

Today:

- Review of:
 - Heaps, Priority Queues
 - Basic Graph Algs.
- Algs for SSSP (Bellman-Ford, Topological sort for DAGs, Dijkstra)

COSC 581, Algorithms

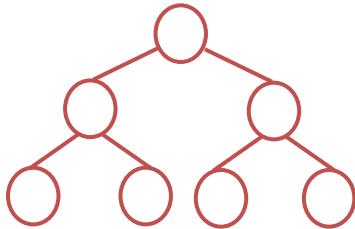
February 4, 2014

Reading Assignments

- Today's class:
 - Chapter 6, 22, 24.0, 24.1, 24.2, 24.3
- Reading assignment for next class:
 - Chapter 25.1-25.2
- **Announcement:** Exam 1 is on Tues, Feb. 18
 - Will cover everything up through dynamic programming

Heaps & Priority Queues

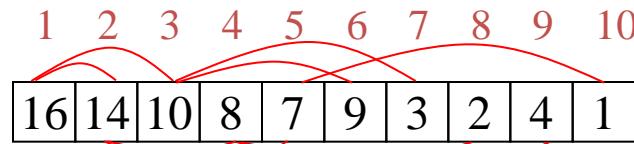
Complete
binary tree:



- All leaves have the same depth
- All internal nodes have 2 children

The (**binary**) **heap** data structure is:

an array object

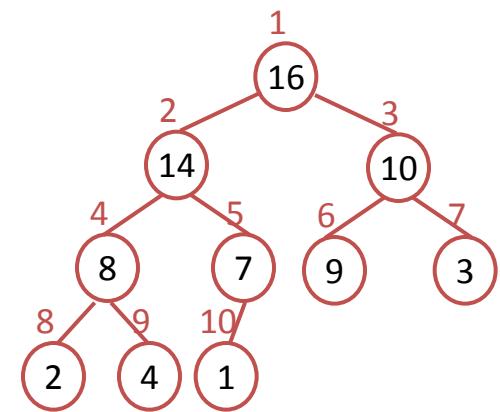
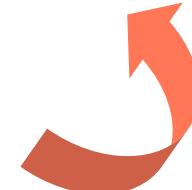


$$\text{Parent}(i) = \lfloor i/2 \rfloor$$

$$\text{Left}(i) = 2i$$

$$\text{Right}(i) = 2i+1$$

that can be viewed as
a nearly complete binary tree



Heap Property:

- For a **max-heap**: child \leq parent
- For a **min-heap**: child \geq parent

Maintaining Heap Property

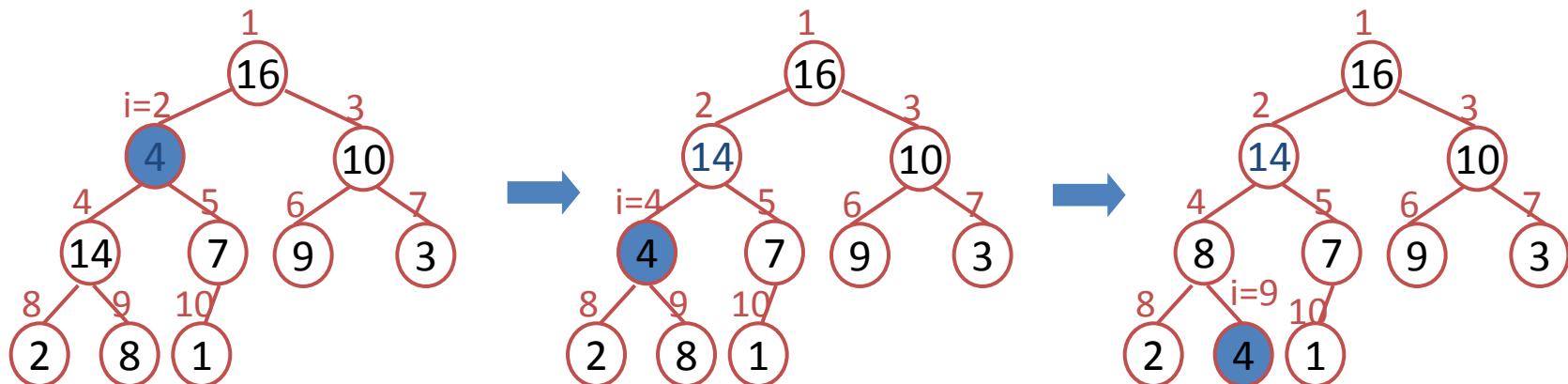
MAX-HEAPIFY(A, i)

1 The binary trees rooted at $\text{LEFT}(i)$ and $\text{RIGHT}(i)$
2 are max-heaps

3 But $A[i]$ may be smaller than its children.

4 MAX-HEAPIFY is to “float down” $A[i]$ to make
.. the subtree rooted at $A[i]$ a max-heap.

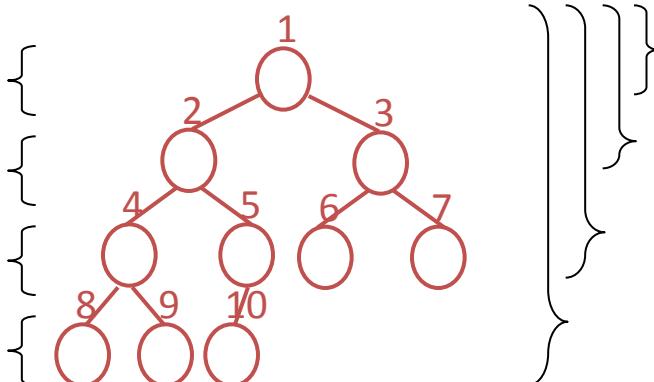
$O(\text{height of node } i)$
 $= O(\lg n)$



Heaps & Priority Queues

Maximum No. of elements

level 0:	1
level 1:	2
level 2:	4
level 3:	8



Maximum No. of elements

a one-level tree (height=0):	1
a 2-level tree (height=1):	3
a 3-level tree (height=2):	7
a 4-level tree (height=3):	15

Therefore, for a heap containing n elements :

Maximum no. of elements in level k = 2^k

Height of tree = $\lfloor \lg n \rfloor$ = $\Theta(\lg n)$

Basic procedures:

MAX-HEAPIFY	$O(\lg n)$	HEAP-EXTRACT-MAX	$O(\lg n)$
BUILD-MAX-HEAP	$O(n)$	HEAP-INCREASE-KEY	$O(\lg n)$
MAX-HEAP-INSERT	$O(\lg n)$	HEAP-MAXIMUM	$O(\lg n)$

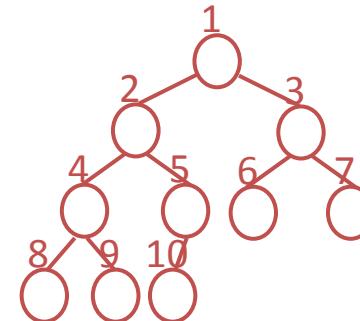
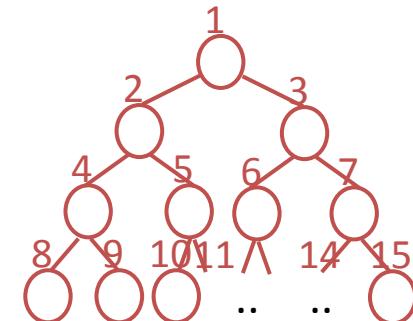
Heaps & Priority Queues

Building a heap:

```
BUILD-MAX-HEAP(Input_numbers)
```

- 1 Copy Input_numbers to a heap
- 2 For $i = \lfloor n/2 \rfloor$ down to 1 /*all non-leaf nodes */
- 3 MAX-HEAPIFY(A,i)

$O(n)$



Note that $\lceil n/2 \rceil$ the elements are leaf nodes

Illustration for a Complete-binary tree:

A complete-binary tree of height h has $h+1$ levels: 0, 1, 2, 3, .. h .

The levels have $2^0, 2^1, 2^2, 2^3, \dots, 2^h$ elements respectively.

Then, maximum total no. of “float down” carried out by MAX-HEAPIFY

= sum of maximum no. of “float down” of all non-leaf nodes (levels $h-1, h-2, \dots, 0$)

$$= 1 \times 2^{h-1} + 2 \times 2^{h-2} + 3 \times 2^{h-3} + 4 \times 2^{h-4} + \dots + h \times 2^0$$

$$= 2^h (1/2 + 2/4 + 3/8 + 4/16 \dots) \quad [\text{note: } 2^{h+1} = n+1, \text{ thus } 2^h = 0.5 * (n+1)]$$

$$= 0.5(n+1) (1/2 + 2/4 + 3/8 + 4/16 \dots) \quad [\text{note: } 1/2 + 2/4 + 3/8 + 4/16 \dots < 2]$$

$$< 0.5(n+1) * 2 = (n+1)$$

$$= O(n)$$

Priority Queue

- Priority queue is a data structure for maintaining a set of elements each associated with a key.
- Maximum priority queue supports the following operations:

INSERT(S, x)

- Insert element x into the set S

MAXIMUM(S)

- Return the 'largest' element

EXTRACT-MAX(S)

- Remove and return the 'largest' element

INCREASE-KEY(S, x, v)

- Increase x 's key to a new value, v

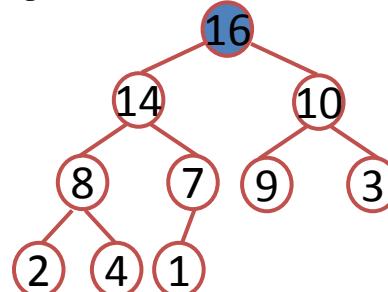
We can implement priority queues based on a heap structure.

