
Today:
− Review of:
 − Heaps, Priority Queues
 − Basic Graph Algs.

− Algs for SSSP (Bellman-Ford, Topological sort
 for DAGs, Dijkstra)

COSC 581, Algorithms

February 4, 2014

Many of these slides are adapted from several online sources

Reading Assignments

• Today’s class:
– Chapter 6, 22, 24.0, 24.1, 24.2, 24.3

• Reading assignment for next class:
– Chapter 25.1-25.2

• Announcement: Exam 1 is on Tues, Feb. 18
– Will cover everything up through dynamic

programming

Heaps & Priority Queues
The (binary) heap data structure is:

• All leaves
have the
same depth

• All internal
nodes have
2 children

Complete
binary tree:

16

14 10

9 3 8 7

2 4 1

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10 1

2 3

6 7 4 5

8 9 10

an array object that can be viewed as
a nearly complete binary tree

Parent(i) =  i/2 
Left(i) = 2i
Right(i) = 2i+1

Heap Property:
• For a max-heap: child <= parent
• For a min-heap: child >= parent

Maintaining Heap Property
MAX-HEAPIFY(A,i)
1
2
3
4
..

The binary trees rooted at LEFT(i) and RIGHT(i)
are max-heaps

But A[i] may be smaller than its children.

MAX-HEAPIFY is to “float down” A[i] to make
the subtree rooted at A[i] a max-heap.

16

4 10

9 3 14 7

2 8 1

1

i=2 3

6 7 4 5

8 9 10

16

14 10

9 3 4 7

2 8 1

1

2 3

6 7 i=4 5

8 9 10

16

14 10

9 3 8 7

2 4 1

1

2 3

6 7 4 5

8 i=9 10

O(height of node i)
= O(lg n)

Heaps & Priority Queues

Basic procedures:
MAX-HEAPIFY O(lg n)
BUILD-MAX-HEAP O(n)
MAX-HEAP-INSERT O(lg n)

Maximum No. of elements Maximum No. of elements

Therefore, for a heap containing n elements :

a one-level tree (height=0): 1 1

2 3

6 7 4 5

8 9 10

Height of tree = lg n  = Θ(lg n) Maximum no. of elements in level k = 2k

HEAP-EXTRACT-MAX O(lg n)
HEAP-INCREASE-KEY O(lg n)
HEAP-MAXIMUM O(lg n)

a 2-level tree (height=1): 3

a 3-level tree (height=2): 7

a 4-level tree (height=3): 15

1 level 0:

2 level 1:

4 level 2:

8 level 3:

Heaps & Priority Queues
BUILD-MAX-HEAP(Input_numbers)
1 Copy Input_numbers to a heap
2 For i =  n/2  down to 1 /*all non-leaf nodes */
3 MAX-HEAPIFY(A,i)

Building a heap: 1

2 3

6 7 4 5

8 9 10
.. ..

15 14 11

Note that n/2 the elements are leaf nodes

1

2 3

6 7 4 5

8 9 10

Illustration for a Complete-binary tree:
A complete-binary tree of height h has h+1 levels: 0,1,2,3,.. h.
The levels have 20,21,22,23,…2h elements respectively.
Then, maximum total no. of “float down” carried out by MAX-HEAPIFY
= sum of maximum no. of “float down” of all non-leaf nodes (levels h-1, h-2, .. 0)
= 1 x 2h-1 + 2 x 2h-2 + 3 x 2h-3 + 4 x 2h-4 + .. h x 20
= 2h (1/2 + 2/4 + 3/8 + 4/16…) [note: 2h+1 = n+1, thus 2h=0.5*(n+1)]
= 0.5(n+1) (1/2 + 2/4 + 3/8 + 4/16…) [note: 1/2 + 2/4 + 3/8 + 4/16.. <2]
< 0.5(n+1) * 2 = (n+1)
= O(n)

O(n)

Priority Queue

 Priority queue is a data structure for maintaining a set of
elements each associated with a key.

