

Today:

- Linear Programming (con't.)

COSC 581, Algorithms

April 10, 2014

Reading Assignments

- Today's class:
 - Chapter 29.4
- Reading assignment for next class:
 - Chapter 9.3 (Selection in Linear Time)
 - Chapter 34 (NP Completeness)

Optimality of SIMPLEX

- Duality is a way to prove that a solution is optimal
- Max-Flow, Min-Cut is an example of duality
- Duality: given a maximization problem, we define a related minimization problem s.t. the two problems have the same optimal objective value

Duality in LP

- Given an LP, we'll show how to formulate a **dual LP** in which the objective is to minimize, and whose optimal value is identical to that of the original LP (now called **primal LP**)

Primal Dual LPs:

Primal:

$$\text{maximize } c^T x$$

$$\text{subject to: } Ax \leq b$$

$$x \geq 0$$

(standard form)

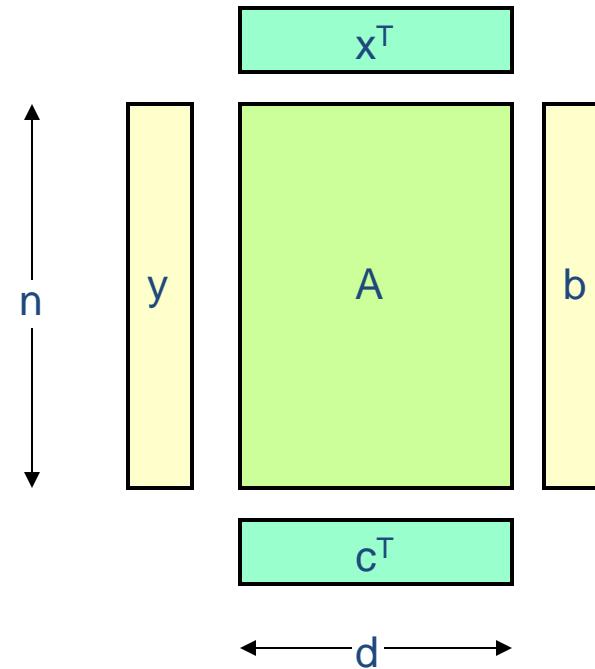
Dual:

$$\text{minimize } y^T b$$

$$\text{subject to: } y^T A \geq c^T$$

$$y \geq 0$$

(standard form)



Forming dual

- Change maximization to minimization
- Exchange roles of coefficients on RHSs and the objective function
- Replace each \leq with \geq
- Each of the m constraints in primal has associated variable y_i in the dual
- Each of the n constraints in the dual as associated variable x_i in the primal

Example : Primal-Dual

PRIMAL:

$$\max \quad 16 x_1 - 23 x_2 + 43 x_3 + 82 x_4$$

subject to:

$$\begin{aligned} 3 x_1 + 6 x_2 - 9 x_3 + 4 x_4 &\leq 239 \\ -9 x_1 + 8 x_2 + 17 x_3 - 14 x_4 &= 582 \\ 5 x_1 + 12 x_2 + 21 x_3 + 26 x_4 &\geq -364 \end{aligned}$$

$$x_1 \geq 0, \quad x_2 \leq 0, \quad x_4 \geq 0$$

DUAL:

$$\min \quad 239 y_1 + 582 y_2 - 364 y_3$$

subject to:

$$\begin{aligned} 3 y_1 - 9 y_2 + 5 y_3 &\geq 16 \\ 6 y_1 + 8 y_2 + 12 y_3 &\leq -23 \\ -9 y_1 + 17 y_2 + 21 y_3 &= 43 \\ 4 y_1 - 14 y_2 + 26 y_3 &\geq 82 \end{aligned}$$

$$y_1 \geq 0, \quad y_3 \leq 0$$

Think about bounding optimal solution...

$$\min \quad 7x_1 + x_2 + 5x_3$$

$$x_1 - x_2 + 3x_3 \geq 10$$

$$5x_1 + 2x_2 - x_3 \geq 6$$

$$x_3 \geq 1$$

$$-x_2 \geq -1$$

$$x_1, x_2 \geq 0$$

Is optimal solution ≤ 30 ?