Heaps & Priority Queues

MAXIMUM(A)

1 return A[1]

$\Theta(1)$



HEAP-EXTRACT-MAX(A)

$O(\lg n)$

1

2

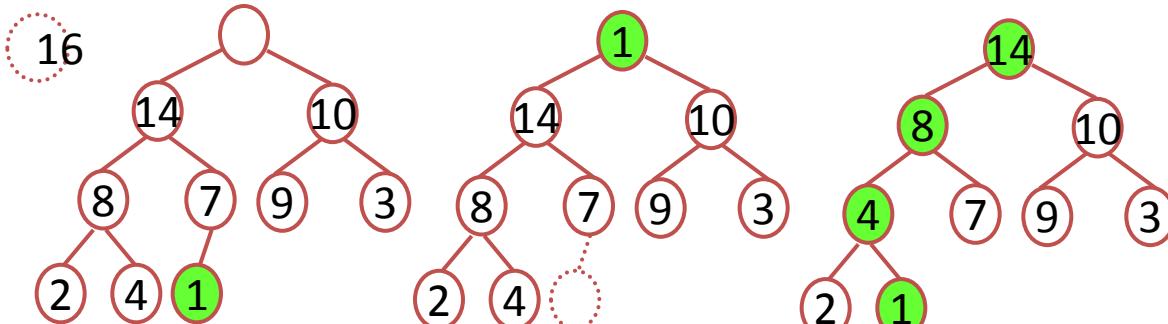
3

4

5

6

7



Step 1. Save the value of the root that is to be returned.

Step 2. Move the last value to the root node.

Step 3. MAX-HEAPIFY(A,1/*the root node*/).

Heaps & Priority Queues

HEAP-INCREASE-KEY(A, i, v)

$O(\lg n)$

1

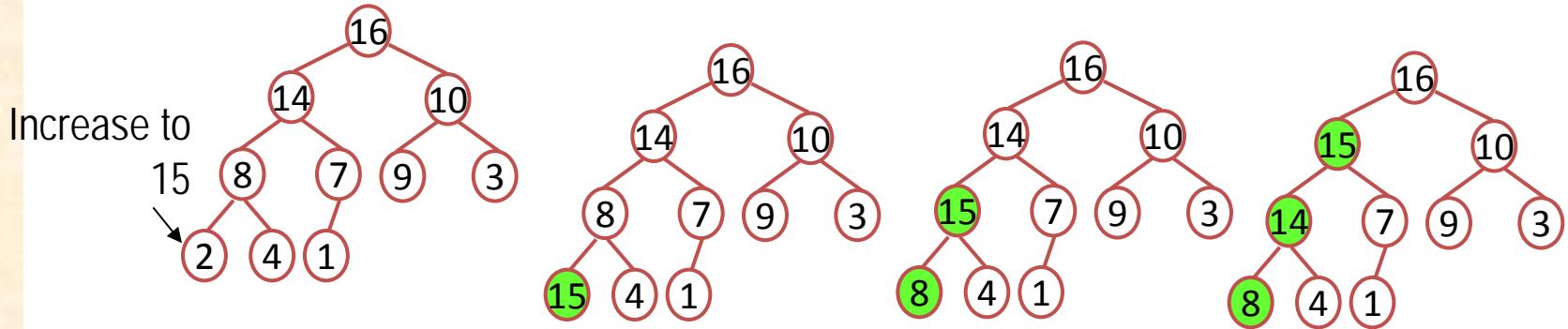
2

3

4

5

6



Keep on exchanging with parent until parent is greater than the current node.

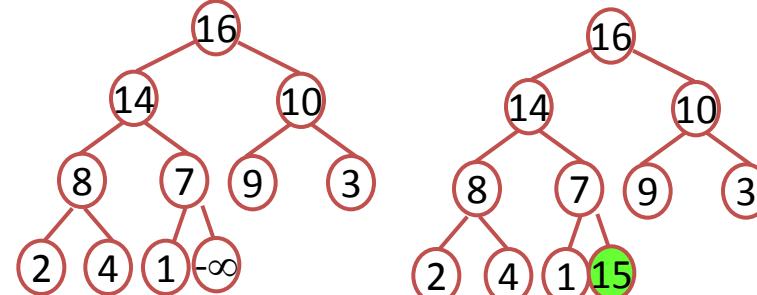
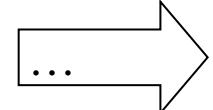
MAX-HEAP-INSERT(A, key)

1 $n = n+1$

2 $A[n] = -\infty$

3 HEAP-INCREASE-KEY(A, n, key)

$O(\lg n)$



Graph Representation

Given graph $G = (V, E)$.

- May be either directed or undirected.
- Two common ways to represent for algorithms:
 1. *Adjacency lists.*
 2. *Adjacency matrix.*

Expressing the running time of an algorithm is often in terms of both $|V|$ and $|E|$.

In asymptotic notation - and *only* in asymptotic notation - we'll drop the cardinality. Example: $O(V + E)$.

Adjacency lists

Array Adj of $|V|$ lists, one per vertex.

Vertex u 's list has all vertices v such that $(u, v) \in E$. (Works for both directed and undirected graphs.)

If edges have *weights*, can put the weights in the lists.

Weight: $w : E \rightarrow \mathbb{R}$

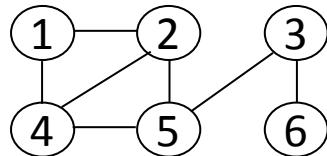
We'll use weights later on for shortest paths.

Space: $\Theta(V + E)$.

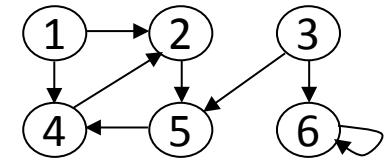
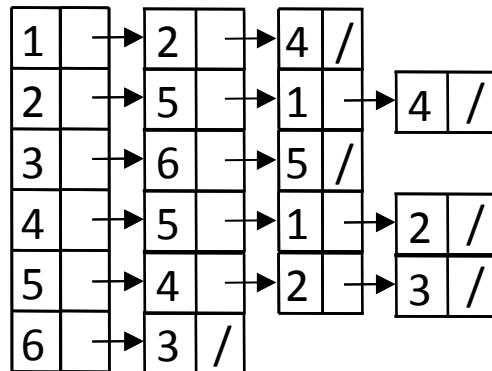
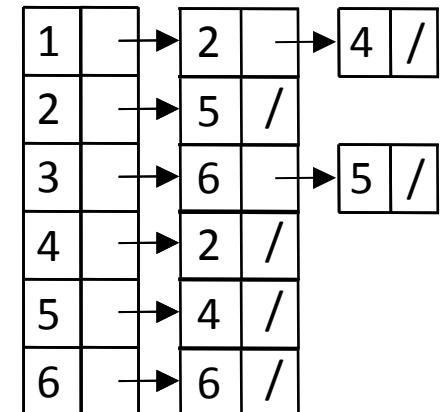
Time: to list all vertices adjacent to u : $\Theta(\text{degree}(u))$.

Time: to determine if $(u, v) \in E$: $O(\text{degree}(u))$.

Undirected graph:



Directed graph:



Adjacency Matrix

$|V| \times |V|$ matrix $A = (a_{ij})$

$a_{ij} = 1$ if $(i, j) \in E$,
0 otherwise.

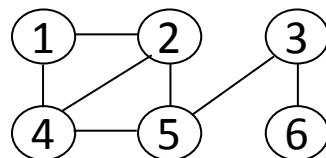
Space: $\Theta(V^2)$

Time: to list all vertices adjacent to u : $\Theta(V)$.

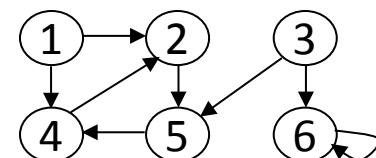
Time: to determine if $(u, v) \in E$: $O(1)$.

Can store weights instead of bits for weighted graph.

Undirected graph:



Directed graph:



a	1	2	3	4	5	6
1	0	1	0	1	0	0
2	1	0	0	1	1	0
3	0	0	0	0	1	1
4	1	1	0	0	1	0
5	0	1	1	1	0	0
6	0	0	1	0	0	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

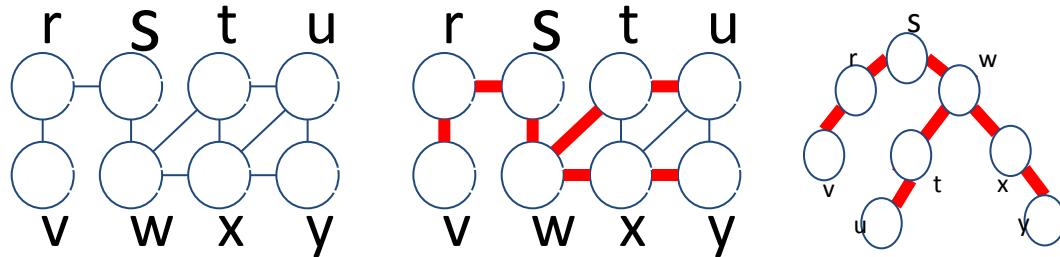
Breadth-First Search

- **Input:**
Graph $G = (V, E)$, either directed or undirected, and **source vertex $s \in V$** .
- **Output:**
 - $d[v]$ = distance (smallest # of edges) from s to v , for all $v \in V$.
 - Also $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \curvearrowright v$
 - u is v 's **predecessor**.
 - set of edges $\{(\pi[v], v) : v = s\}$ forms a tree.
- Later, a breadth-first search will be generalized with edge weights.
Now, let's keep it simple.
 - Compute only $d[v]$, not $\pi[v]$.
 - Omitting colors of vertices.
- **Idea:** Send a wave out from s .
 - First hits all vertices 1 edge from s .
 - From there, hits all vertices 2 edges from s .
 - Etc.
- Use FIFO queue Q to maintain waveform.
 - $v \in Q$ if and only if wave has hit v but has not come out of v yet.

