Today:
— Review of:

— Heaps, Priority Queues
— Basic Graph Algs.

— Algs for SSSP (Bellman-Ford, Topological sort
for DAGs, Dijkstra)

COSC 581, Algorithms
February 4, 2014

Many of these slides are adapted from several online sources

Reading Assighments

e Today’s class:
— Chapter 6, 22, 24.0, 24.1, 24.2, 24.3

e Reading assignment for next class:
— Chapter 25.1-25.2

e Announcement: Exam 1 is on Tues, Feb. 18

— Will cover everything up through dynamic
programming

Heaps & Priority Queues

Complete The (binary) heap data structure is:
binary tree:

that can be viewed as

an array ObJeCt a nearly complete binary tree

1 2 3 456 7 8 9 10
AN <
16(14|10/8|719(3[2|4 |1
~— o ——
Parent(i) = | i/2 |
o All leaves Left(i) = 2i
have the Right(i) = 2i+1
same depth
e All internal Heap Propertv:
nodes have P PErty V

* For a max-heap: child <= parent
* For a min-heap: child >= parent

2 children

Maintaining Heap Property

MAX-HEAPIFY(A, i) ‘

~ W N -

The binary trees rooted at LEFT(i) and RIGHT(i)
are max-heaps

But A[i] may be smaller than its children.

MAX-HEAPIFY is to “float down” A[i] to make
the subtree rooted at A[i] a max-heap.

O(height of node i)
= O(lg n)

Heaps & Priority Queues

Maximum No. of elements Maximum No. of elements
L) } aone-level tree (height=0): 1
level O: 1 { .
a 2-level tree (height=1): 3
level 1: 2 { (height=1)
a 3-level tree (height=2): 7
level 2: 4 { j Y (height=2)
0] ht=2)-
ovel3 8 f 6 j ad-leveltree (height=3): 15
Therefore, for a heap containing n elements :
Maximum no. of elements in level k = 2 Height of tree = Ig n = ®(Ilg n)
Basic procedures:
MAX-HEAPIFY O(lg n) HEAP-EXTRACT-MAX O(lg n)
BUILD-MAX-HEAP O(n) HEAP-INCREASE-KEY O(lg n)
MAX-HEAP-INSERT O(lg n) HEAP-MAXIMUM O(lg n)

Heaps & Priority Queues
Building a heap:

1 1
2 2
BUILD-MAX-HEAP(Input_numbers)
1 Copy Input_numbers to a heap gb\é
2 Fori=[n/2 Jdown to 1 /*all non-leaf nodes */ 5%? 8@‘?"\ 1

3 MAX-HEAPIFY(A,i) !O(n) | Note that | n/2 | the elements are leaf nodes

lllustration for a Complete-binary tree:

A complete-binary tree of height h has h+1 levels: 0,1,2,3,.. h.

The levels have 20,2122 23 . 2" elements respectively.

Then, maximum total no. of “float down” carried out by MAX-HEAPIFY

= sum of maximum no. of “float down” of all non-leaf nodes (levels h-1, h-2, .. 0)
=1x2M +2x2M2+3 x2M3+4x2M4+ . hx20

=2h (1/2 + 2/4 + 3/8 + 4/16...) [note: 2"*1 = n+1, thus 2"=0.5%*(n+1)]
=0.5(n+1) (/2 + 2/4 + 3/8 + 4/16...) [note: 1/2 + 2/4 + 3/8 + 4/16.. <2]
<0.5(n+l) * 2 = (n+1)

= O(n)

Priority Queue

" Priority queue is a data structure for maintaining a set of
elements each associated with a key.

= Maximum priority queue supports the following
operations:
INSERT(S,X) - Insert element x into the set S

MAXIMUM(S) - Return the ‘largest’ element
EXTRACT-MAX(S) - Remove and return the ‘largest’ element
INCREASE-KEY(S,X,v) - Increase x's key to a new value, v

We can implement priority queues based
on a heap structure.

Heaps & Priority Queues

MAXIMUM(A) 7
1 returnA[l] 1 >
oo ® OO &
@ @a
g

~N O O A WO DN B

Step 2. Move the last value to the root node.