 Maximum priority queue supports the following
operations:

INSERT(S,x) - Insert element x into the set S
MAXIMUM(S) - Return the ‘largest’ element
EXTRACT-MAX(S) - Remove and return the ‘largest’ element
INCREASE-KEY(S,x,v) - Increase x’s key to a new value, v

We can implement priority queues based
on a heap structure.

HEAP-EXTRACT-MAX(A)
1
2
3
4
5
6
7

Step 1. Save the value of the root that is to be returned.

Step 2. Move the last value to the root node.

Step 3. MAX-HEAPIFY(A,1/*the root node*/).

Heaps & Priority Queues
MAXIMUM(A)
1 return A[1]

16
14 10

9 3 8 7

2 4 1

14 10

9 3 8 7

2 4 1

16 1

14 10

9 3 8 7

2 4

14

8 10

9 3 4 7

2 1

Θ(1)

O(lg n)

Heaps & Priority Queues
HEAP-INCREASE-KEY(A,i,v)
1
2
3
4
5
6

MAX-HEAP-INSERT(A,key)
1 n = n+1
2 A[n]= - ∞
3 HEAP-INCREASE-KEY(A,n,key)

16

14 10

9 3 8 7

2 4 1

Increase to
15

16

14 10

9 3 8 7

15 4 1

16

14 10

9 3 15 7

8 4 1

16

15 10

9 3 14 7

8 4 1

Keep on exchanging with parent until parent is greater than the current node.

O(lg n)

16

14 10

9 3 8 7

2 4 1 -∞

16

14 10

9 3 8 7

2 4 1 15

…

O(lg n)

Graph Representation

Given graph G = (V, E).

• May be either directed or undirected.
• Two common ways to represent for algorithms:

 1. Adjacency lists.
 2. Adjacency matrix.

Expressing the running time of an algorithm is often in terms of
both |V| and |E|.

In asymptotic notation - and only in asymptotic notation - we’ll drop the
cardinality. Example: O(V + E).

Adjacency lists
Array Adj of |V| lists, one per vertex.
Vertex u’s list has all vertices v such that (u, v) ∈ E. (Works for both directed and undirected graphs.)

If edges have weights, can put the weights in the lists.
 Weight: w : E → R
 We’ll use weights later on for shortest paths.
 Space: Θ (V + E).
 Time: to list all vertices adjacent to u: Θ (degree(u)).
 Time: to determine if (u, v) ∈ E: O(degree(u)).

1 2 3

4 5 6

6
5
4
3
2
1 / 4 2

/ 5
/ 5 6

/ 2
/ 4
/ 6

Undirected graph: Directed graph:
1 2 3

4 5 6

6
5
4
3
2
1 / 4 2

/ 5 6
/ 4 1 5

/ 2 1 5
/ 3 2 4

3 /

Adjacency Matrix
|V| × |V| matrix A = (a i j)
 a ij = 1 if (i, j) ∈ E ,
 0 otherwise .
 Space:
 Time: to list all vertices adjacent to u: Θ (V).
 Time: to determine if (u, v) ∈ E: O(1).

 Can store weights instead of bits for weighted graph.

2()VΘ

1 2 3

4 5 6

a 1 2 3 4 5 6
1 0 1 0 1 0 0
2 1 0 0 1 1 0
3 0 0 0 0 1 1
4 1 1 0 0 1 0
5 0 1 1 1 0 0
6 0 0 1 0 0 0

1 2 3

4 5 6

0000006
0000005
0000004
0000003
0000002
0000001
654321

0000006
0000005
0000004
0000003
0000002
0000001
654321

1 1
1
1 1

1
1

1

1 1
1
1 1

1
1

1

Undirected graph: Directed graph:

Breadth-First Search

• Input:
 Graph G = (V, E), either directed or undirected, and source vertex s ∈ V.

• Output:
 d[v] = distance (smallest # of edges) from s to v, for all v ∈ V.

 Also π[v] = u such that (u, v) is last edge on shortest path s v
• u is v’s predecessor.
• set of edges {(π[v], v) : v = s} forms a tree.

• Later, a breadth-first search will be generalized with edge weights.
 Now, let’s keep it simple.

– Compute only d[v], not π[v].
– Omitting colors of vertices.