Breadth-First Search

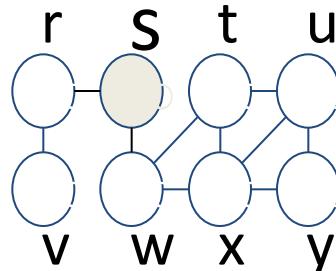
Breadth-First Search (BFS)

Explores the edges of a graph to reach every vertex from a vertex s , with “shortest paths”



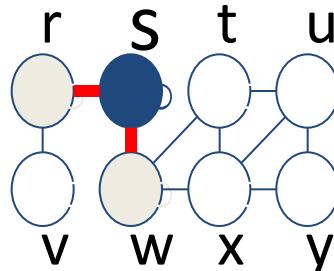
The algorithm:

Start by inspecting the source vertex s :



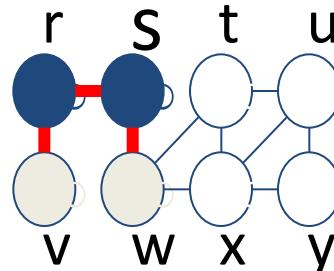
For s , its 2 neighbors are not yet searched

So we connect them:



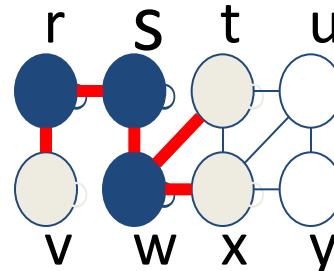
Now r and w join our solution

For r , we do the same to its white color neighbors:



Now v joins our solution

For w , we do the same to its white color neighbors:



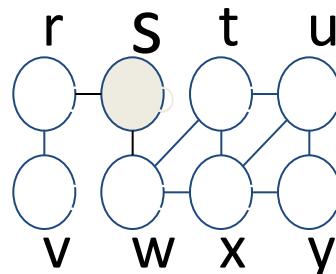
Now t and x join our solution

...

Breadth-First Search

Using 3 colors: white / gray / black

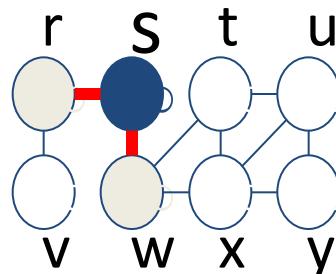
Start by inspecting the source vertex S:



For s, its 2 neighbors are not yet searched

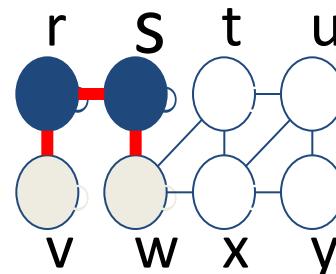
Since s is in our solution, and it is to be inspected, we mark it gray

So we connect them:



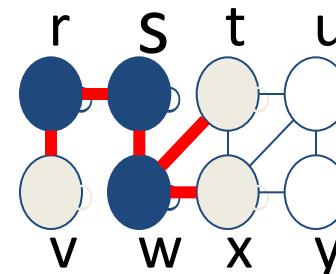
Now r and w join our solution

For r, we do the same to its white color neighbors:



Now v joins our solution

For w, we do the same to its white color neighbors:



Now t and x join our solution

No more need to check s, so mark it black. r and w join our solution, we need to check them later on, so mark them gray.

No more need to check r, so mark it black. v joins our solution, so we need to check it later on, so mark it gray.

No more need to check w, so mark it black. t and x join our solution, we need to check them later on, so mark them gray.

Breadth-First Search Algorithm

```
BFS(G,s) /*G=(V,E)*/
```

```
1  For each vertex u in V - {s}  
2      u.color = white  
3      u.distance =  $\infty$   
4      u.pred = NIL  
5  s.color = gray  
6  s.distance = 0  
7  s.pred = NIL  
8  Q =  $\emptyset$   
9  ENQUEUE(Q,s)  
10 while Q  $\neq \emptyset$   
11     u = DEQUEUE(Q)  
12     for each v adjacent to u  
13         if v.color = white  
14             v.color = gray  
15             v.distance = u.distance + 1  
16             v.pred = u  
17             ENQUEUE(Q,v)  
18     u.color = black
```

$\Theta(V)$

The running time
of BFS is: $O(V+E)$

Total number of edges kept
by the adjacency list is $\Theta(E)$

Total time spent in the
adjacency list is $O(E)$

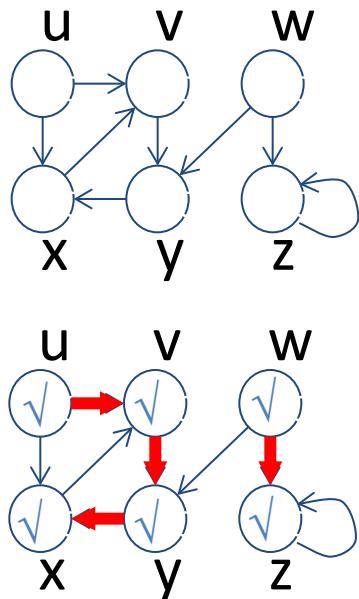
Depth-First Search

- **Input:**
Graph $G = (V, E)$, either directed or undirected. No source vertex given.
- **Output:** 2 *timesteps* on each vertex:
 - $d[v]$ = *discovery time*.
 - $f[v]$ = *finishing time*.
 - $\pi[v]$: *v's predecessor field*.
- Will methodically explore *every* edge.
 - Start over from different vertices as necessary.
- As soon as we discover a vertex, explore from it.
 - Unlike BFS, which puts a vertex on a queue so that we explore from it later.
- As DFS progresses, every vertex has a **color**:
 - WHITE = undiscovered
 - GRAY = discovered, but not finished (not done exploring from it)
 - BLACK = finished (have found everything reachable from it)
- Discovery and finish times:
 - Unique integers from 1 to $2 |V|$.
 - For all v , $d[v] < f[v]$.
- In other words, $1 \leq d[v] < f[v] \leq 2 |V|$.

Depth-First Search

Depth-First Search (BFS)

Explores the edges of a graph by searching “deeper” whenever possible.



```
DFS(G) /*G = (V,E) */
```

```
1 for each vertex u in V  
2   u.color = white  
3   u.pred = NIL  
4 for each vertex u in V  
5   if u.color = white  
6     DFS-VISIT(u)
```

$\Theta(V)$

$\Theta(V)$ +
Time to
execute
calls to
DFS-VISIT

```
DFS-VISIT(u)
```

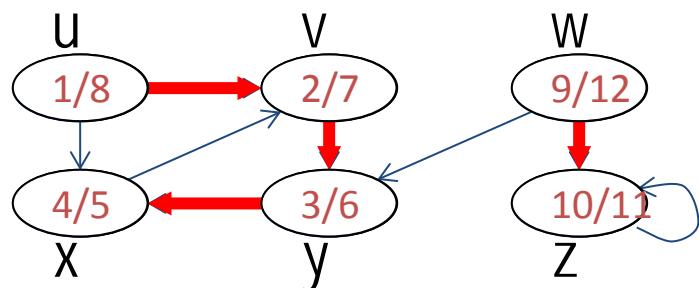
```
1 u.color = gray  
2 for each v adjacent to u  
3   if v.color = white  
4     v.pred = u  
5     DFS-VISIT(v)  
6   u.color = black
```

The running time of DFS is: $\Theta(V+E)$

Total number of edges kept by the adjacency list is $\Theta(E)$.
Total time spent in the adjacency list is $\Theta(E)$.

Depth-First Search

On many occasions it is useful to keep track of the **discovery time** and the **finishing time** while checking each node.



DFS(G) /*G = (V,E) */

- 1 for each vertex u in V
- 2 u.color = white
- 3 u.pred = NIL
- 4 time = 0
- 5 for each vertex u in V
- 6 if u.color = white
- 7 DFS-VISIT(u)

DFS-VISIT(u)

- 1 u.color = gray
- 2 time = time + 1
- 3 u.discover = time
- 4 for each v adjacent to u
- 5 if v.color = white
- 6 v.pred = u
- 7 DFS-VISIT(v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.finish = time

Properties of Depth-First Search

Parenthesis theorem

For all u, v , exactly one of the following holds:

1. $d[u] < f[u] < d[v] < f[v]$ or $d[v] < f[v] < d[u] < f[u]$ and neither of u and v is a descendant of the other.
2. $d[u] < d[v] < f[v] < f[u]$ and v is a descendant of u .
3. $d[v] < d[u] < f[u] < f[v]$ and u is a descendant of v .

So $d[u] < d[v] < f[u] < f[v]$ *cannot* happen.

Like parentheses:

- OK: $()[]$ $([])$ $[()]$
- Not OK: $([])$ $[()]$

Corollary

- v is a proper descendant of u if and only if $d[u] < d[v] < f[v] < f[u]$.

White-path theorem

v is a descendant of u if and only if at time $d[u]$, there is a path $u \curvearrowright v$ consisting of only white vertices.

(Except for u , which was *just* colored gray.)

Classification of edges

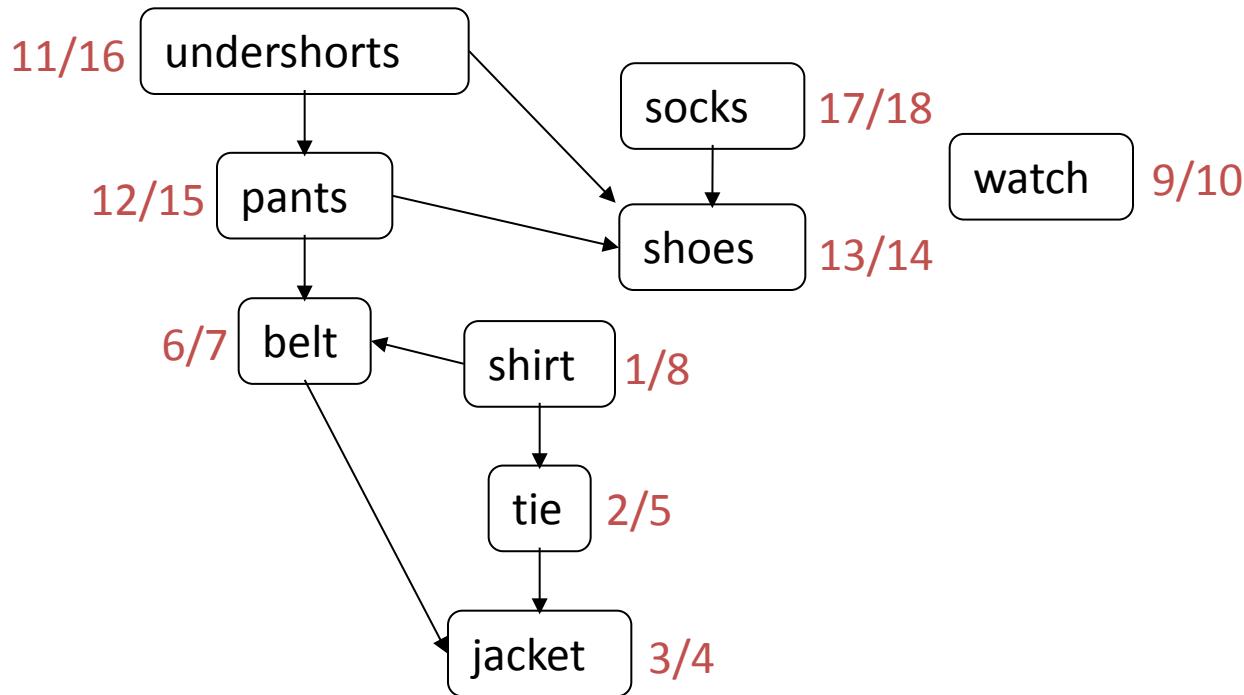
- **Tree edge:** in the depth-first forest. Found by exploring (u, v) .
- **Back edge:** (u, v) , where u is a descendant of v .
- **Forward edge:** (u, v) , where v is a descendant of u , but not a tree edge.
- **Cross edge:** any other edge.
Can go between vertices in same depth-first tree or
in different depth-first trees.