Step 3. MAX-HEAPIFY(A,1/*the root node*/).

Heaps & Priority Queues

HEAP-INCREASE-KEY(A.,i,v) O(lg n)

o O &~ W DN

Keep on exchanging with parent until parent is greater than the current node.

O(lg n)
MAX-HEAP-INSERT(A,key)
1 n=n+l
2 Aln=-o
3 HEAP-INCREASE-KEY(A,n,key)

Graph Representation

Given graph G = (V, E).
e May be either directed or undirected.
e Two common ways to represent for algorithms:
1. Adjacency lists.
2. Adjacency matrix.

Expressing the running time of an algorithm is often in terms of
both |V| and | E|.

In asymptotic notation - and only in asymptotic notation - we’ll drop the
cardinality. Example: O(V + E).

Adjacency lists

Array Adj of [V/] lists, one per vertex.
Vertex u’s list has all vertices v such that (U, V) € E. (Works for both directed and undirected graphs.)

If edges have weights, can put the weights in the lists.
Weight: w: E > R
We’ll use weights later on for shortest paths.
Space: @ (V + E).
Time: to list all vertices adjacent to u: @ (degree(u)).
Time: to determineif (u, v) € E: O(degree(u)).

Undirected graph: 0’@ (3) Directed graph: 0"9 (3)
& ® &

1] 2] J»[a
1] 2] Plaly

2| 5| P Plaly 2] 51/

3] 6] 5]/ Sl B g0 W g
4| Pls| 1] 2]/ 4l ™2/

5| ™4 | 2| 3|/ 5| 4|/

6| ™3|/ 6| 6|/

Adjacency Matrix

|V| x |V]| matrixA=(a;)
a;=1Iif (i,j) e E,
O otherwise .
Space: O(V?)
Time: to list all vertices adjacentto u: (V).
Time: to determine if (u, v) € E: 0O(1).

Can store weights instead of bits for weighted graph.

Undirected graph: 0"0 (3) Directed graph: 0’9 (3)
G © GG G

al23456 123456
11010100 1lo1 0100
3000011 310000 1 1
4110010 4/0 1 0 00O
5011100 50001 00
61001 000 6(0 000O01

Breadth-First Search

Input:
Graph G = (V, E), either directed or undirected, and source vertex s € V.

Output:
d[v] = distance (smallest # of edges) from sto v, forall v € V.
Also rtfv] = u such that (u, v) is last edge on shortest path s "4V
* uisv's predecessor.
« set of edges {(n[v], v) : v=s} forms a tree.

Later, a breadth-first search will be generalized with edge weights.
Now, let’'s keep it simple.
— Compute only d[v], not rt/v].
— Omitting colors of vertices.
Idea: Send a wave out from s.
— First hits all vertices 1 edge from s.
— From there, hits all vertices 2 edges from s.
— Etc.
Use FIFO queue Q to maintain wavefront.
— v e Q ifand only if wave has hit v but has not come out of v yet.

Breadth-First Search

Breadth-First Search (BFS)

Explores the edges of a graph to
reach every vertex from a vertex
s, with “shortest paths”

vwxy vwxy

The algorithm:

For r, we do the For w, we do the
Start by inspecting So we connect same to its white same to its white
the source vertex S: them: color neighbors: color neighbors:

V W X VY

For s, its 2 neighbors Now r and w join Now v joins Now t and x join
are not yet searched our solution our solution our solution

Breadth-First Search

Using 3 colors: white / gray / black

For r, we do the For w, we do the
Start by inspecting Sowe connect ~ same to its white same to its white
the source vertex S: them: color neighbors: color neighbors:

r s t u

r s t u r s t u r s t u
))))
| | |])] |

V W X VY V W X Y V W X Y V W X Y

For s, its 2 neighbors Now r and w join Now v joins Now t and x join

are not yet searched our solution our solution our solution
No more need to check No more need to No more need to

Since s is in our s, so mark it black. checkr, somarkit check w, so mark it

solution, and itistobe randw join our black. black.

inspected, we mark it solution, we need to v joins our solution, t and x join our

gray check them later on, so we need to check it solution, we need to
mark them gray. later on, so mark it ~ check them later on,

gray. so mark them gray.

