Today:
— Linear Programming (con’t.)

COSC 581, Algorithms
April 10, 2014

Many of these slides are adapted from several online sources



Reading Assighments

e Today’s class:
— Chapter 29.4

 Reading assignment for next class:

— Chapter 9.3 (Selection in Linear Time)
— Chapter 34 (NP Completeness)



Optimality of SIMPLEX

e Duality is a way to prove that a solution is
optimal

e Max-Flow, Min-Cut is an example of duality

e Duality: given a maximization problem, we
define a related minimization problem s.t. the
two problems have the same optimal
objective value



Duality in LP

e Given an LP, we'll show how to formulate a
dual LP in which the objective is to minimize,
and whose optimal value is identical to that of
the original LP (now called primal LP)



Primal Dual LPs:

(standard form) n y A

—q—

(standard form)



Forming dual

Change maximization to minimization

Exchange roles of coefficients on RHSs and the
objective function

Replace each < with >

Each of the m constraints in primal has associated
variable y; in the dual

Each of the n constraints in the dual as associated
variable x; in the primal



Example : Primal-Dual

PRIMAL:
max 16x;, - 23x, + 43x; + 82X,
subject to:
3x;, + 6X, - 9x3 + 4x, < 239
9%, + 8x, + 17x; - 14x, = 582
5x, +12x, + 21x;+ 26x, = -364
X;20,  x,<0, X,=0
DUAL:
min 239y, +582vy, - 364y,
subject to:

3y, - 9y, + >
by, + 8y, + 12y, < -23
9y, + 17y, + 21y, =
4y, - 14y, + 26y, >

y,=0, y5<0




Think about bounding optimal solution...

min (x1 4 8p) 5x3
x1 —xp+ 3x3 > 10
b1+ 220 —x3 > 6
rg3 > 1
—xo > —1

r1,x2 2 0

Is optimal solution < 307? Yes, consider (2,1,3)



Think about bounding optimal solution...

min (x1 + x> + Bx3

x1 —xp+ 3x3 > 10

b1+ 220 —x3 > 6

rg3 > 1
—xo > —1
x1,xo > 0
Is optimal solution = 57 Yes, because x3 = 1.
Is optimal solution > 67? Yes, because 5x1 + x2 = 6.

Is optimal solution > 167? Yes, because 6x1 + x2 +2x3 > 16.



Strategy for bounding solution?

min 7:15‘1 —|—:82—|—5:C3
x1 —xp+ 3x3 > 10
b1+ 220 —x3 > 6
rg3 > 1
—xo > —1

xq,xp > 0

What is the strategy we’re using to prove lower bounds?

Take a linear combination of constraints!




Strategy for bounding solution?

min fxq1 + x> + Sx3 max 10y + 6y> + y3 — ya

m z1 — @2 + 323 = 10 y1 +5y0 <7
521 +2z0 — 23> 6 —y1 +2y2 —ys <1

—

2
3 r3 > 1 3y1 —y2+y3<5H

W —zp > —1 Y1,Y2,Y3,Y4 = 0

V4 11 ’ iective??
T = (Z, O, Z) y = (27 1’ O, O) What'’s the objective?:

To maximize the lower bound.
Optimal solution = 26



Note: Use of primal as minimization

e Just to show you something a bit different
from the text, the following discussion
assumes the primal is a minimization problem,
and thus the dual is @ maximization problem

 Doesn’t change the meaning (compared to
text)



Primal-Dual Programs

n

min Z CiZ
Jj=1

Tl
> ajjz; > b;
i=1

m
Mmax Z b;y;
1=1

m
> Yiaij < ¢
i=1

y; > 0

Dual Program

Dual solutions

P
¥

Primal solutions

»
>



Primal Dual

n m
min Y ciz; | max ) by
[ ] n m
Weak Duality Nz >b; | Y yai < e
=1 =1
;>0 y; > 0
Theorem
n m
If x and y are feasible primal and dual solutions, then any Cim . > b
solution to the primal has a value no less than any feasible Z I = Z 1
: 7=1 1=1
solution to dual.
Proof n n m
2. iy = Y, () aijyi)z;
j=1 j=1 i=1




Primal Dual Programs

Primal Program

Dual Program

Dual solutions

P

Primal solutions

»

¥

»

Von Neumann [1947]