In an undirected graph, there may be some ambiguity since (u, v) and (v, u) are the same edge. Classify by the first type above that matches.

Theorem

In DFS of an *undirected* graph, we get only tree and back edges.
No forward or cross edges.

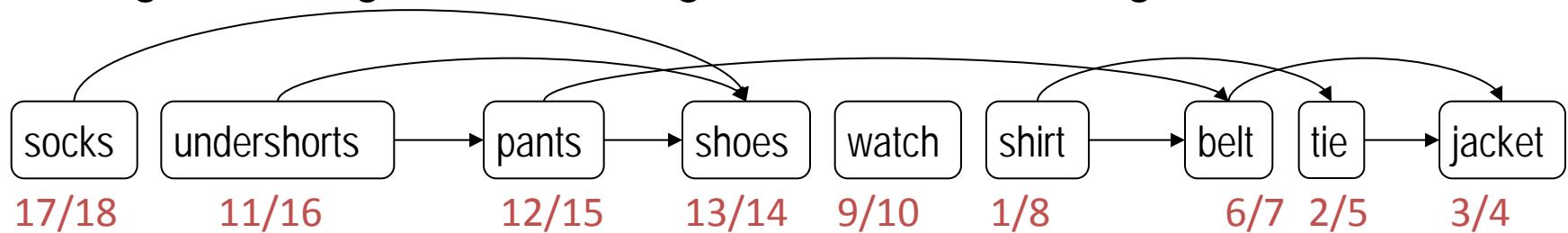
Topological Sort of a DAG



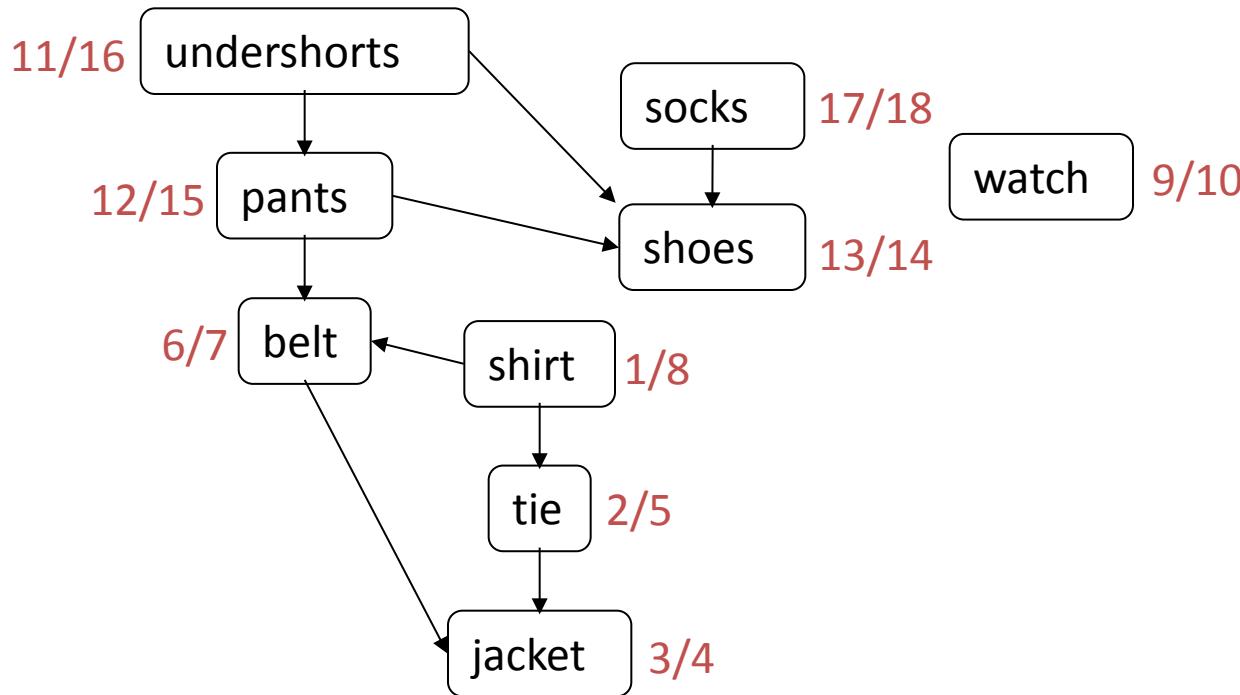
Topological Sort

- A linear ordering of vertices : if the graph contains an edge (u,v) , then u appears before v .
- Applied to directed acyclic graphs (DAG)

Sorting according to the finishing times, in descending order:



Topological Sort of a DAG

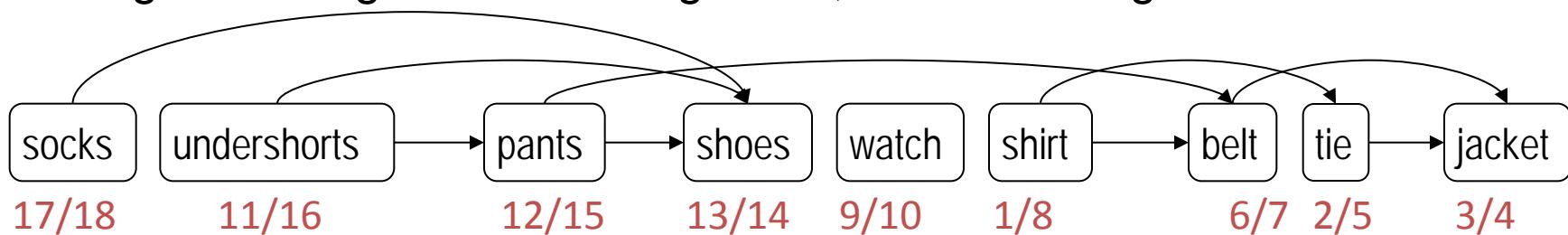


TOPOLOGICAL-SORT(G)

- 1 Call DFS(G) to compute finishing times $v.\text{finish}$ for each vertex v
- 2 As each vertex is finished, insert it onto the front of a linked list
- 3 Return the linked list of vertices

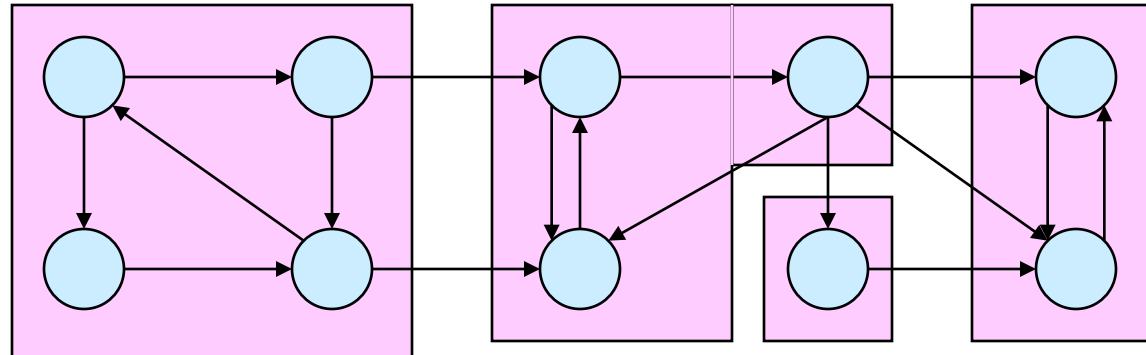
$\Theta(V+E)$

Sorting according to the finishing times, in descending order:



Strongly Connected Components

- Given directed graph $G = (V, E)$.
- A ***strongly connected component (SCC)*** of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \rightsquigarrow v$ and $v \rightsquigarrow u$
- Example:***



- Algorithm uses $G^T = \text{transpose}$ of G :
 - $G^T = (V, E^T)$, $E^T = \{(u, v) : (v, u) \in E\}$.
 - G^T is G with all edges reversed.
- Can create G^T in $(V + E)$ time if using adjacency lists.
- Observation:*** G and G^T have the *same* SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

Algorithm For Strongly Connected Components

STRONGLY-CONNECTED-COMPONENTS(G)

call DFS(G) to compute finishing times $u.f$ for each vertex u

compute G^T

call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing $u.f$ (as computed above)