Breadth-First Search Algorithm

BFS(G,s) /*G=(V,E)*/

OO OB WwWwDN P

P PR R RPRRPPRPE O
~NOoO O~ WNREPO

18

For each vertex u in 'V - {s}

The running time
of BFS is: O(V+E)

u.color = white
u.distance = o O(V)

u.pred = NIL
s.color = gray
s.distance =0
s.pred = NIL
Q=9
ENQUEUE(Q),s)
while Q = &
u=DEQUEUE(Q)
for each v adjacent to u
If v.color = white
v.color = gray
v.distance = u.distance + 1
v.pred = u
ENQUEUE(Q,v)
u.color = black

Total number of edges kept
by the adjacency list is ®(E)

Total time spent in the
adjacency list is O(E)

Depth-First Search

Input:
Graph G = (V, E), either directed or undirected. No source vertex given.

Output: 2 timestamps on each vertex:
e d|[v] =discovery time.
e fl[v] = finishing time.
e n[v] :Vv’s predecessor field.

Will methodically explore every edge.
— Start over from different vertices as necessary.
As soon as we discover a vertex, explore from it.
— Unlike BFS, which puts a vertex on a queue so that we explore from it later.
As DFS progresses, every vertex has a color:
— WHITE = undiscovered
— GRAY =discovered, but not finished (not done exploring from it)
— BLACK = finished (have found everything reachable from it)
Discovery and finish times:
— Unique integers from 1to 2 |V]|.
— Forallv, d[v] <f[v].
In other words, 1< d[v] <f[v]<2 |V].

Depth-First Search

Depth-First Search (BFS)

Explores the edges of
a graph by searching

“deeper” whenever

possible.
u v

)

X Y

u v

\ ()
9.9
X Y

DFS(G) /*G = (V,E) */
1 foreach vertex uinV

The running
time of DFS
is: ®(V+E)

2 u.color = white e(V)
3 u.pred = NIL | o
4 foreach vertex uinV) | Timeto
5 if u.color = white execute
calls to
6 DFS-VISIT(u) DFS-VISIT
DFS-VISIT(u) H

u.color = gray
for each v adjacent to u
If v.color = white

DFS-VISIT(v)
u.color = black

1

2

3

4 v.pred = u
5

6

I

Total number of
edges kept by
the adjacency
list is O(E).
Total time spent
in the adjacency
list is O(E).

Depth-First Search

On many occasions it is useful to
keep track of the discovery time
and the finishing time while
checking each node.

u vV W
%@ (o1
Cfs dem=3r6) (0%

X y Z

N

DFS(G) /*G = (V,E) */

1 for each vertex uinV
2 u.color = white

3 u.pred = NIL

4 time=0

5 for each vertex u in V
6 if u.color = white
7 DFS-VISIT(u)

DFS-VISIT(u) -

1 u.color =gray

time = time + 1

u.discover = time

for each v adjacent to u

If v.color = white

v.pred = u
DFS-VISIT(v)

u.color = black

time =time + 1

10 u.finish = time

O 00 NO Ol h WDN

|

Properties of Depth-First Search

Parenthesis theorem

For all U, v, exactly one of the following holds:

1. dlu]l<flu]<d[v]<f[v]ordv]<f[v]<du]<f][u]and
neither of U and v is a descendant of the other.

2. d[u]<d[v]<flv] <f[u]andvisadescendant of u.

3. d[v]<d[u] <f[u]<f][v]anduisadescendant of v.

So d[u] < d[v] < f [u] < f [v] cannot happen.

Like parentheses:

- OK: O (1) 0]
— NotOK: ([)I [(])

Corollary
— visaproper descendant of u if and only if d[u] < d[v] <f[v] <f[u].

White-path theorem

vis a descendant of u if and only if at time d [u], there is a path ungv
consisting of only white vertices.

(Except for u, which was just colored gray.)