• Idea: Send a wave out from s.
– First hits all vertices 1 edge from s.
– From there, hits all vertices 2 edges from s.
– Etc.

• Use FIFO queue Q to maintain wavefront.
– v ∈ Q if and only if wave has hit v but has not come out of v yet.

Breadth-First Search
Explores the edges of a graph to
reach every vertex from a vertex
s, with “shortest paths”

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

∞
s

∞
r

∞ u

∞
t

∞
w

∞
v

∞ y

∞
x

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

So we connect
them:

The algorithm:

Start by inspecting
the source vertex S:

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

For r, we do the
same to its white
 color neighbors:

For s, its 2 neighbors
are not yet searched

Now r and w join
our solution

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

For w, we do the
same to its white
color neighbors:

Breadth-First Search (BFS)

Now v joins
our solution

Now t and x join
our solution

…

Breadth-First Search

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

So we connect
them:

Using 3 colors: white / gray / black

Start by inspecting
the source vertex S:

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

For r, we do the
same to its white
 color neighbors:

For s, its 2 neighbors
are not yet searched

Now r and w join
our solution

∞ ∞
∞ ∞

∞ ∞
∞ ∞

s r u t

w v y x

For w, we do the
same to its white
color neighbors:

Now v joins
our solution

Now t and x join
our solution

…

Since s is in our
solution, and it is to be
inspected, we mark it
gray

No more need to check
s, so mark it black.
r and w join our
solution, we need to
check them later on, so
mark them gray.

No more need to
check r, so mark it
black.
v joins our solution,
we need to check it
later on, so mark it
gray.

No more need to
check w, so mark it
black.
t and x join our
solution, we need to
check them later on,
so mark them gray.

Breadth-First Search Algorithm
BFS(G,s) /*G=(V,E)*/
1 For each vertex u in V - {s}
2 u.color = white
3 u.distance = ∞
4 u.pred = NIL
5 s.color = gray
6 s.distance = 0
7 s.pred = NIL
8 Q = ∅
9 ENQUEUE(Q,s)
10 while Q ≠ ∅
11 u = DEQUEUE(Q)
12 for each v adjacent to u
13 if v.color = white
14 v.color = gray
15 v.distance = u.distance + 1
16 v.pred = u
17 ENQUEUE(Q,v)
18 u.color = black

Θ(V)

Total number of edges kept
by the adjacency list is Θ(E)

Total time spent in the
adjacency list is O(E)

The running time
of BFS is: O(V+E)

Depth-First Search
• Input:
 Graph G = (V, E), either directed or undirected. No source vertex given.

• Output: 2 timestamps on each vertex:
• d[v] = discovery time.
• f[v] = finishing time.
• π[v] : v’s predecessor field.

• Will methodically explore every edge.
– Start over from different vertices as necessary.

• As soon as we discover a vertex, explore from it.
– Unlike BFS, which puts a vertex on a queue so that we explore from it later.

• As DFS progresses, every vertex has a color:
– WHITE = undiscovered
– GRAY = discovered, but not finished (not done exploring from it)
– BLACK = finished (have found everything reachable from it)

• Discovery and finish times:
– Unique integers from 1 to 2 |V|.
– For all v, d[v] < f [v].

• In other words, 1 ≤ d[v] < f [v] ≤ 2 |V|.

Depth-First Search

Explores the edges of
a graph by searching
“deeper” whenever
possible.

Depth-First Search (BFS)

∞ ∞

∞ ∞

∞

∞

v u w

y x z

∞ ∞

∞ ∞

∞

∞

v u w

y x z

DFS(G) /*G = (V,E) */
1 for each vertex u in V
2 u.color = white
3 u.pred = NIL
4 for each vertex u in V
5 if u.color = white
6 DFS-VISIT(u)

DFS-VISIT(u)
1 u.color = gray
2 for each v adjacent to u
3 if v.color = white
4 v.pred = u
5 DFS-VISIT(v)
6 u.color = black

Θ(V)

Θ(V) +
Time to
execute
calls to
DFS-VISIT

Total number of
edges kept by
the adjacency
list is Θ(E).
Total time spent
in the adjacency
list is Θ(E).