Yes, consider (2,1,3)

Think about bounding optimal solution...

$$\min \quad 7x_1 + x_2 + 5x_3$$

$$x_1 - x_2 + 3x_3 \geq 10$$

$$5x_1 + 2x_2 - x_3 \geq 6$$

$$x_3 \geq 1$$

$$-x_2 \geq -1$$

$$x_1, x_2 \geq 0$$

Is optimal solution ≥ 5 ?

Yes, because $x_3 \geq 1$.

Is optimal solution ≥ 6 ?

Yes, because $5x_1 + x_2 \geq 6$.

Is optimal solution ≥ 16 ?

Yes, because $6x_1 + x_2 + 2x_3 \geq 16$.

Strategy for bounding solution?

$$\min \quad 7x_1 + x_2 + 5x_3$$

$$x_1 - x_2 + 3x_3 \geq 10$$

$$5x_1 + 2x_2 - x_3 \geq 6$$

$$x_3 \geq 1$$

$$-x_2 \geq -1$$

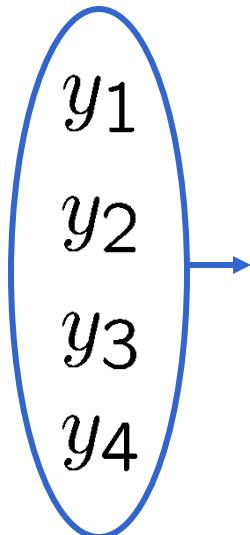
$$x_1, x_2 \geq 0$$

What is the strategy we're using to prove lower bounds?

Take a linear combination of constraints!

Strategy for bounding solution?

$$\begin{array}{ll} \min & 7x_1 + x_2 + 5x_3 \\ & x_1 - x_2 + 3x_3 \geq 10 \\ & 5x_1 + 2x_2 - x_3 \geq 6 \\ & x_3 \geq 1 \\ & -x_2 \geq -1 \\ & x_1, x_2 \geq 0 \end{array}$$



$$\begin{array}{ll} \max & 10y_1 + 6y_2 + y_3 - y_4 \\ & y_1 + 5y_2 \leq 7 \\ & -y_1 + 2y_2 - y_4 \leq 1 \\ & 3y_1 - y_2 + y_3 \leq 5 \\ & y_1, y_2, y_3, y_4 \geq 0 \end{array}$$

Don't reverse inequalities.

$$x = \left(\frac{7}{4}, 0, \frac{11}{4} \right) \quad y = (2, 1, 0, 0)$$

Optimal solution = 26

What's the objective??

To maximize the lower bound.

Note: Use of primal as *minimization*

- Just to show you something a bit different from the text, the following discussion assumes the **primal** is a **minimization** problem, and thus the **dual** is a **maximization** problem
- Doesn't change the meaning (compared to text)

Primal-Dual Programs

$$\min \sum_{j=1}^n c_j x_j$$

$$\sum_{j=1}^n a_{ij} x_j \geq b_j$$

y_i

$$x_j \geq 0$$

$$\max \sum_{i=1}^m b_i y_i$$

$$\sum_{i=1}^m y_i a_{ij} \leq c_j$$

$$y_i \geq 0$$

Primal Program

Dual Program

Dual solutions

Primal solutions

Weak Duality

Primal	Dual
$\min \sum_{j=1}^n c_j x_j$	$\max \sum_{i=1}^m b_i y_i$
$\sum_{j=1}^n a_{ij} x_j \geq b_j$	$\sum_{i=1}^m y_i a_{ij} \leq c_j$
$x_j \geq 0$	$y_i \geq 0$