Classification of edges

— Tree edge: in the depth-first forest. Found by exploring (u, v).
— Back edge: (u, v), where u is a descendant of v.
— Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
— Cross edge: any other edge.
Can go between vertices in same depth-first tree or
in different depth-first trees.

In an undirected graph, there may be some ambiguity since (u, v) and (v, u)
are the same edge. Classify by the first type above that matches.

Theorem
In DFS of an undirected graph, we get only tree and back edges.
No forward or cross edges.

Topological Sort of a DAG

11/16 { undershorts |Topo|ogica| Sort

socks |17/18
 Alinear ordering of
12/15 panE\J; 9/10 caror g
shoes |13/14 vertices : if the
graph contains an
edge (u,v), thenu
appears before v.

e Applied to directed
acyclic graphs
(DAG)

— ‘V
[socks] {undershorts shoes} [Watch} [shirt jacket

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Topological Sort of a DAG

11/16 [undershorts P
socks |17/18

12/15 panE\,J;\ 9/10

shoes |13/14

Sorting according to the finishing times, in descending order:

—~ ‘V
[socks] [undershorts shoes} [Watch} [shirt '

17/18 11/16 12/15 13/14 9/10 1/8

TOPOLOGICAL-SORT(G)

1

Call DFS(G) to
compute finishing
times v.finish for each
vertex v

As each vertex is
finished, insert it onto
the front of a linked list

Return the linked list
of vertices

H@(V+E)

jacket
6/7 2/5 3/4

Strongly Connected Components

Given directed graph G = (V, E).

A strongly connected component (SCC) of G is a maximal set of vertices C < V such
that forall u, v € C, both un\qv and v\qu

Example:

) 4

) 4

Algorithm uses G = transpose of G:
— G'=(VE)E={(uv):(vu) e E}.
— G'is G with all edges reversed.

Can create G" in (V + E) time if using adjacency lists.

Observation: G and G" have the same SCC’s. (u and v are reachable from each
other in G if and only if reachable from each other in G.)

Algorithm For Strongly Connected
Components

STRONGLY-CONNECTED-COMPONENTS(G)

call DFS(G) to compute finishing times u.f for each
vertex u

compute G’

call DFS(GT), but in the main loop of DFS, consider
the vertices in order of decreasing u.f (as
computed above)

output vertices of each tree from previous DFS(G")
call as a separate strongly connected component

Runtime: ®(V+E)

Single-Source Shortest Paths

Single-Source Shortest Paths

Given a weighted, directed graph, find the shortest paths
from a given source vertex s to other vertices.

SSSP Variants

Single-destination
shortest-path problem

By reversing the direction of
each edge, we can reduce this
problem to a single-source

problem. Single-pair All-pairs
6 shortest-path shortest-path
problem problem
Can be solved by

If the single-source . .

< solved. we running a single source
problem is solved, algorithm once for each
can solve this problem s5,rce vertex. However,
also. There are no other faster approaches
asymptotically faster exist.

algorithms.

Single-Source Shortest Paths

Optimal substructure of a shortest path:

A shortest path between 2 vertices contains
other shortest paths within it. s

Edge weight & Path weight :
Edge weight: eqg. w(c,d) =6
Path weight: eg. For a path p=<s,c,d>, w(p) = w(s,c) + w(c,d) = 11

Shortest-path weight:
Define shortest-path weight for a path p from u to v as:

{ min { w(p): u ’\p4v} if there is a path fromu to v
o(u,v) =

00 otherwise

Single-Source Shortest Paths

h, I, and | are not reachable from s

Negative-weight edges => 3(S,h), o(s,i) and 5(s,)) are o
eg. w(a,b) = -4 b —_—A
Negative-weight path 2
eg. <s,a,b>: -1 '

-8 3
Negative-weight cycle ()

eg. <e,f,e>: -3

If there is no negative weight cycle reachable from the source vertex s,
then for all v in V, the shortest-path weight 5(s,v) remains well defined.