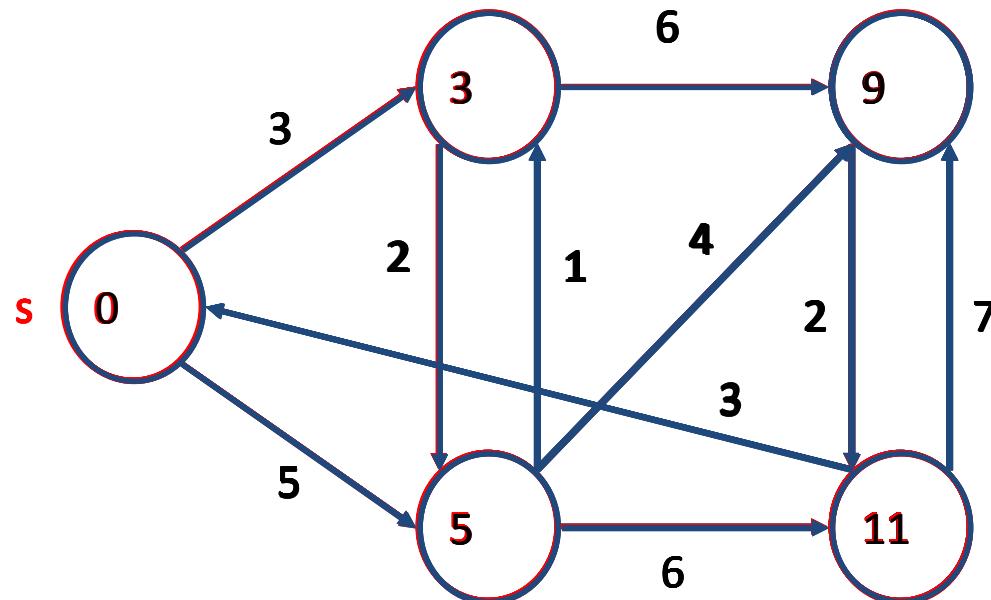
output vertices of each tree from previous DFS(G^T) call as a separate strongly connected component

Runtime: $\Theta(V+E)$

Single-Source Shortest Paths

Single-Source Shortest Paths

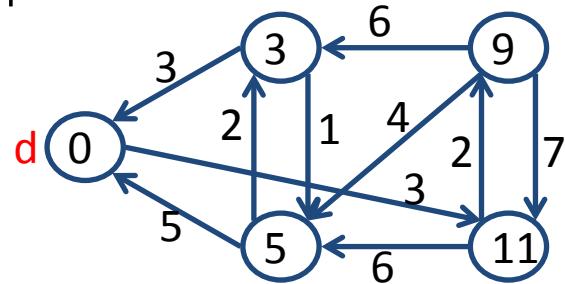
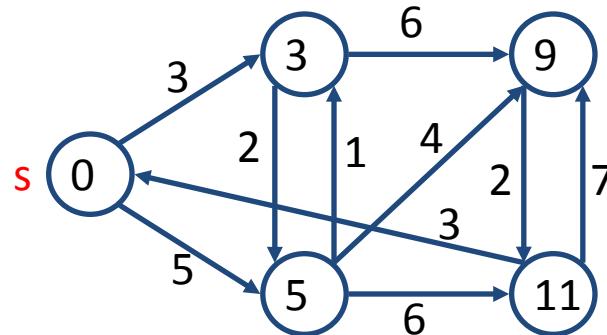
Given a weighted, directed graph, find the shortest paths from a given source vertex s to other vertices.



SSSP Variants

Single-destination shortest-path problem

By reversing the direction of each edge, we can reduce this problem to a single-source problem.



Single-pair shortest-path problem

If the single-source problem is solved, we can solve this problem also. There are no asymptotically faster algorithms.

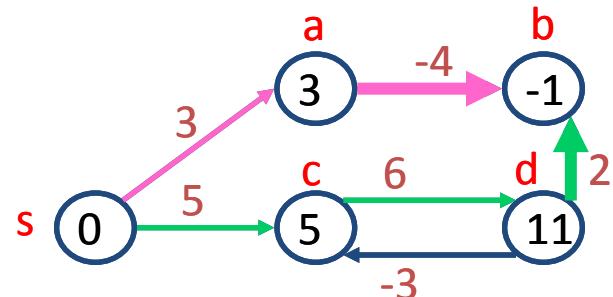
All-pairs shortest-path problem

Can be solved by running a single source algorithm once for each source vertex. However, other faster approaches exist.

Single-Source Shortest Paths

Optimal substructure of a shortest path:

A shortest path between 2 vertices contains other shortest paths within it.



Edge weight & Path weight :

Edge weight: eg. $w(c,d) = 6$

Path weight: eg. For a path $p = \langle s, c, d \rangle$, $w(p) = w(s,c) + w(c,d) = 11$

Shortest-path weight:

Define shortest-path weight for a path p from u to v as:

$$\delta(u,v) = \begin{cases} \min \{ w(p) : u \xrightarrow{p} v \} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{cases}$$

Single-Source Shortest Paths

Negative-weight edges

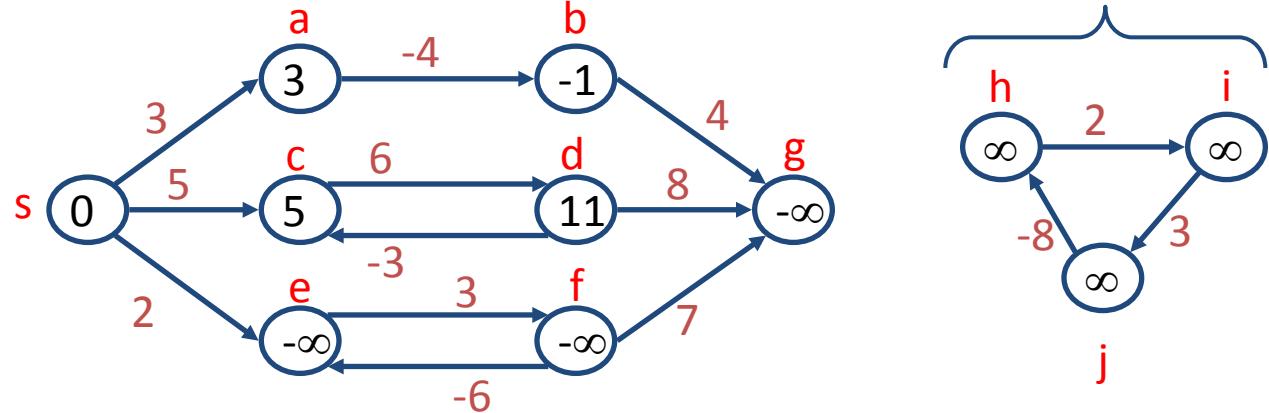
eg. $w(a,b) = -4$

Negative-weight path

eg. $\langle s,a,b \rangle: -1$

Negative-weight cycle

eg. $\langle e,f,e \rangle: -3$



h, i, and j are not reachable from s
=> $\delta(s,h)$, $\delta(s,i)$ and $\delta(s,j)$ are ∞

If there is no negative weight cycle reachable from the source vertex s, then for all v in V , the shortest-path weight $\delta(s,v)$ remains well defined.

A well defined shortest path has no cycle. Prove:

1. A shortest path should not contain non-negative weight cycle.
[otherwise reducing the cycle would give a more optimal path]
2. A well defined shortest path should not contain negative weight cycle
=> A well defined shortest path has no cycle, and has at most $|V|-1$ edges.

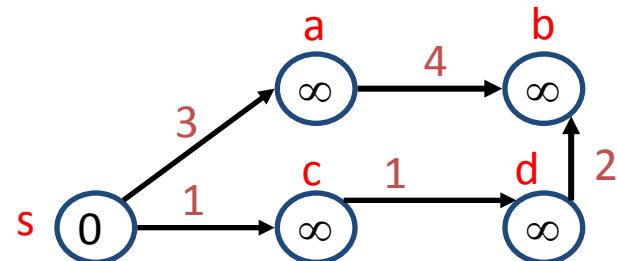
Single-Source Shortest Paths

A general function for single-source shortest paths algorithms:

INITIALIZE-SINGLE-SOURCE()

- 1 For each vertex v in V
- 2 $v.d = \infty$
- 3 $v.\text{pred} = \text{NIL}$
- 4 $s.d = 0$

$\Theta(V)$



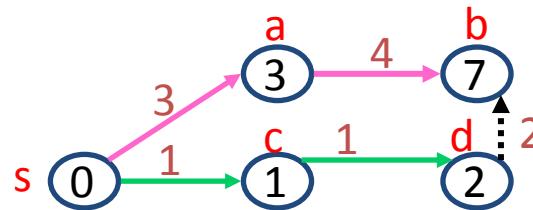
Where $v.d$ is the upper bound on the weight of a shortest path from source vertex s to v .

A general technique for single-source shortest paths algorithms:

Relaxation

“Relaxing an edge (d,b) ” :

Testing whether we can improve the shortest path to b found so far by going through d , if so, update $b.d$ and $b.\text{pred}$.



RELAX(u,v)

- 1 if $v.d > u.d + w(u,v)$
- 2 $v.d = u.d + w(u,v)$
- 3 $v.\text{pred} = u$

Single-Source Shortest Paths

Three solutions to the problem:

Bellman-Ford algorithm

- By relaxing the whole set of edges $|V|-1$ times

Algorithm for directed acyclic graphs (DAG)

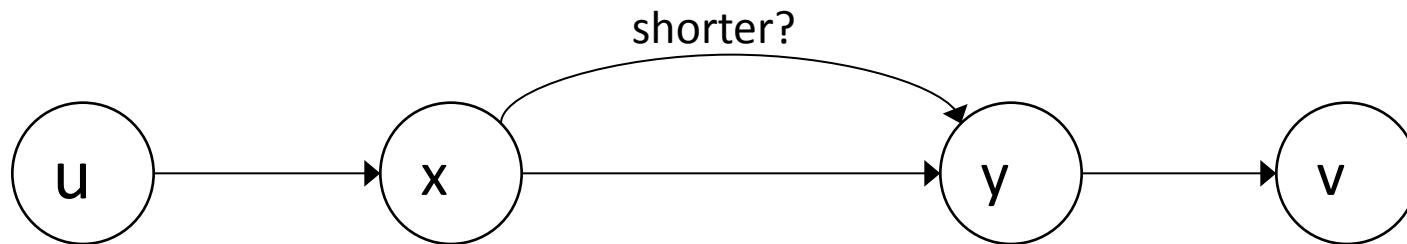
- By topological sorting the vertices first, then relax the edges of the sorted vertices one by one.

Dijkstra's algorithm

- Handle non-negative edges only. Grow the solution by checking vertices one by one, starting from the one nearest to the source vertex.

A Fact About Shortest Paths – Optimal Substructure

- **Theorem:** If p is a shortest path from u to v , then any subpath of p is also a shortest path.
- **Proof:** Consider a subpath of p from x to y . If there were a shorter path from x to y , then there would be a shorter path from u to v .