Theorem

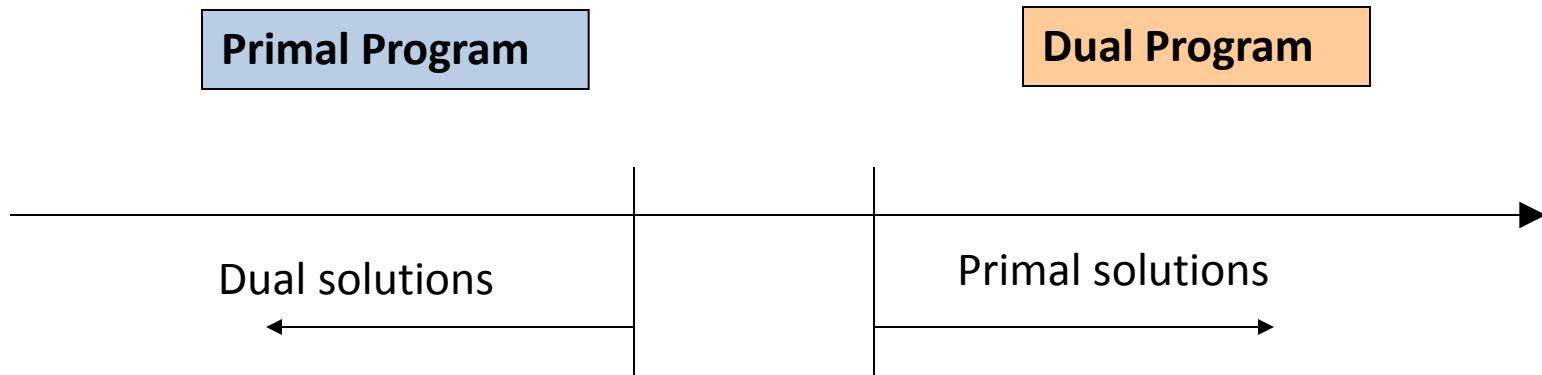
If x and y are feasible primal and dual solutions, then any solution to the primal has a value no less than any feasible solution to dual.

$$\sum_{j=1}^n c_j x_j \geq \sum_{i=1}^m b_i y_i$$

Proof

$$\begin{aligned}
 \sum_{j=1}^n c_j x_j &\geq \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} y_i \right) x_j \\
 &= \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} x_j \right) y_i \geq \sum_{i=1}^m b_i y_i
 \end{aligned}$$

Primal Dual Programs



Von Neumann [1947] Primal optimal = Dual optimal

Strong Duality – Prove that if primal solution = dual solution, then the solution is optimal for both

$$\max \sum_{j=1}^n c_j x_j$$

$$\sum_{j=1}^n a_{ij} x_j \leq b_j$$

$$\min \sum_{i=1}^m b_i y_i$$

$$\sum_{i=1}^m y_i a_{ij} = c_j$$

$$y_i \geq 0$$

PROVE:

$$\max \sum_{j=1}^n c_j x_j = \min \sum_{i=1}^m b_i y_i$$

Farka's Lemma

- Exactly one of the following is solvable:

$$\begin{aligned} Ax &\leq 0 \\ c^T x &> 0 \end{aligned}$$

and:

$$\begin{aligned} A^T y &= c \\ y &\geq 0 \end{aligned}$$

where:

- x and c are n -vectors
- y is an m -vector
- A is $m \times n$ matrix

Fundamental Theorem on Linear Inequalities

Let a_1, a_2, \dots, a_m, b be vectors in n -dimensional space. Then either one of the following happens:

- (1) b is a nonnegative linear combination of linearly independent vectors from a_1, \dots, a_m .
- (2) There exists a hyperplane $\{x | cx = 0\}$, containing $t - 1$ linearly independent vectors from a_1, a_2, \dots, a_m , such that $cb < 0$ and $ca_1, \dots, cam \geq 0$, where $t = \text{rank}\{a_1, \dots, a_m, b\}$.