A well defined shortest path has no cycle. Prove:

1. A shortest path should not contain non-negative weight cycle.
[otherwise reducing the cycle would give a more optimal path]

2. A well defined shortest path should not contain negative weight cycle
=> A well defined shortest path has no cycle, and has at most |V|-1 edges.

Single-Source Shortest Paths

A general function for single-source
shortest paths algorithms:

INITIALIZE-SINGLE-SOURCE()
1 For each vertexvinV

2 el =760
3 v.pred = NIL
4 sd=0 O(V)

A general technique for single-source
shortest paths algorithms:

Relaxation

“Relaxing an edge (d,b)” :

Testing whether we can improve the shortest

path to b found so far by going through d, if so,

update b.d and b.pred.

Where v.d is the upper bound on the
weight of a shortest path from source
vertex s tov.

a b
4
a
s

RELAX(u,v)

1 ifvd>u.d+w(u,v)

2 v.d = u.d + w(u,v)
3 v.pred = u

Single-Source Shortest Paths

Three solutions to the problem:

Bellman-Ford algorithm
- By relaxing the whole set of edges |V|-1 times

Algorithm for directed acyclic graphs (DAG)
- By topological sorting the vertices first, then relax the
edges of the sorted vertices one by one.
Dijkstra’s algorithm

- Handle non-negative edges only. Grow the solution
by checking vertices one by one, starting from the one
nearest to the source vertex.

A Fact About Shortest Paths —
Optimal Substructure

e Theorem: If p is a shortest path from u to v,
then any subpath of p is also a shortest path.

* Proof: Consider a subpath of p from xto y. If
there were a shorter path from x to y, then
there would be a shorter path from u to v.

shorter?

O—F——D)—®

Shortest-Paths Idea

o(u,v) = length of the shortest path from u to v.

All SSSP algorithms maintain a field d[u] for every vertex u.
d[u] will be an estimate of J(s,u). As the algorithm
progresses, we will refine d[u] until, at termination,

d[u] = os,u). Whenever we discover a new shortest path to
u, we update d[u].

In fact, d[u] will always be an overestimate of ofs,u):
du] = J(s,u)

We’'ll use mt[u] to point to the parent (or predecessor) of u
on the shortest path from s to u. We update nt[u] when we
update d[u].

SSSP Subroutine

RELAX(u, v, w)
> (Maybe) improve our estimate of the distance to v
> by considering a path along the edge (u, v).
If v.d > u.d + w(u,v) then
v.d < u.d + w(u, V) > actually, DECREASE-KEY
V.t <— U > remember predecessor on path

d[u] d[v]

(W)

The Bellman-Ford Algorithm

 Handles negative edge weights
e Detects negative cycles

* |s slower than Dijkstra

=@

a negative cycle

Bellman-Ford: Idea

Repeatedly update d for all pairs of vertices
connected by an edge.

Theorem: If u and v are two vertices with an
edge from utov,and s = u — vis a shortest
path, and u.d = o(s,u),
then u.d+w(u,v) is the length of a shortest
path to v.

Proof: Since s =u — v is a shortest path, its
length is ofs,u) + w(u,v) = u.d + w(u,v). B

Why Bellman-Ford Works

On the first pass, we find o) (s,u) for all vertices whose
shortest paths have one edge.

On the second pass, the d[u] values computed for the one-

edge-away vertices are correct (= o) (s,u)), so they are used
to compute the correct d values for vertices whose
shortest paths have two edges.

Since no shortest path can have more than |V[G]|-1 edges,
after that many passes all d values are correct.

Note: all vertices not reachable from s will have their
original values of infinity. (Same, by the way, for Dijkstra).