Shortest-Paths Idea

- $\delta(u, v) \equiv$ length of the shortest path from u to v .
- All SSSP algorithms maintain a field $d[u]$ for every vertex u . $d[u]$ will be an estimate of $\delta(s, u)$. As the algorithm progresses, we will refine $d[u]$ until, at termination, $d[u] = \delta(s, u)$. Whenever we discover a new shortest path to u , we update $d[u]$.
- In fact, $d[u]$ will always be an *overestimate* of $\delta(s, u)$:
$$d[u] \geq \delta(s, u)$$
- We'll use $\pi[u]$ to point to the parent (or predecessor) of u on the shortest path from s to u . We update $\pi[u]$ when we update $d[u]$.

SSSP Subroutine

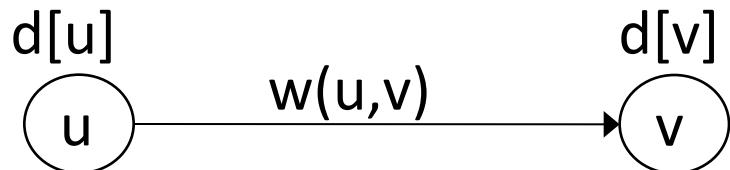
RELAX(u, v, w)

- ▷ (Maybe) improve our estimate of the distance to v
- ▷ by considering a path along the edge (u, v) .

if $v.d > u.d + w(u, v)$ then

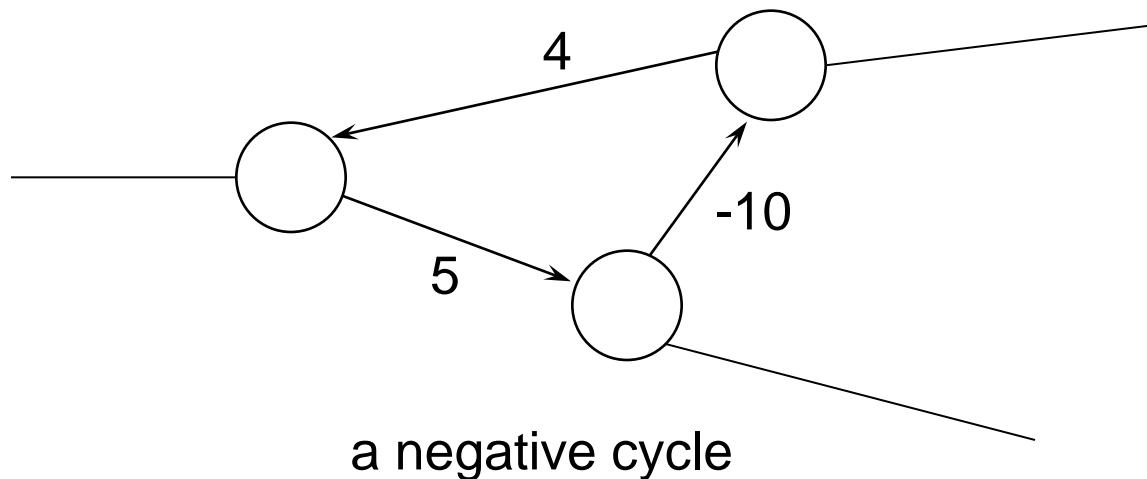
$v.d \leftarrow u.d + w(u, v)$ ▷ *actually, DECREASE-KEY*

$v.\pi \leftarrow u$ ▷ *remember predecessor on path*



The Bellman-Ford Algorithm

- Handles negative edge weights
- Detects negative cycles
- Is slower than Dijkstra



Bellman-Ford: Idea

- Repeatedly update d for all pairs of vertices connected by an edge.
- **Theorem:** If u and v are two vertices with an edge from u to v , and $s \Rightarrow u \rightarrow v$ is a shortest path, and $u.d = \delta(s, u)$,
then $u.d + w(u, v)$ is the length of a shortest path to v .
- **Proof:** Since $s \Rightarrow u \rightarrow v$ is a shortest path, its length is $\delta(s, u) + w(u, v) = u.d + w(u, v)$. ■

Why Bellman-Ford Works

- On the first pass, we find $\delta(s, u)$ for all vertices whose shortest paths have one edge.
- On the second pass, the $d[u]$ values computed for the one-edge-away vertices are correct ($= \delta(s, u)$), so they are used to compute the correct d values for vertices whose shortest paths have two edges.
- Since no shortest path can have more than $|V[G]| - 1$ edges, after that many passes all d values are correct.
- Note: all vertices not reachable from s will have their original values of infinity. (Same, by the way, for Dijkstra).

Bellman-Ford: Algorithm

BELLMAN-FORD(G, w, s)

$O(V)$

1 for each vertex $v \in V[G]$ do //INIT_SINGLE_SOURCE

2 $v.d \leftarrow \infty$

3 $v.\pi \leftarrow \text{NIL}$

4 $s.d \leftarrow 0$

5 for $i \leftarrow 1$ to $|V[G]| - 1$ do \triangleright each iteration is a “pass”

6 for each edge (u, v) in $E[G]$ do

7 RELAX(u, v, w)

8 \triangleright check for negative cycles

9 for each edge (u, v) in $E[G]$ do

10 if $v.d > u.d + w(u, v)$ then

11 return FALSE

12 return TRUE

$O(VE)$

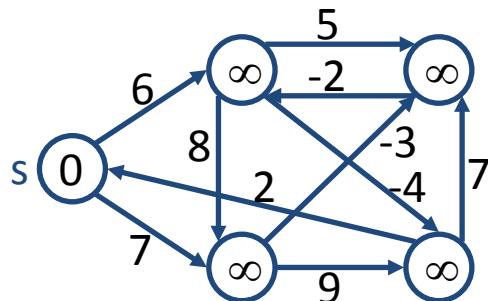
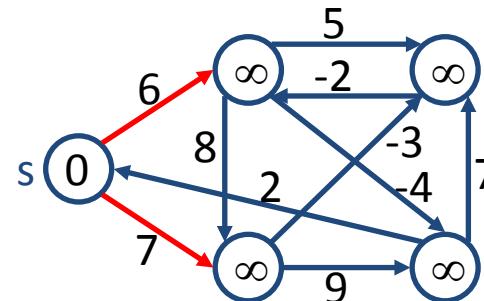
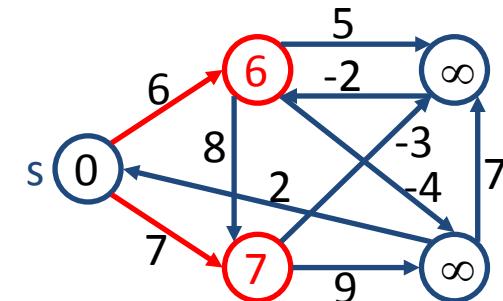
$O(E)$

Running time: $\Theta(VE)$

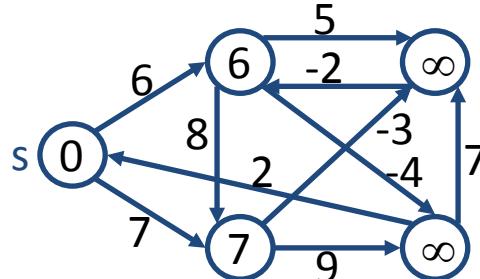
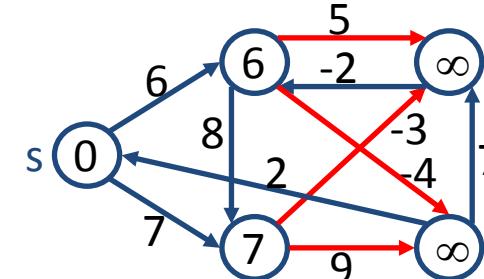
Bellman-Ford Algorithm

Method: Relax the whole set of edges $|V|-1$ times.

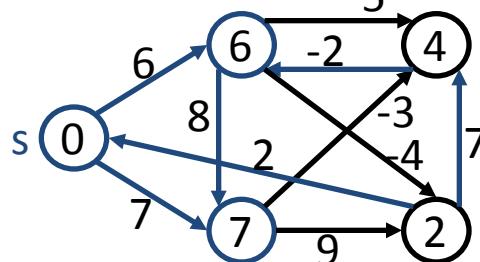
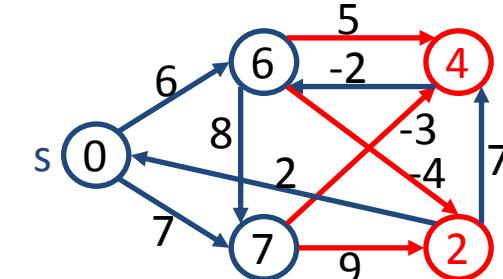
At 1st time:



At 2nd time:



At 3rd , 4th time:



Negative Cycle Detection

- What if there is a negative-weight cycle reachable from s ?

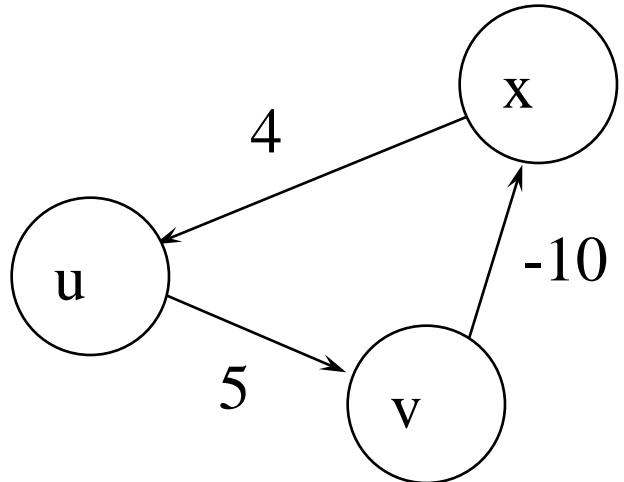
- Assume: $u.d \leq x.d + 4$
 $v.d \leq u.d + 5$
 $x.d \leq v.d - 10$

- Adding:
$$u.d + v.d + x.d \leq x.d + u.d + v.d - 1$$

- Because it's a cycle, vertices on left are same as those on right. Thus we get $0 \leq -1$; a contradiction.
So for at least one edge (u,v) ,

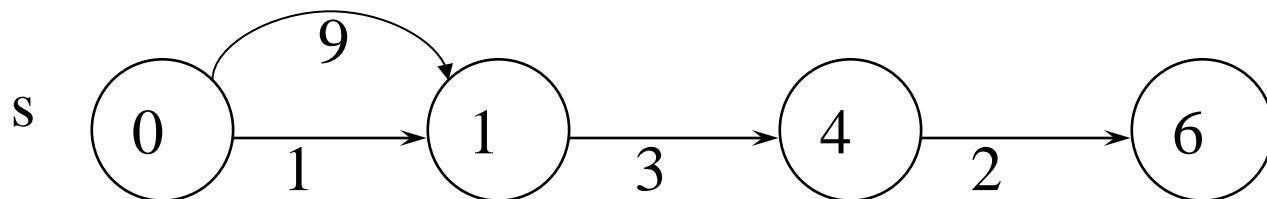
$$v.d > u.d + w(u,v)$$

- This is exactly what Bellman-Ford checks for.