The running
time of DFS
is: Θ(V+E)

√ √ √

√ √ √

Depth-First Search

On many occasions it is useful to
keep track of the discovery time
and the finishing time while
checking each node.

∞ ∞

∞ ∞

∞

∞

v u w

y x z

DFS(G) /*G = (V,E) */
1 for each vertex u in V
2 u.color = white
3 u.pred = NIL
4 time = 0
5 for each vertex u in V
6 if u.color = white
7 DFS-VISIT(u)

DFS-VISIT(u)
1 u.color = gray
2 time = time + 1
3 u.discover = time
4 for each v adjacent to u
5 if v.color = white
6 v.pred = u
7 DFS-VISIT(v)
8 u.color = black
9 time = time + 1
10 u.finish = time

1/8 2/7

3/6 4/5

9/12

10/11

1/8 2/7

3/6 4/5

9/12

10/11

Properties of Depth-First Search
Parenthesis theorem
For all u, v, exactly one of the following holds:

1. d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and

 neither of u and v is a descendant of the other.

2. d[u] < d[v] < f [v] < f [u] and v is a descendant of u.
3. d[v] < d[u] < f [u] < f [v] and u is a descendant of v.

So d[u] < d[v] < f [u] < f [v] cannot happen.
Like parentheses:
– OK: () [] ([]) [()]
– Not OK: ([)] [(])

Corollary
– v is a proper descendant of u if and only if d[u] < d[v] < f [v] < f [u].

White-path theorem
v is a descendant of u if and only if at time d [u], there is a path u v
consisting of only white vertices.
(Except for u, which was just colored gray.)

Classification of edges

– Tree edge: in the depth-first forest. Found by exploring (u, v).
– Back edge: (u, v), where u is a descendant of v.
– Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
– Cross edge: any other edge.
 Can go between vertices in same depth-first tree or
 in different depth-first trees.

In an undirected graph, there may be some ambiguity since (u, v) and (v, u)
are the same edge. Classify by the first type above that matches.

Theorem
In DFS of an undirected graph, we get only tree and back edges.
No forward or cross edges.

Topological Sort of a DAG

• A linear ordering of
vertices : if the
graph contains an
edge (u,v), then u
appears before v.

• Applied to directed
acyclic graphs
(DAG)

Topological Sort

undershorts pants belt socks shoes shirt tie jacket watch

Sorting according to the finishing times, in descending order:

undershorts

pants

belt

socks

shoes

shirt

tie

jacket

watch

1/8

17/18

13/14

2/5

3/4

9/10

11/16

12/15

6/7

17/18 13/14 9/10 1/8 2/5 3/4 6/7 11/16 12/15

Topological Sort of a DAG

undershorts pants belt socks shoes shirt tie jacket watch

Sorting according to the finishing times, in descending order:

undershorts

pants

belt

socks

shoes

shirt

tie

jacket

watch

1/8

17/18

13/14

2/5

3/4

9/10

11/16

12/15

6/7

17/18 13/14 9/10 1/8 2/5 3/4 6/7 11/16 12/15

TOPOLOGICAL-SORT(G)

1 Call DFS(G) to
compute finishing
times v.finish for each
vertex v

2 As each vertex is
finished, insert it onto
the front of a linked list

3 Return the linked list
of vertices

Θ(V+E)

Strongly Connected Components
• Given directed graph G = (V, E).
• A strongly connected component (SCC) of G is a maximal set of vertices C ⊆ V such

that for all u, v ∈ C, both u v and v u

• Example:

• Algorithm uses GT = transpose of G:

– GT = (V, ET), ET = {(u, v) : (v, u) ∈ E}.
– GT is G with all edges reversed.

• Can create GT in (V + E) time if using adjacency lists.
• Observation: G and GT have the same SCC’s. (u and v are reachable from each

other in G if and only if reachable from each other in GT.)