O(VE)

EEIR

Bellman-Ford: Algorithm

BELLMAN-FORD(G, w, s)

1 for each vertex v eV[G] do //INIT _SINGLE_SOURCE
o(V) { 2 vd< oo

3 V.1t <— NIL
4 sd«0

5 fori< 1to |V[G]|-1do > each iteration is a “pass”
6 for each edge (u,v)in E[G] do

7 RELAX(u, v, w)
8 D check for negative cycles

10 if v.d > u.d + w(u,v) then
11 return FALSE

\ 12 return TRUE

r 9 for each edge (u,v) in E[G] do

Running time: O(VE)

Single-Source Shortest Paths

Bellman-Ford Algorithm

Method: Relax the whole set of edges [V|-1 times. |
5 5 5
At 15t time: e A0) 2 (o) e A0) 2 (o) e A6) 2 ()
Q‘» 7 s(0) b 7 s(0) bﬂ
OO O © O ©
At 2" time: 2 2 2

(@)
(@)
H

4&%
2
%
4&3:
i

o
\o
\o

1
N
92

At 31d 4t time:

~
(o)

/
;

Negative Cycle Detection

What if there is a negative-weight 4
cycle reachable from s?

Assume: u.d <x.d+4 10
v.d <u.d+5
x.d <v.d-10 5
Adding:
u.d+v.d+x.d < x.d+u.d+v.d-1

Because it’s a cycle, vertices on left are same as those on
right. Thus we get 0 <-1; a contradiction.
So for at least one edge (u,v),

v.d > u.d+ w(u,v)
This is exactly what Bellman-Ford checks for.

SSSP in a DAG

e Recall: a DAG is a directed acyclic graph.

* |f we update the edges in topologically sorted
order, we correctly compute the shortest
paths.

e Reason: the only paths to a vertex come from
vertices before it in the topological sort.

9
S O >1 >m >@
1 O 3 /2

SSSP in a DAG Theorem

Theorem: For any vertex u in a DAG, if all the
vertices before u in a topological sort of the
DAG have been updated, then u.d = o(s,u).

Proof: By induction on the position of a vertex
in the topological sort.

Base case: s.d is initialized to O.

Inductive case: Assume all vertices before u

have been updated, and for all such vertices v,
V.d=6(5,V). (continued)

Proof, Continued

e Some edge (v,u) where v is before u, must be
on the shortest path to u, since there are no
other paths to u.

* When v was updated, we set u.d to
v.d+w(v,u)

= 9(s,v) + w(v,u)
=9o(s,u) &

SSSP-DAG Algorithm

DAG-SHORTEST-PATHS(G,w,s)

{ 1 topologically sort the vertices of G

{ 2 initialize d and m as in previous algorithms

3 for each vertex u in topological sort order do
oF) { 4 for each vertex v in Adj[u] do

5 RELAX(u, v, w)

Running time: O(V+E), same as topological sort

Single-Source Shortest Paths

Algorithm for directed acyclic graphs (DAG)

Single-Source Shortest Paths Method: By topological sorting the vertices first, then relax the
DAG-Shortest-Path edges of the sorted vertices one by one.

3

NOSOOR® nh'l'z

m@m

|

:

@

Dijkstra’s Algorithm

 Assume that all edge weights are > 0.

* |dea: say we have a set K containing all vertices
whose shortest paths from s are known
(i.e. u.d =d(s,u) for all u in K).

e Now look at the “frontier” of K—all vertices
adjacent to a vertex in K.

____________________________ the rest

(O of the

graph

—— — —— — —— —

Dijkstra’s: Theorem

e At each frontier min(4+2, 6+1) = 6

— T~

vertex u, update
u.d to be the
minimum from all
edges from K.

* Now pick the
frontier vertex u min(4+8, 6+3) = 9
with the smallest
value of u.d.

e Claim: u.d = o(s,u)

Dijkstra’s: Proof

e By construction, u.d is the length of the
shortest path to u going through only vertices
In K.

 Another path to u must leave K and go to v on
the frontier.

e But the length of this path is at least v.d,
(assuming non-negative edge weights),
whichis>u.d. &

Proof Explained

u.d<vd

another path to u, viav

Why is the path through v at least v.d in length?
We know the shortest paths to every vertex in K.
We’ve set v.d to the shortest distance from s to v via K.

The additional edges from v to u cannot decrease the path
length.

Dijkstra’s Algorithm, Rough Draft

- K <«{s}

Update d for frontier of K

u < vertex with minimum d on frontier
> we now know u.d = 5(s,u)

K« KU{u}

repeat until all verticesare in K.