Proof of Fundamental Theorem

- (i) Write $b = \lambda_{i_1}a_{i_1} + \dots + \lambda_{i_n}a_{i_n}$. If $\lambda_{i_1}, \dots, \lambda_{i_n} \geq 0$, we are in case 1.
- (ii) Otherwise choose the smallest h among i_1, \dots, i_n with $\lambda_h < 0$. Let $\{x | cx = 0\}$ be the hyperplane spanned by $D \setminus \{a_h\}$ so that $cb = \lambda_h < 0$.
- (iii) If $ca_1, \dots, cam \geq 0$, then we are in case 2.
- (iv) Otherwise choose the smallest s such that $ca_s < 0$. Then replace D by $(D \setminus \{a_h\}) \cup \{a_s\}$, and repeat.

Strong Duality

$$\max \sum_{j=1}^n c_j x_j$$

$$\sum_{j=1}^n a_{ij} x_j \leq b_j$$

$$\min \sum_{i=1}^m b_i y_i$$

$$\sum_{i=1}^m y_i a_{ij} = c_j$$

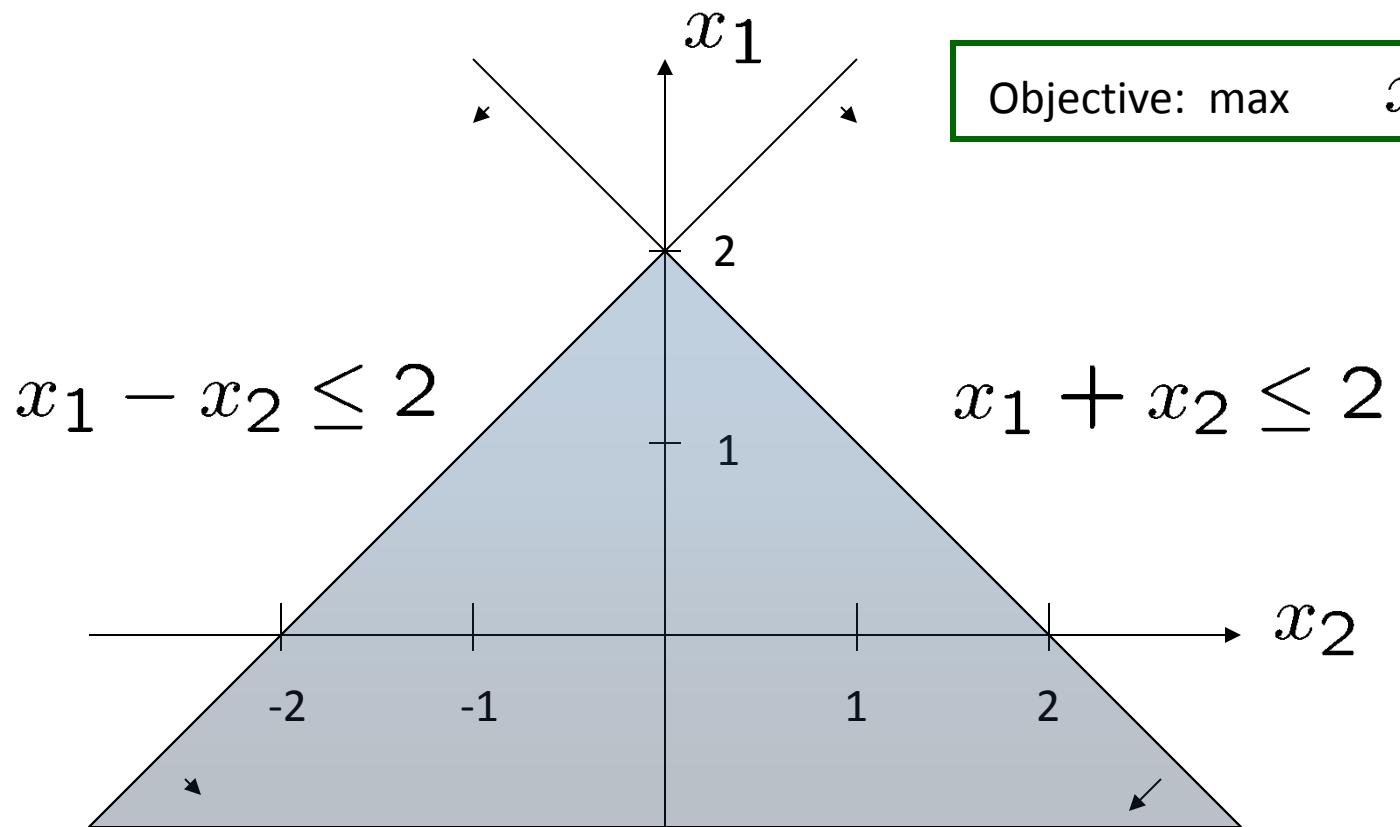
$$y_i \geq 0$$

PROVE:

$$\max \sum_{j=1}^n c_j x_j = \min \sum_{i=1}^m b_i y_i$$

In other words, the optimal value for the primal is the optimal value for the dual.

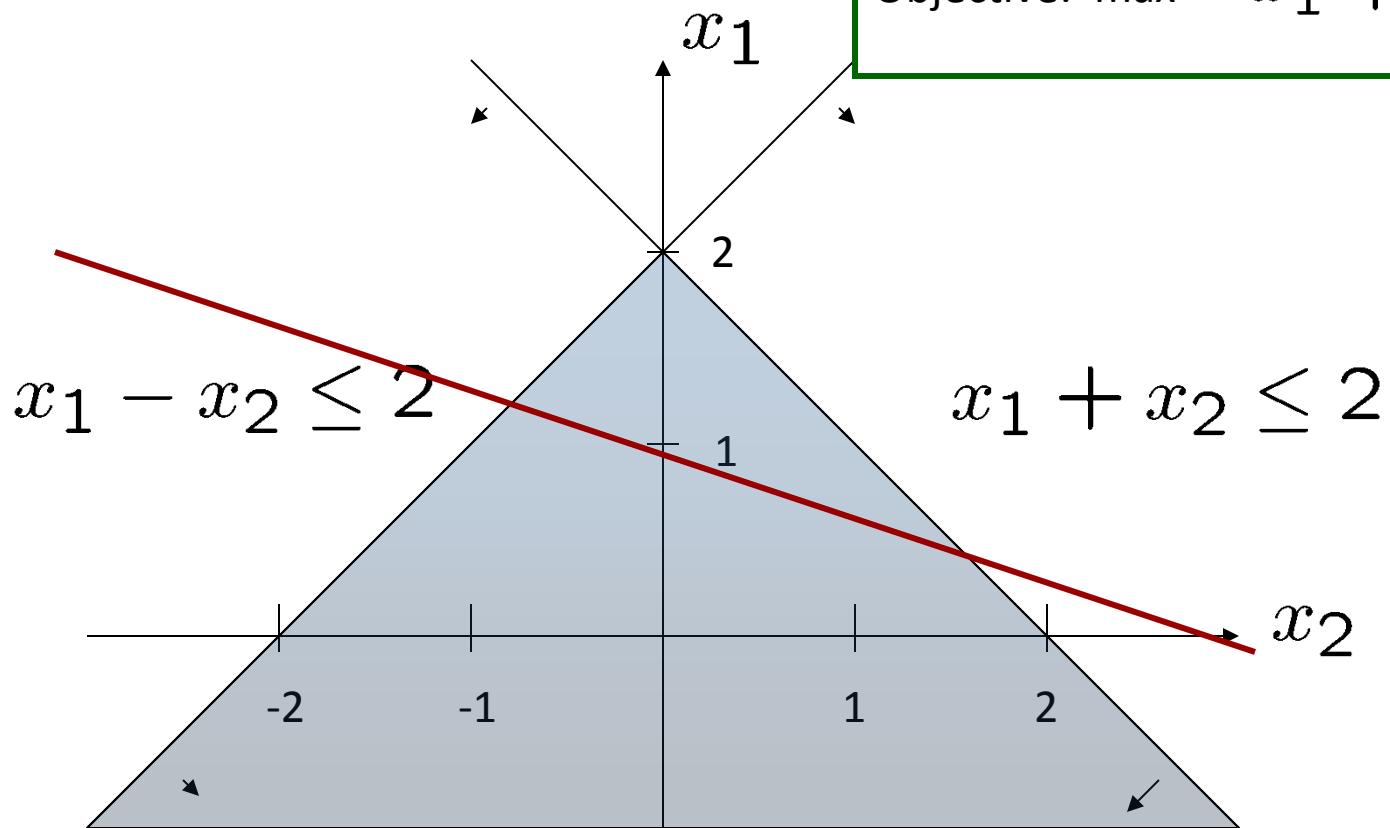
Example



$$x_1 = \frac{1}{2}(x_1 - x_2) + \frac{1}{2}(x_1 + x_2)$$
$$2 = \frac{1}{2}(2 + 2)$$