Algorithm For Strongly Connected
Components

STRONGLY-CONNECTED-COMPONENTS(G)
 call DFS(G) to compute finishing times u.f for each
 vertex u
 compute GT

 call DFS(GT), but in the main loop of DFS, consider
 the vertices in order of decreasing u.f (as
 computed above)
 output vertices of each tree from previous DFS(GT)
 call as a separate strongly connected component

Runtime: Θ(V+E)

Single-Source Shortest Paths
 Single-Source Shortest Paths

Given a weighted, directed graph, find the shortest paths
from a given source vertex s to other vertices.

0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s 0

3

5

9

11

6

3

2 1

5

6

3

4

2 7 s

SSSP Variants

All-pairs
shortest-path
problem
Can be solved by
running a single source
algorithm once for each
source vertex. However,
other faster approaches
exist.

0

3

5

9

11

6
3

2 1

5
6

3

4
2 7 s

0

3

5

9

11

6
3

2 1

5
6

3
4

2 7 d

Single-destination
shortest-path problem
By reversing the direction of
each edge, we can reduce this
problem to a single-source
problem. Single-pair

shortest-path
problem
If the single-source
problem is solved, we
can solve this problem
also. There are no
asymptotically faster
algorithms.

Single-Source Shortest Paths

Shortest-path weight:
 Define shortest-path weight for a path p from u to v as:

Optimal substructure of a shortest path:
 A shortest path between 2 vertices contains

other shortest paths within it.

Edge weight & Path weight :
 Edge weight: eg. w(c,d) = 6
 Path weight: eg. For a path p=<s,c,d>, w(p) = w(s,c) + w(c,d) = 11

s

3

0

-1

5 11

3
-4

5 6

-3

a

c

b

d 2
s

3

0

-1

5 11

3
-4

5 6

-3

a

c

b

d 2

δ(u,v) =
 min { w(p): u p v} if there is a path from u to v

 ∞ otherwise

Single-Source Shortest Paths

If there is no negative weight cycle reachable from the source vertex s,
then for all v in V, the shortest-path weight δ(s,v) remains well defined.

Negative-weight edges
eg. w(a,b) = -4

Negative-weight path
eg. <s,a,b>: -1

Negative-weight cycle
eg. <e,f,e>: -3

s

3

0

-1

5 11 -∞

-∞ -∞

3
-4

4
8

7 2

5 6

-3 3

-6

a

c

e

b

d

f

g ∞ ∞

∞

2
h

j

i

-8 3

h, i, and j are not reachable from s
=> δ(s,h), δ(s,i) and δ(s,j) are ∞

A well defined shortest path has no cycle. Prove:
1. A shortest path should not contain non-negative weight cycle.

[otherwise reducing the cycle would give a more optimal path]
2. A well defined shortest path should not contain negative weight cycle
=> A well defined shortest path has no cycle, and has at most |V|-1 edges.

Single-Source Shortest Paths

A general technique for single-source
shortest paths algorithms:

INITIALIZE-SINGLE-SOURCE()
1 For each vertex v in V
2 v.d = ∞
3 v.pred = NIL
4 s.d = 0

RELAX(u,v)
1 if v.d > u.d + w(u,v)
2 v.d = u.d + w(u,v)
3 v.pred = u

A general function for single-source
shortest paths algorithms:

Where v.d is the upper bound on the
weight of a shortest path from source
vertex s to v.

Relaxation
“Relaxing an edge (d,b)” :
Testing whether we can improve the shortest
path to b found so far by going through d, if so,
update b.d and b.pred.

Θ(V)

s

3

0

7

1 2

3
4

1 1

a

c

b

d 2

s

∞

0

∞

∞ ∞

3
4

1 1

a

c

b

d 2

Single-Source Shortest Paths

Three solutions to the problem:
 Bellman-Ford algorithm

- By relaxing the whole set of edges |V|-1 times

 Algorithm for directed acyclic graphs (DAG)
- By topological sorting the vertices first, then relax the

edges of the sorted vertices one by one.

 Dijkstra’s algorithm
- Handle non-negative edges only. Grow the solution

by checking vertices one by one, starting from the one
nearest to the source vertex.

A Fact About Shortest Paths –
Optimal Substructure

• Theorem: If p is a shortest path from u to v,
then any subpath of p is also a shortest path.