A Refinement

 Note: we don’t really need to keep track of the
frontier.

e When we add a new vertex u to K, just update
vertices adjacent to u.

Dijkstra’s Algorithm

1 DIIKSTRA(G, w, s) > Graph, weights, start vertex
2 for each vertex v in V[G] do

3 v.d € o

4 v.t < NIL

5 s.d< 0

6 Q < BUILD-PRIORITY-QUEUE(V[G])
7 > Qis V[G] - K

8 while Q Is not empty do

9 u = EXTRACT-MIN(Q)

10 for each vertex v in Adj[u]

11 RELAX(U, vV, W) // DECREASE_KEY

Running Time of Dijkstra

* |nitialization: O(V)

* Building priority queue: (V)

e “while” loop done |V]| times

. |V| calls of EXTRACT-MIN

* Inner “edge” loop done |E| times

. At most |E| calls of DECREASE-KEY
e Total time:

®(V + VX TEXTRACT—MIN +Ex TDECREASE—KEY)

Dijkstra Running Time (cont.)

OV + V X Texrracr-min + E X Toecrease-key)

1. Priority queue is an array.
EXTRACT-MIN in ®(n) time, DECREASE-KEY in ®(1)
Total time: O(V + VV + E) = ©(V?)

e 2. (“Modified Dijkstra”)
Priority queue is a binary (standard) heap.
EXTRACT-MIN in ©(lgn) time, also DECREASE-KEY
Total time: ®(VIgV + ElgV)

e 3. Priority queue is Fibonacci heap. (Of theoretical interest
only.)
EXTRACT-MIN in ©(lgn),
DECREASE-KEY in ®(1) (amortized)
Total time: ®(VIgV+E)

Dijkstra’s Algorithm Example

Single-Source Shortest Paths

Dijkstra’s Algorithm

Handle non-negative edges only.
Method: Grow the solution by checking vertices one by one,
starting from the one nearest to the source vertex.

Reading Assighments

e Reading assignment for next class:
— Chapter 25.1-25.2

e Announcement: Exam 1 is on Tues, Feb. 18

— Will cover everything up through dynamic
programming

	Today: �− Review of:�	 − Heaps, Priority Queues�	 − Basic Graph Algs.�− Algs for SSSP (Bellman-Ford, Topological sort 			 for DAGs, Dijkstra)�	
	Reading Assignments
	Heaps & Priority Queues
	Maintaining Heap Property
	Heaps & Priority Queues
	Heaps & Priority Queues
	Priority Queue
	Heaps & Priority Queues
	Heaps & Priority Queues
	Slide Number 10
	Slide Number 11
	Adjacency Matrix
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search
	Breadth-First Search Algorithm
	Depth-First Search
	Depth-First Search
	Depth-First Search
	Properties of Depth-First Search
	Slide Number 21
	Topological Sort of a DAG
	Topological Sort of a DAG
	Strongly Connected Components
	Algorithm For Strongly Connected Components
	Single-Source Shortest Paths
	SSSP Variants
	Single-Source Shortest Paths
	Single-Source Shortest Paths
	Single-Source Shortest Paths
	Single-Source Shortest Paths
	A Fact About Shortest Paths – �Optimal Substructure
	Shortest-Paths Idea
	SSSP Subroutine
	The Bellman-Ford Algorithm
	Bellman-Ford: Idea
	Why Bellman-Ford Works
	Bellman-Ford: Algorithm
	Single-Source Shortest Paths�Bellman-Ford Algorithm
	Negative Cycle Detection
	SSSP in a DAG
	SSSP in a DAG Theorem
	Proof, Continued
	SSSP-DAG Algorithm
	Single-Source Shortest Paths�Algorithm for directed acyclic graphs (DAG)
	Dijkstra’s Algorithm
	Dijkstra’s: Theorem
	Dijkstra’s: Proof
	Proof Explained
	Dijkstra’s Algorithm, Rough Draft
	A Refinement
	Dijkstra’s Algorithm
	Running Time of Dijkstra
	Dijkstra Running Time (cont.)
	�Dijkstra’s Algorithm Example
	Reading Assignments