Primal optimal = Dual optimal

Dual solutions Primal solutions

P

¥

»
>




Strong Duality — Prove that if primal solution =
dual solution, then the solution is optimal for both

n m
max > cjx; min Y by,
n m
D aijzj < b D Yitij = ¢

j=1 =1

y; > 0
n m
PROVE: max Y cjz; =min Y by,

j=1 i=1



Farka’s Lemma

* Exactly one of the following is solvable:

Ax <0
clx >0
and:
Aty =c¢
y=0
where:

— x and c are n-vectors
— y is an m-vector
— A IS mXn matrix



Fundamental Theorem on Linear Inequalities

Let aq,ao,...,am,b be vectors in n-dimensional
space. Then either one of the following hap-
pens:

(1) b is a nonnegative linear combination of
linearly independent vectors from aq,...,am.

(2) There exists a hyperplane {z|cx = 0}, con-
taining t — 1 linearly independent vectors from
ai,an,...,am, suchthateb < 0andcaq,...,cam >
0, where t = rank{a,...,am,b}.



Proof of Fundamental Theorem

(i) Write b = )\ilai1—|—. . _I_/\Zna’zn It )\il’ ce 7)\% Z
0, we are in case 1.

(ii) Otherwise choose the smallest A among
i1,...,%n With X, < 0. Let {z|cx = 0} be the
hyperplane spanned by D \ {ap} so that ¢b =
Ap < 0.

(iii) If caq,...,cam > 0, then we are in case 2.

(iv) Otherwise choose the smallest s such that
cas < 0. Then replace D by (D \ {ay}) U{as},
and repeat.



Strong Duality

n m
max > cjx; min Y by,
71=1 1=1

n m
D iz < b D Yitij = ¢
=1 i=1
y; > 0

PROVE:

n m
max ) cjz; =min Y by,
j=1 i=1

In other words, the optimal value for the primal
is the optimal value for the dual.



Example

Objective: max L1

r1 —xp <2 r1+xp < 2

1 1 1
] = 5(371 —x2) + 5(331 ~+ x2) 2 = 5(2 + 2)



Example T
Objective: max L] + §LE2

1 1 2 2
$1+§$2=§($1—$2)+§($1+6€2) 2=32+32



Geometric Intuition
+« C

23



Geometric Intuition

L &
a1

X

/ ,’a}2

n
Z CiLg — J
=1

y1a1 + yoap =c

Intuition:

There exist nonnegative U1 b]_ _I_ Yo b2 — (5

Y, , Y, so that

n
The vector ¢ can be generated by a,, a,. E an;X; — b2
1=1

Y = (y,, ¥,) is the dual optimal solution!




Strong Duality

n

max Z Cit
j=1

T
> ajjry < b;
i=1

y1a1 + yoap =c

Intuition:

There exist ylbl _I_ beQ —)

Y, , Y, so that

Y = (yy, Y,) is the dual optimal solution!

m
min Z biyi

=1

m™m
D Yitij = ¢
=1

Primal
optimal
value

|

h



Here’s another analogy: 2 Player Game

B -
L t-,_ ] i
A\ . - Column player
' k- B
. :t\"‘-i —
N
Q | 0 -1 1
—_—— Strategy:
.,:{_ A probability
Row player A 1 0 -1 distribution
h-- -
.
{-" ty
y - -1 1 0

Row player tries to maximize the payoff, column player tries to minimize




2 Player Game

Column player
Strategy: 2l

A probability
distribution

Row player A(i)j)

Is it fair??

You have to decide your
strategy first.




Von Neumann Minimax Theorem

max min yAx = min max yAx
yeAM re A" re AT ye A™

\

Strategy set

Which player decides first doesn’t matter!




Key Observation

max min yAx
ye AM e A"

If the row player fixes his strategy,

then we can assume that y chooses a pure strategy

min yAx -
re A"

n
Z L; — 1
1=1

.CL‘?:>O J




Key Observation

max min yAxz = max min(yA),
ye A xc A" yeEA™ 1

min max yAx = min max(Az);
re AT ye A™ =y AL



Primal-Dual Programs

max min(yA);
JEA™ i (y )7,

min Mmax(Ax);
[nin, m: (Azx);

max t
m
> i >t
i=1
m
Y y=1
i=1




Reading Assighments

e Reading assignment for next class:

— Chapter 9.3 (Selection in Linear Time)
— Chapter 34 (NP Completeness)
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