• Proof: Consider a subpath of p from x to y. If
there were a shorter path from x to y, then
there would be a shorter path from u to v.

u x y v

shorter?

Shortest-Paths Idea
• δ(u,v) ≡ length of the shortest path from u to v.
• All SSSP algorithms maintain a field d[u] for every vertex u.

d[u] will be an estimate of δ(s,u). As the algorithm
progresses, we will refine d[u] until, at termination,
d[u] = δ(s,u). Whenever we discover a new shortest path to
u, we update d[u].

• In fact, d[u] will always be an overestimate of δ(s,u):
 d[u] ≥ δ(s,u)
• We’ll use π[u] to point to the parent (or predecessor) of u

on the shortest path from s to u. We update π[u] when we
update d[u].

SSSP Subroutine
RELAX(u, v, w)
  (Maybe) improve our estimate of the distance to v
  by considering a path along the edge (u, v).
 if v.d > u.d + w(u,v) then
 v.d ← u.d + w(u, v)  actually, DECREASE-KEY
 v.π ← u  remember predecessor on path

u v w(u,v)
d[v] d[u]

The Bellman-Ford Algorithm
• Handles negative edge weights
• Detects negative cycles
• Is slower than Dijkstra

4

5
-10

a negative cycle

Bellman-Ford: Idea

• Repeatedly update d for all pairs of vertices
connected by an edge.

• Theorem: If u and v are two vertices with an
edge from u to v, and s ⇒ u → v is a shortest
path, and u.d = δ(s,u),

 then u.d+w(u,v) is the length of a shortest
 path to v.
• Proof: Since s ⇒u → v is a shortest path, its

length is δ(s,u) + w(u,v) = u.d + w(u,v). 

Why Bellman-Ford Works
• On the first pass, we find δ (s,u) for all vertices whose

shortest paths have one edge.

• On the second pass, the d[u] values computed for the one-

edge-away vertices are correct (= δ (s,u)), so they are used
to compute the correct d values for vertices whose
shortest paths have two edges.

• Since no shortest path can have more than |V[G]|-1 edges,
after that many passes all d values are correct.

• Note: all vertices not reachable from s will have their
original values of infinity. (Same, by the way, for Dijkstra).

Bellman-Ford: Algorithm
BELLMAN-FORD(G, w, s)
1 for each vertex v ∈V[G] do //INIT_SINGLE_SOURCE
2 v.d ← ∞
3 v.π ← NIL
4 s.d ← 0
5 for i ← 1 to |V[G]|-1 do  each iteration is a “pass”
6 for each edge (u,v) in E[G] do
7 RELAX(u, v, w)
8  check for negative cycles
9 for each edge (u,v) in E[G] do
10 if v.d > u.d + w(u,v) then
11 return FALSE
12 return TRUE Running time: Θ(VE)

O(V)

O(VE)

O(E)

Single-Source Shortest Paths

Bellman-Ford Algorithm
Method: Relax the whole set of edges |V|-1 times.

0

∞

∞

∞

∞

5
6

8

7
9

-4
-3

7 s

-2

2 0

∞

∞

∞

∞

5
6

8

7
9

-4
-3

7 s

-2

2 0

6

7

∞

∞

5
6

8

7
9

-4
-3

7 s

-2

2

0

6

7

∞

∞

5
6

8

7
9

-4
-3

7 s

-2

2 0

6

7

∞

∞

5
6

8

7
9

-4
-3

7 s

-2

2 s 0

6

7

4

2

5
6

8

7
9

-4
-3

7

-2

2

At 1st time:

At 2nd time:

At 3rd , 4th time:
5

s 0

6

7

4

2

6
8

7
9

-4
-3

7

-2

2

Negative Cycle Detection
• What if there is a negative-weight

cycle reachable from s?
• Assume: u.d ≤ x.d+4
 v.d ≤ u.d+5
 x.d ≤ v.d-10
• Adding:
 u.d+v.d+x.d ≤ x.d+u.d+v.d-1
• Because it’s a cycle, vertices on left are same as those on

right. Thus we get 0 ≤ -1; a contradiction.
So for at least one edge (u,v),

 v.d > u.d + w(u,v)
• This is exactly what Bellman-Ford checks for.

u

x

v

4

5

 -10

SSSP in a DAG

• Recall: a DAG is a directed acyclic graph.
• If we update the edges in topologically sorted

order, we correctly compute the shortest
paths.

