 2x1-2x2-5x3     
x6=36- 4x1-x2-2x3    
x1, x2, x3, x4, x5, x6 ≥0 



Example 
• Basic solution: (x1,x2,x3,x4,x5,x6) =(0,0,0,30,24,36) 

– The objective value is z = 3⋅0 + 0 + 2⋅0 = 0     (Not a maximum) 
 

• Try to increase the value of nonbasic variable x1 while maintaining 
constraints:   

Increase x1 to 30: means that x4 will be OK (i.e., non-negative) 
Increase x1 to 12 means that x5 will be OK  9:  
Increase x1 to 9 means that x6 will be OK.   
We have to choose most constraining value  x1 is most 
constrained by x6 , so we switch the roles of x1 and x6  

• Change x1to basic variable by rewriting last constraint to: 
x1=9-x2/4 –x3/2 –x6/4  

– Note: x6 becomes nonbasic. 
– Replace x1 with above formula in all equations to get… 

 

z= 3x1+x2+2x3  
x4=30- x1-x2-3x3    
x5=24- 2x1-2x2-5x3     
x6=36- 4x1-x2-2x3    
x1, x2, x3, x4, x5, x6 ≥0 



z=27+x2/4 +x3/2 –3x6/4      
x1=9-x2/4 –x3/2 –x6/4     
x4=21-3x2/4 –5x3/2 +x6/4    
x5=6-3x2/2 –4x3  +x6/2    
  

• This operation is called pivot  
– A pivot chooses a nonbasic variable, called entering variable, and a 

basic variable, called leaving variable, and changes their roles. 
– The pivot operation results in an equivalent LP. 
– Reality check:  original solution (0,0,0,30,24,36) satisfies the new 

equations.  
 

• In the example, 
– x1 is entering variable, and x6 is leaving variable. 
– x2, x3, x6 are nonbasic, and x1, x4, x5 becomes basic. 
– The basic solution for this new LP form is (9,0,0,21,6,0), with z=27. 
 (Yippee   z = 27 is better than z = 0!) 

Example (con’t.) 



• We iterate again –try to find a new variable whose value 
may increase.  
– x6 will not work, since z will decrease. 
– x2 and x3 are OK. Suppose we select x3. 

• How far can we increase x3? 
– First constraint limits it to 18 
– Second constraint limits it to 42/5 
– Third constraint limits it to 3/2 – most constraining  swap 

roles of x3 and x5 
• So rewrite last constraint to: 

x3=3/2 – 3x2/8  – x5/4 + x6/8 
• Replace x3 with the above in all the equations to get… 

Example (con’t.) 
z=27+x2/4 +x3/2 –3x6/4      
x1=9-x2/4 –x3/2 –x6/4    
x4=21-3x2/4 –5x3/2 +x6/4 
x5=6-3x2/2 –4x3  +x6/2    



• The new LP equations: 
– z=111/4+x2/16 –x5/8 - 11x6/16    
– x1=33/2- x2/16 +x5/8 - 5x6/16  
– x3=3/2-3x2/8 –x5/4+x6/8  
– x4=69/4+3x2/16 +5x5/8-x6/16  

• The basic solution is (33/4,0,3/2,69/4,0,0) with z=111/4.  
 

• Now we can only increase x2.  
– First constraint limits x2 to 132 
– Second to 4 
– Third to ∞ 

• So rewrite second constraint to: 
  x2= 4 – 8x3/3 – 2x5/3 + x6/3 
 
• Replace in all equations to get… 

 

Example (con’t.) 



• Rewritten LP equations: 
z=28-x3/6 –x5/6-2x6/3  
x1=8+x3/6 +x5/6-x6/3 
x2=4-8x3/3 –2x5/3+x6/3 
x4=18-x3/2 +x5/2 

• At this point, all coefficients in objective functions are negative.  
• So, no further rewrite is possible. 

 
• Means that we’ve found the optimal solution. 
• The basic solution is (8,4,0,18,0,0) with objective value z=28. 
• The original variables are x1, x2, x3 , with values (8,4,0) 

 

Example (con’t.) 



Next time… 

• More details on the correctness and 
optimality of SIMPLEX 



Reading Assignments 

• Reading assignment for next Thursday’s class: 
– Chapter 29.3-4 
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