SSSP in a DAG

- Recall: a *DAG* is a *directed acyclic graph*.
- If we update the edges in topologically sorted order, we correctly compute the shortest paths.
- Reason: the only paths to a vertex come from vertices before it in the topological sort.



SSSP in a DAG Theorem

- **Theorem:** For any vertex u in a DAG, if all the vertices before u in a topological sort of the DAG have been updated, then $u.d = \delta(s,u)$.
- **Proof:** By induction on the position of a vertex in the topological sort.
- Base case: $s.d$ is initialized to 0.
- Inductive case: Assume all vertices before u have been updated, and for all such vertices v , $v.d = \delta(s,v)$. (continued)

Proof, Continued

- Some edge (v, u) where v is before u , must be on the shortest path to u , since there are no other paths to u .
- When v was updated, we set $u.d$ to
$$v.d + w(v, u)$$
$$= \delta(s, v) + w(v, u)$$
$$= \delta(s, u) \blacksquare$$

SSSP-DAG Algorithm

DAG-SHORTEST-PATHS(G, w, s)

- 1 topologically sort the vertices of G
- 2 initialize d and π as in previous algorithms
- 3 for each vertex u in topological sort order do
- 4 for each vertex v in $\text{Adj}[u]$ do
- 5 $\text{RELAX}(u, v, w)$

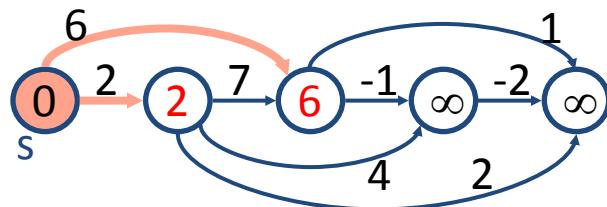
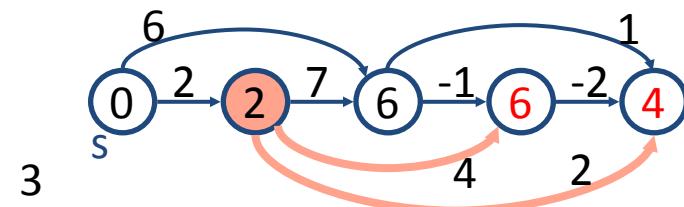
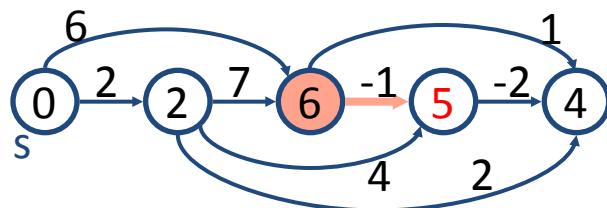
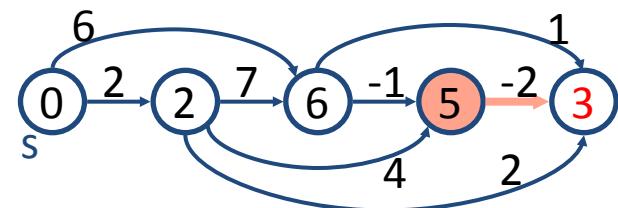
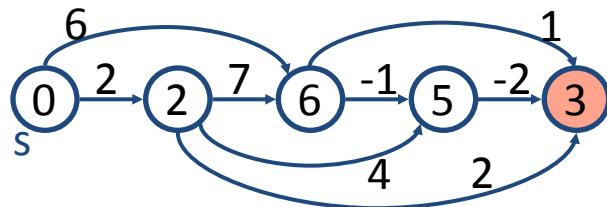
Running time: $\Theta(V+E)$, same as topological sort

Algorithm for directed acyclic graphs (DAG)

Single-Source Shortest Paths

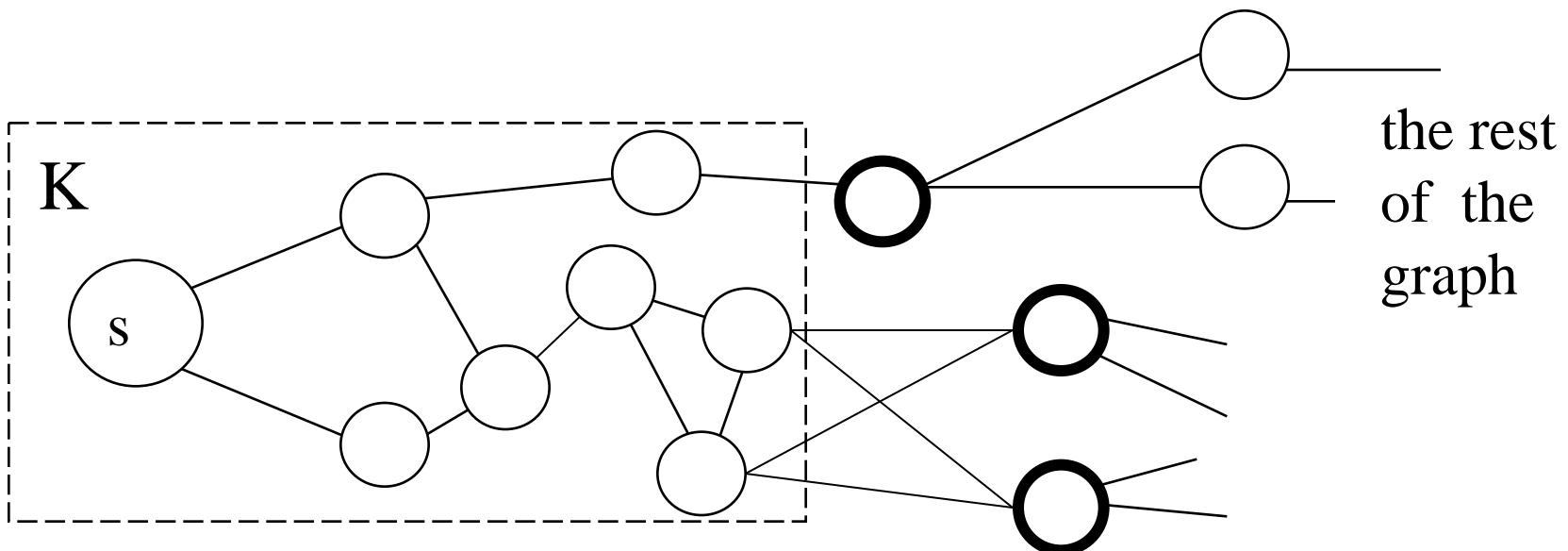
DAG-Shortest-Path

Method: By topological sorting the vertices first, then relax the edges of the sorted vertices one by one.



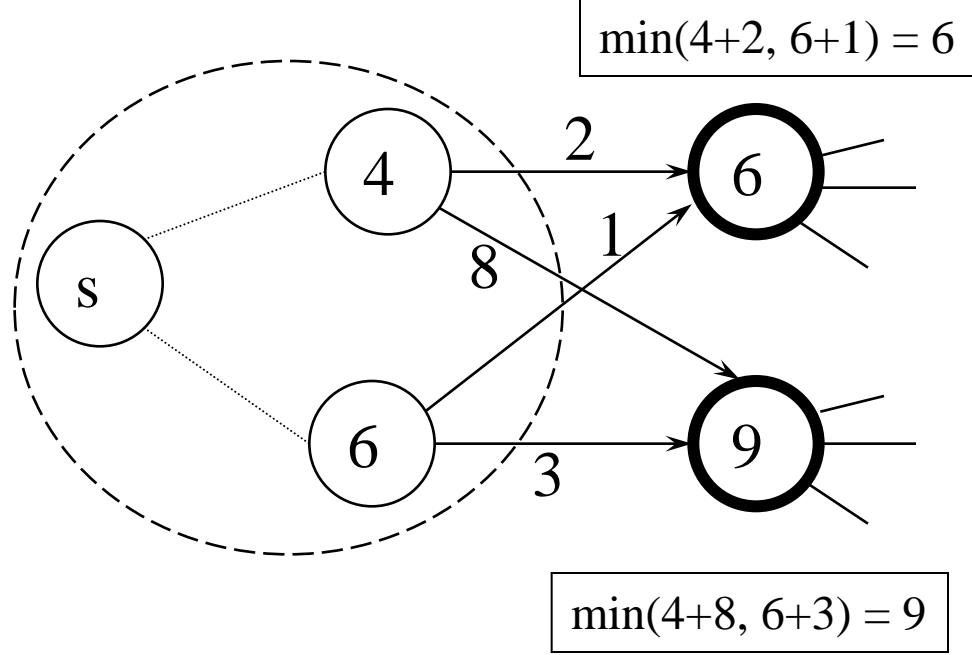
Dijkstra's Algorithm

- Assume that all edge weights are ≥ 0 .
- Idea: say we have a set K containing all vertices whose shortest paths from s are known (i.e. $u.d = d(s,u)$ for all u in K).
- Now look at the “frontier” of K —all vertices adjacent to a vertex in K .