• Reason: the only paths to a vertex come from
vertices before it in the topological sort.

0 1 4 6 1 3 2

9
s

SSSP in a DAG Theorem

• Theorem: For any vertex u in a DAG, if all the
vertices before u in a topological sort of the
DAG have been updated, then u.d = δ(s,u).

• Proof: By induction on the position of a vertex
in the topological sort.

• Base case: s.d is initialized to 0.
• Inductive case: Assume all vertices before u

have been updated, and for all such vertices v,
v.d=δ(s,v). (continued)

Proof, Continued

• Some edge (v,u) where v is before u, must be
on the shortest path to u, since there are no
other paths to u.

• When v was updated, we set u.d to
 v.d+w(v,u)

 = δ(s,v) + w(v,u)
 = δ(s,u) 

SSSP-DAG Algorithm

DAG-SHORTEST-PATHS(G,w,s)
1 topologically sort the vertices of G
2 initialize d and π as in previous algorithms
3 for each vertex u in topological sort order do
4 for each vertex v in Adj[u] do
5 RELAX(u, v, w)

Running time: θ(V+E), same as topological sort

Θ(V+E)

Θ(V)

Θ(E)

Single-Source Shortest Paths

Algorithm for directed acyclic graphs (DAG)
Single-Source Shortest Paths

DAG-Shortest-Path

0 2 6 ∞ ∞ 2 7 -1 -2

2 4

6 1

s
0 2 6 6 4 2 7 -1 -2

3 2 4

6 1

s

Method: By topological sorting the vertices first, then relax the
edges of the sorted vertices one by one.

0 2 6 5 4 2 7 -1 -2

2 4

6 1

s
0 2 6 5 3 2 7 -1 -2

2 4

6 1

s

0 2 6 5 3 2 7 -1 -2

2 4

6 1

s

Dijkstra’s Algorithm
• Assume that all edge weights are ≥ 0.
• Idea: say we have a set K containing all vertices

whose shortest paths from s are known
(i.e. u.d = d(s,u) for all u in K).

• Now look at the “frontier” of K—all vertices
adjacent to a vertex in K.

the rest
of the
graph

s

K

Dijkstra’s: Theorem

• At each frontier
vertex u, update
u.d to be the
minimum from all
edges from K.

• Now pick the
frontier vertex u
with the smallest
value of u.d.

• Claim: u.d = δ(s,u)

s

4

9

6

6

2
1

3

8

min(4+2, 6+1) = 6

min(4+8, 6+3) = 9

Dijkstra’s: Proof

• By construction, u.d is the length of the
shortest path to u going through only vertices
in K.

• Another path to u must leave K and go to v on
the frontier.

• But the length of this path is at least v.d,
(assuming non-negative edge weights),
which is ≥ u.d. 

Proof Explained

• Why is the path through v at least v.d in length?
• We know the shortest paths to every vertex in K.
• We’ve set v.d to the shortest distance from s to v via K.
• The additional edges from v to u cannot decrease the path

length.

s

u

v

u.d ≤ v.d

K

shortest path to u

another path to u, via v

Dijkstra’s Algorithm, Rough Draft

.in are verticesall untilrepeat
}{

),(. know now we
frontieron minimumh vertex wit

 offrontier for Update
}{

K
uKK

usdu
du

Kd
sK





←
=

←

←

δ

u

 K

K

u

A Refinement

• Note: we don’t really need to keep track of the
frontier.

• When we add a new vertex u to K, just update
vertices adjacent to u.