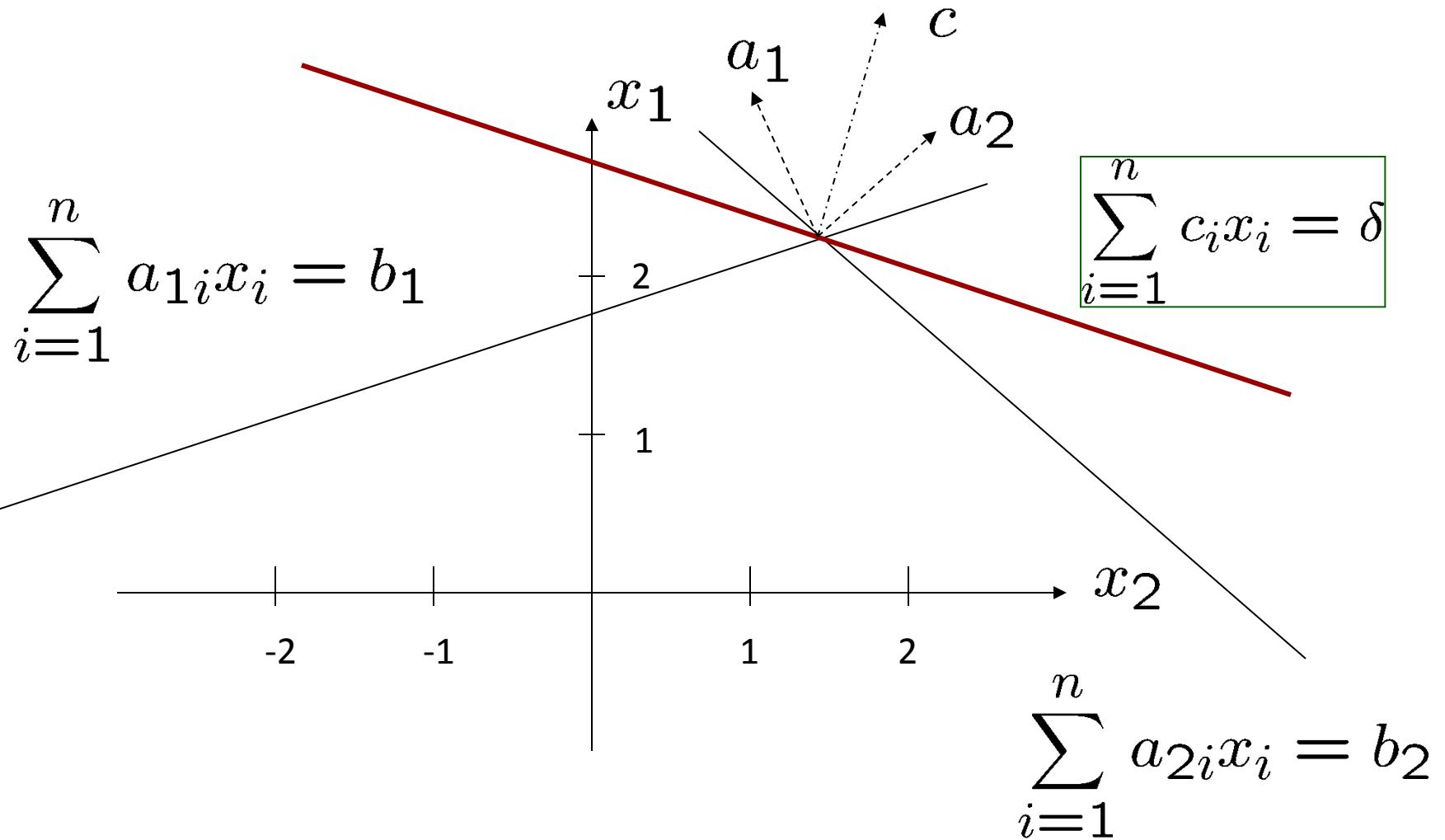
Example

Objective: $\max x_1 + \frac{1}{3}x_2$



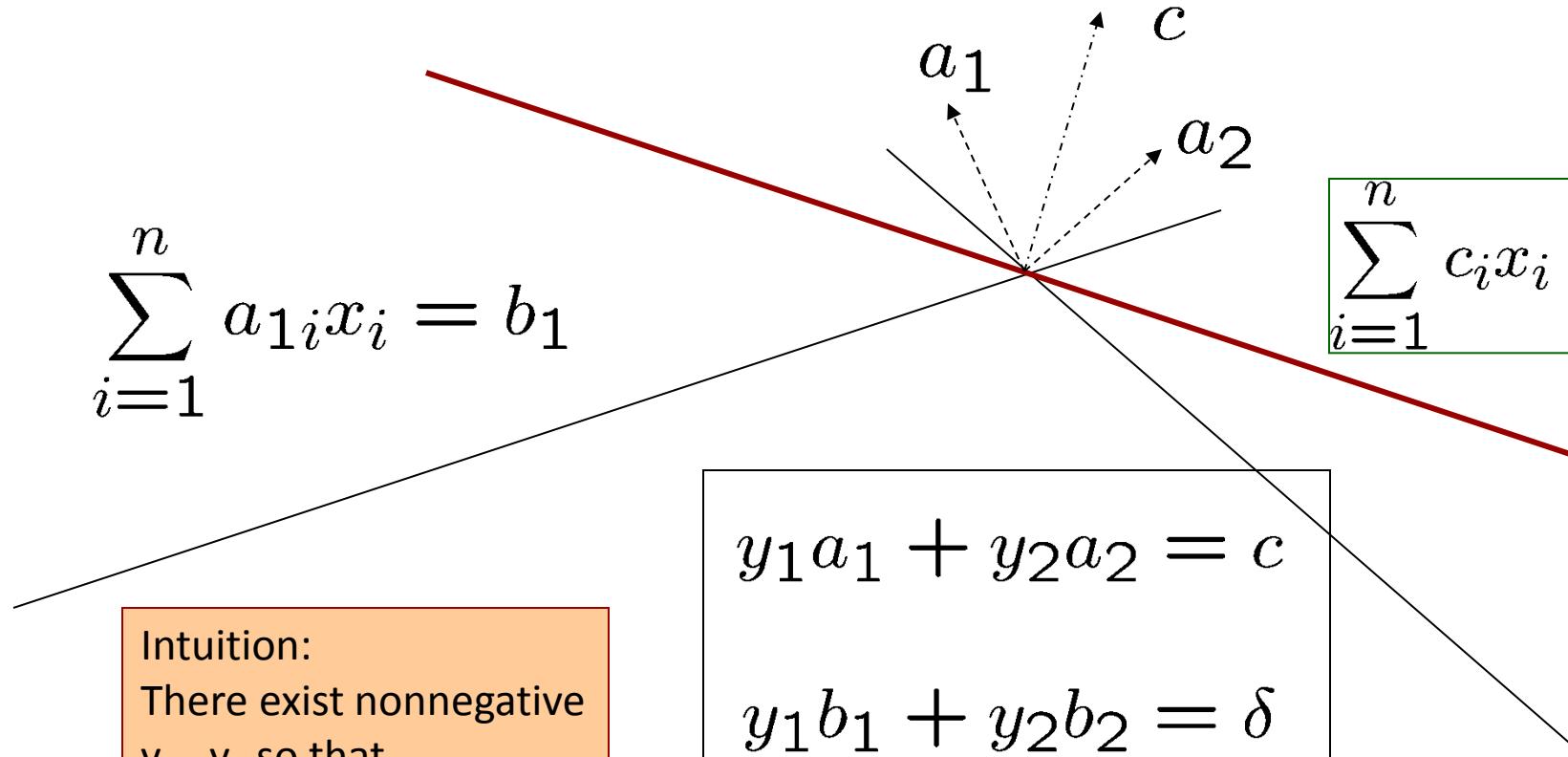
$$x_1 + \frac{1}{3}x_2 = \frac{1}{3}(x_1 - x_2) + \frac{2}{3}(x_1 + x_2) \quad 2 = \frac{1}{3} \cdot 2 + \frac{2}{3} \cdot 2$$