Dijkstra's: Theorem

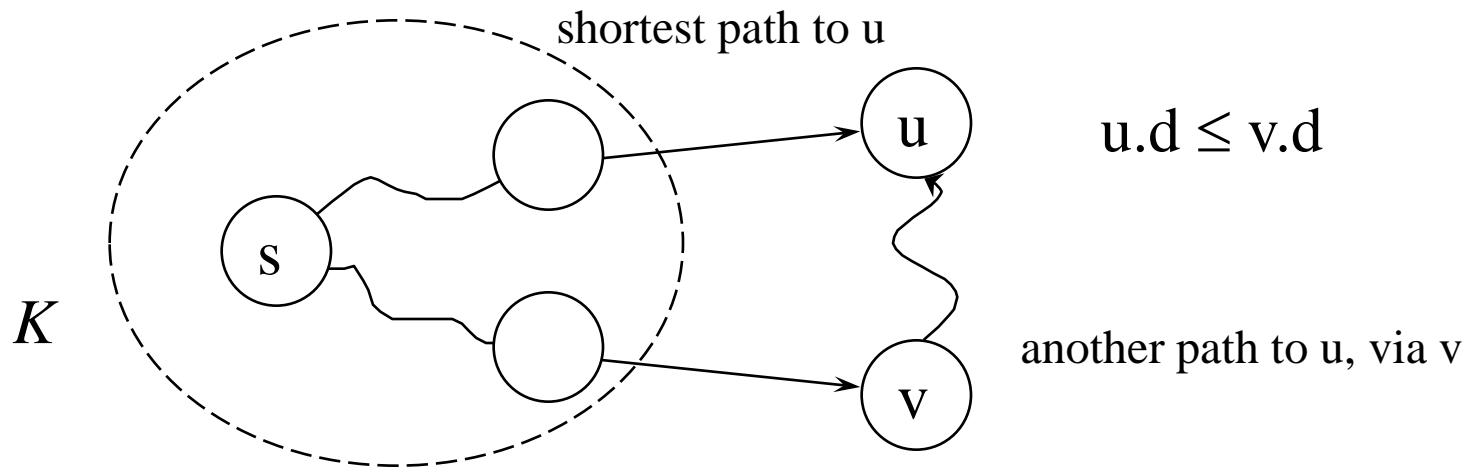
- At each frontier vertex u , update $u.d$ to be the minimum from all edges from K .
- Now pick the frontier vertex u with the smallest value of $u.d$.
- Claim: $u.d = \delta(s, u)$



Dijkstra's: Proof

- By construction, $u.d$ is the length of the shortest path to u going through only vertices in K .
- Another path to u must leave K and go to v on the frontier.
- But the length of this path is at least $v.d$, (assuming non-negative edge weights), which is $\geq u.d$. ■

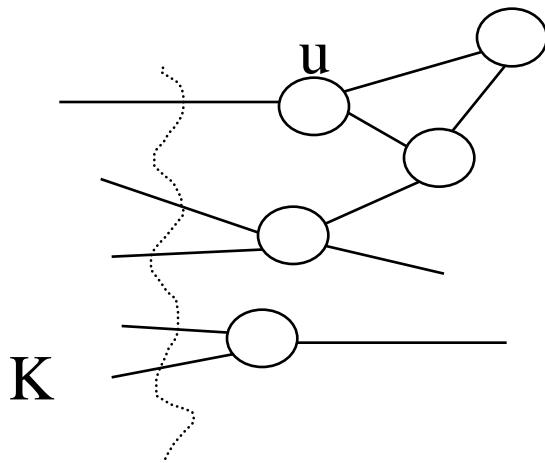
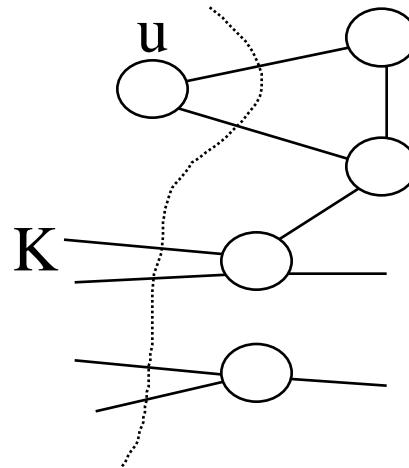
Proof Explained



- Why is the path through v at least $v.d$ in length?
- We know the shortest paths to every vertex in K .
- We've set $v.d$ to the shortest distance from s to v via K .
- The additional edges from v to u cannot decrease the path length.

Dijkstra's Algorithm, Rough Draft

→ $K \leftarrow \{s\}$
Update d for frontier of K
 $u \leftarrow$ vertex with minimum d on frontier
▷ we now know $u.d = \delta(s, u)$
 $K \leftarrow K \cup \{u\}$
repeat until all vertices are in K .



A Refinement

- Note: we don't really need to keep track of the frontier.
- When we add a new vertex u to K , just update vertices adjacent to u .

Dijkstra's Algorithm

```
1  DIJKSTRA(G, w, s) ▷ Graph, weights, start vertex
2      for each vertex v in V[G] do
3          v.d ←  $\infty$ 
4          v. $\pi$  ← NIL
5          s.d ← 0
6          Q ← BUILD-PRIORITY-QUEUE(V[G])
7          ▷ Q is V[G] - K
8          while Q is not empty do
9              u = EXTRACT-MIN(Q)
10             for each vertex v in Adj[u]
11                 RELAX(u, v, w)    // DECREASE_KEY
```

Running Time of Dijkstra

- Initialization: $\Theta(V)$
- Building priority queue: $\Theta(V)$
- “while” loop done $|V|$ times
 - $|V|$ calls of EXTRACT-MIN
- Inner “edge” loop done $|E|$ times
 - At most $|E|$ calls of DECREASE-KEY
- Total time:
$$\Theta(V + V \times T_{\text{EXTRACT-MIN}} + E \times T_{\text{DECREASE-KEY}})$$

Dijkstra Running Time (cont.)

$$\Theta(V + V \times T_{\text{EXTRACT-MIN}} + E \times T_{\text{DECREASE-KEY}})$$

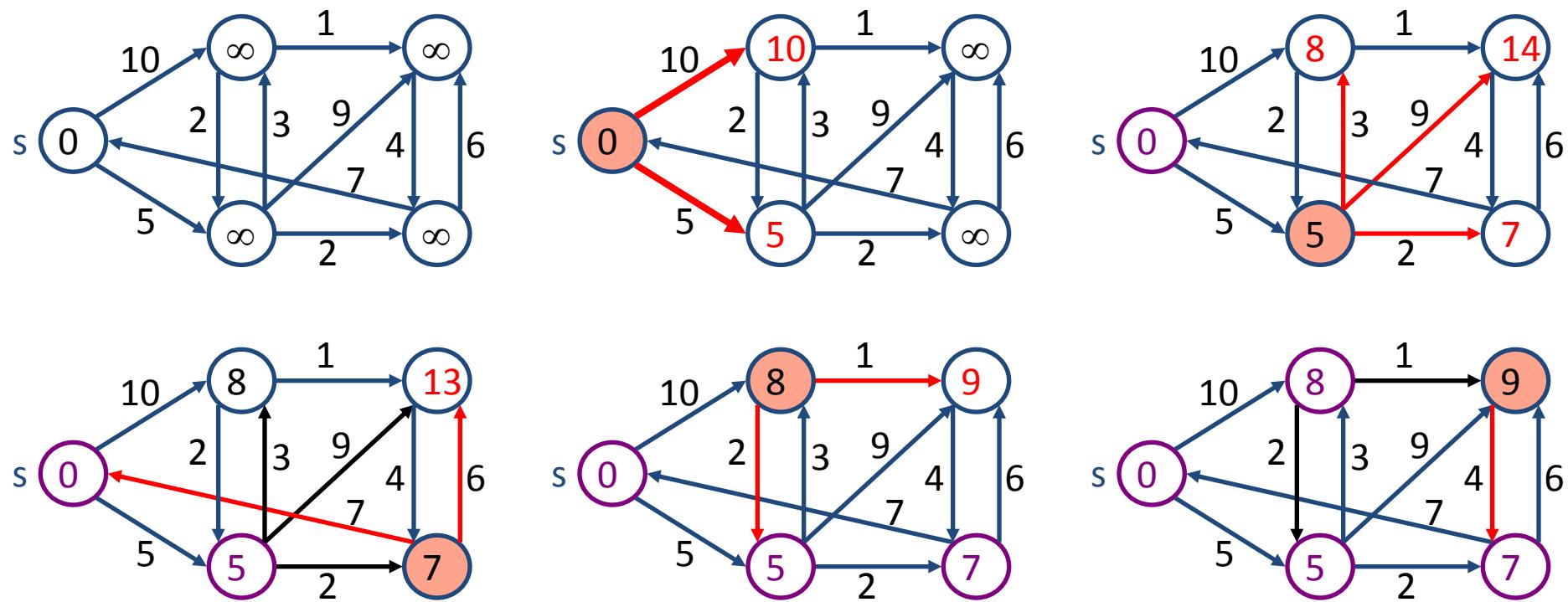
- 1. Priority queue is an **array**.
EXTRACT-MIN in $\Theta(n)$ time, DECREASE-KEY in $\Theta(1)$
Total time: $\Theta(V + VV + E) = \Theta(V^2)$
- 2. (“Modified Dijkstra”)
Priority queue is a **binary (standard) heap**.
EXTRACT-MIN in $\Theta(\lg n)$ time, also DECREASE-KEY
Total time: $\Theta(V \lg V + E \lg V)$
- 3. Priority queue **is Fibonacci heap**. (Of theoretical interest only.)
EXTRACT-MIN in $\Theta(\lg n)$,
DECREASE-KEY in $\Theta(1)$ (amortized)
Total time: $\Theta(V \lg V + E)$

Dijkstra's Algorithm Example

Single-Source Shortest Paths Dijkstra's Algorithm

Handle non-negative edges only.

Method: Grow the solution by checking vertices one by one, starting from the one nearest to the source vertex.



Reading Assignments

- Reading assignment for next class:
 - Chapter 25.1-25.2
- **Announcement:** Exam 1 is on Tues, Feb. 18
 - Will cover everything up through dynamic programming