Dijkstra’s Algorithm
1 DIJKSTRA(G, w, s)  Graph, weights, start vertex
2 for each vertex v in V[G] do
3 v.d  ∞
4 v.π  NIL
5 s.d  0
6 Q  BUILD-PRIORITY-QUEUE(V[G])
7  Q is V[G] - K
8 while Q is not empty do
9 u = EXTRACT-MIN(Q)
10 for each vertex v in Adj[u]
11 RELAX(u, v, w) // DECREASE_KEY

Running Time of Dijkstra

• Initialization: θ(V)
• Building priority queue: θ(V)
• “while” loop done |V| times
• |V| calls of EXTRACT-MIN
• Inner “edge” loop done |E| times
• At most |E| calls of DECREASE-KEY
• Total time:
 Θ(V + V × TEXTRACT-MIN + E × TDECREASE-KEY)

Dijkstra Running Time (cont.)

• 1. Priority queue is an array.
EXTRACT-MIN in Θ(n) time, DECREASE-KEY in Θ(1)
Total time: Θ(V + VV + E) = Θ(V2)

• 2. (“Modified Dijkstra”)
Priority queue is a binary (standard) heap.
EXTRACT-MIN in Θ(lgn) time, also DECREASE-KEY
Total time: Θ(VlgV + ElgV)

• 3. Priority queue is Fibonacci heap. (Of theoretical interest
only.)
EXTRACT-MIN in Θ(lgn),
DECREASE-KEY in Θ(1) (amortized)
Total time: Θ(VlgV+E)

Θ(V + V × TEXTRACT-MIN + E × TDECREASE-KEY)

Dijkstra’s Algorithm Example

Single-Source Shortest Paths

Dijkstra’s Algorithm
Handle non-negative edges only.
Method: Grow the solution by checking vertices one by one,
starting from the one nearest to the source vertex.

0

∞

∞

∞

∞

1
10

2 3

5
2

7

9
4 6 s 0

10

5

∞

∞

1
10

2 3

5
2

7

9
4 6 s 0

8

5

14

7

1
10

2 3

5
2

7

9
4 6 s

0

8

5

13

7

1
10

2 3

5
2

7

9
4 6 s 0

8

5

9

7

1
10

2 3

5
2

7

9
4 6 s 0

8

5

9

7

1
10

2 3

5
2

7

9
4 6 s

Reading Assignments

• Reading assignment for next class:
– Chapter 25.1-25.2

• Announcement: Exam 1 is on Tues, Feb. 18
– Will cover everything up through dynamic

programming

	Today: �− Review of:�	 − Heaps, Priority Queues�	 − Basic Graph Algs.�− Algs for SSSP (Bellman-Ford, Topological sort 			 for DAGs, Dijkstra)�	
	Reading Assignments
	Heaps & Priority Queues
	Maintaining Heap Property
	Heaps & Priority Queues
	Heaps & Priority Queues
	Priority Queue
	Heaps & Priority Queues
	Heaps & Priority Queues
	Slide Number 10
	Slide Number 11
	Adjacency Matrix
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search Algorithm
	Depth-First Search
	Depth-First Search
	Depth-First Search
	Properties of Depth-First Search
	Slide Number 21
	Topological Sort of a DAG
	Topological Sort of a DAG
	Strongly Connected Components
	Algorithm For Strongly Connected Components
	Single-Source Shortest Paths
	SSSP Variants
	Single-Source Shortest Paths
	Single-Source Shortest Paths
	Single-Source Shortest Paths
	Single-Source Shortest Paths
	A Fact About Shortest Paths – �Optimal Substructure
	Shortest-Paths Idea
	SSSP Subroutine
	The Bellman-Ford Algorithm
	Bellman-Ford: Idea
	Why Bellman-Ford Works
	Bellman-Ford: Algorithm
	Single-Source Shortest Paths�Bellman-Ford Algorithm
	Negative Cycle Detection
	SSSP in a DAG
	SSSP in a DAG Theorem
	Proof, Continued
	SSSP-DAG Algorithm
	Single-Source Shortest Paths�Algorithm for directed acyclic graphs (DAG)
	Dijkstra’s Algorithm
	Dijkstra’s: Theorem
	Dijkstra’s: Proof
	Proof Explained
	Dijkstra’s Algorithm, Rough Draft
	A Refinement
	Dijkstra’s Algorithm
	Running Time of Dijkstra
	Dijkstra Running Time (cont.)
	�Dijkstra’s Algorithm Example
	Reading Assignments