Geometric Intuition



Geometric Intuition

$$\sum_{i=1}^n a_{1i}x_i = b_1$$



Intuition:
There exist nonnegative
 y_1, y_2 so that

$$y_1 a_1 + y_2 a_2 = c$$

$$y_1 b_1 + y_2 b_2 = \delta$$

The vector c can be generated by a_1, a_2 .

$$\sum_{i=1}^n a_{2i}x_i = b_2$$

$\mathbf{Y} = (y_1, y_2)$ is the dual optimal solution!

Strong Duality

$$\max \sum_{j=1}^n c_j x_j$$

$$\sum_{j=1}^n a_{ij} x_j \leq b_j$$

$$\min \sum_{i=1}^m b_i y_i$$

$$\sum_{i=1}^m y_i a_{ij} = c_j$$

$$y_i \geq 0$$

$$y_1 a_1 + y_2 a_2 = c$$

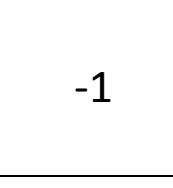
$$y_1 b_1 + y_2 b_2 = \delta$$

Intuition:
There exist
 y_1, y_2 so that

$Y = (y_1, y_2)$ is the dual optimal solution!

Primal
optimal
value

Here's another analogy: 2 Player Game

					
	0	-1	1		
1		0	-1		
	-1	1	0		

Row player

Column player

Strategy:
A probability
distribution

Row player tries to maximize the payoff, column player tries to minimize

2 Player Game

Strategy:
A probability
distribution

Row player

	$A(i,j)$	

Column player

Is it fair??

You have to decide your
strategy first.

Von Neumann Minimax Theorem

$$\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx = \min_{x \in \Delta^n} \max_{y \in \Delta^m} yAx$$

Strategy set

Which player decides first doesn't matter!

Key Observation

$$\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx$$

If the row player fixes his strategy,
then we can assume that y chooses a **pure** strategy

$$\min_{x \in \Delta^n} yAx$$
$$\sum_{i=1}^n x_i = 1$$
$$x_i \geq 0$$

Vertex solution
is of the form
(0,0,...,1,...0),
i.e. a pure strategy

Key Observation

$$\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx = \max_{y \in \Delta^m} \min_i (yA)_i$$

similarly

$$\min_{x \in \Delta^n} \max_{y \in \Delta^m} yAx = \min_{x \in \Delta^n} \max_j (Ax)_j$$

Primal-Dual Programs

$$\max_{y \in \Delta^m} \min_i (yA)_i$$

$$\min_{x \in \Delta^n} \max_j (Ax)_j$$

$$\max t$$

$$x_j \rightarrow \sum_{i=1}^m y_i a_{ij} \geq t$$

$$w \rightarrow \sum_{i=1}^m y_i = 1$$

$$y_i \geq 0$$

$$\min w$$

$$\sum_{j=1}^n a_{ij} x_j \leq w$$

$$\sum_{j=1}^n x_j = 1$$

$$x_j \geq 0$$

duality

Reading Assignments

- Reading assignment for next class:
 - Chapter 9.3 (Selection in Linear Time)
 - Chapter 34 (NP Completeness)