Today:
— All Pairs Shortest Paths

COSC 581, Algorithms
February 6, 2014

Many of these slides are adapted from several online sources



Reading Assighments

e Today’s class:
— Chapter 25.1-25.2

 Reading assighment for next class:
— Chapter 16.1-16.2

e Announcement: Exam 1 is on Tues, Feb. 18

— Will cover everything up through dynamic
programming



All Pairs Shortest Paths (APSP)

e given :directed graphG=(V, E),
weight function w:E >R, |V]| =n

* goal :createannxn matrix L=(1;)of shortest path distances
e, l;=6(i])

e trivial solution : run a SSSP algorithm n times, one for
each vertex as the source.



All Pairs Shortest Paths (APSP)

P all edge weights are nonnegative : use Dijkstra’s algorithm
— Priority Queue = lineararray : O (V?+VE ) =0 ( V*)
— Priority Queue = binary heap : O ( V?lgV + EVIgV ) = 0 ( VgV )
for dense graphs
e better only for sparse graphs

— Priority Queue = Fibonacci heap : O (V2IgV +EV ) =0 ( V?)
for dense graphs
e better only for sparse graphs
P negative edge weights : use Bellman-Ford algorithm
— O(V%E)=0(V*) ondense graphs



Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight
cycles.

(Step 1) Structure of a Shortest Path (new Optimal Substructure argument):
* Consider a shortest path p;™ from v, to v, such that |p,"| <m
» i.e., path p;™ has at most m edges.

* no negative-weight cycle = all shortest paths are simple
= m isfinte=>m<|V| -1

e i=]=|pil=0 & w(p;)=0

* i#] = decompose path p;" into P, & v, > v;, where| p, " sm-1
» p,""'should be a shortest path from v, to v, by optimal substructure
property.
» Therefore, 6 (i, j) = 6 (i, k) + w,;



Shortest Paths and Matrix Multiplication

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem :

. lijm = minimum weight of any path from v, to v; that contains
at most “m” edges.

* m=0:There exists a shortest path from v, to v, with no

edges <> i=].
(0 if i=]
> [ 0= <
oo if 1#]
« m21:1"=min{l[;"", Minygenpp Ui+ Wy 1

- : m-1
= Min, g, {L" "+ wy Horallv eV,
since w;; =0 forallv, e V.



Shortest Paths and Matrix Multiplication

* To consider all possible shortest paths with < m edges from v, to v,
P consider shortest path with <m - 1 edges, from v, to v, , where

(v,v;) €eE
V'S

O
o o
K



Shortest Paths and Matrix Multiplication

(Step 3) Computing the shortest-path weights bottom-up :

e Given W = L', compute a series of matrices L%, L3, ..., L"?,
where L™ =([;")form=1,2,.., [V| -1
» final matrix L"* contains actual shortest path weights,
e, " =6(,])

o SLOW-APSP(W)
RSN
form & 2 ton-1 do
L™ & EXTEND( L™, W)
return L"?



Shortest Paths and Matrix Multiplication

EXTEND (L, W)
» L=(1[;)isannxn matrix
fori< 1 ton do
forj< 1 ton do

[ & o0
fork < 1 ton do
L < min{ly, [ +w}

return L

MATRIX-MULT (A, B)
» C=(c;)isannxn result matrix
fori<1 ton do
forj< 1 ton do
c; <0
fork&< 1ton do
C;j € Cj + @y X bkj

return C



Shortest Paths and Matrix Multiplication

* Relation to matrix multiplication C=AxB: ¢;=3, ., ay X by;,
LTS A & WEB & LM C
Ilmin” H II+H & l(+H H HXH & ”00” H HOH

 Thus, we compute the sequence of matrix products

L!= 1% W = W ; note L° = identity matrix, 0 if i=j
L>=L'x W= W? e, =
LP=L*xW= W3 oo if [#]

Ln—1= Ln—2 X W — Wn—l

e Runningtime: O(V*)
» each matrix product : O(|V|?)
» number of matrix products : | V| -1



Shortest Paths and Matrix Multiplication

Example:




Shortest Paths and Matrix Multiplication
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Shortest Paths and Matrix Multiplication
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Shortest Paths and Matrix Multiplication
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Shortest Paths and Matrix Multiplication
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Improving Running Time Through
Repeated Squaring

e Idea: goalis not to compute all L™ matrices
» we are interested only in matrix L™

e Recall : no negative-weight cycles = L™ = L" forall m > | V| -1

e We can compute L™ with only ﬁg(n—lﬂ matrix products as
L' =w
L2 = W2=WxW
L* = w* = w2 x W?
L% = w8 =w* x W

Mg(n-1)| Tg(n-1)1 lg(n-1)1-1 [1g(n-1)l -1
LZr _ L2 _ L2 XL2

e This technique is called repeated squaring.



Improving Running Time Through Repeated
Squaring

e FASTER-APSP (W)
L'< W
m«&< 1
while m<n-1do
LM & EXTEND (L™, L™)
m & 2m
return L™

e Final iteration computes L*™ for some n-1 <2m < 2n-2 = L°™ = "*

e Runningtime: ®(n’lgn)=0O(V3IgV)

» each matrix product : O(n?)
» # of matrix products : ﬁg( n-1ﬂ

» simple code, no complex data structures, small hidden
constants in ®-notation.



Exercise

Give an efficient algorithm to find the length
(number of edges) of a minimum-length negative-
weight cycle in a graph.



Floyd-Warshall Algorithm

Assumption : negative-weight edges, but no negative-weight cycles

(Step 1) The Structure of a Shortest Path (yet another optimal substructure
argument):
e Definition : intermediate vertex of apath p =<v,,v,, v5, ..., v, >
» any vertex of p other than v, orv,.

. pijm : a shortest path from v, to v, with all intermediate vertices
fromV_ ={v,,v,, .., v}

* Relationship between pijm and pijm'1
» depends on whether v_ is an intermediate vertex of pijm
- Case 1: v, is not an intermediate vertex of pijm

= all intermediate vertices of pijm areinV_ 4
m _ m-1
= Pij = Pj



Floyd-Warshall Algorithm

-Case 2: v, is anintermediate vertex of pijm
- decompose pathas v, » v, _~V,
= P:vinV, & Pyiv, ALY,
- by opt. structure property both p; & P, are shortest paths.

-V, isnotan intermediate vertex of p; & p,

m

m-1

= P1=Pim & P, = pmjm_l




Floyd-Warshall Algorithm

(Step 2) A Recursive Solution to APSP Problem :

* d;" =w(p; ) : weight of a shortest path from v;to v,
with all intermediate vertices from

Vo={v,,Vy, ..,V }

* Note: d;"=6(i,])sinceV, =V

» i.e., all vertices are considered for being
intermediate vertices of p;".



Floyd-Warshall Algorithm

* Compute d;"in terms of d, with smaller k < m

e m=0: V,=empty set
— path from v, to v, with no intermediate vertex.
i.e., v, to v, paths with at most one edge

= d;’ = w;,

e m=1:d™= min {dijm_lr dimm_1+ dmjm-l}



Floyd-Warshall Algorithm

(Step 3) Computing Shortest Path Weights Bottom Up :

FLOYD-WARSHALL( W )
»D° D! ... D"arenxn matrices
form & 1tondo
fori<-1tondo
forj¢& 1tondo
d;" < min {dijm'l, d_mt+ dmjm'l}

return D"




Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)
» D isan n xn matrix
D&W
form<& 1tondo
fori< 1tondo
forjé& 1tondo
if d;>d, +d,; then
d; < d;, +d;
return D




Floyd-Warshall Algorithm

e Maintaining n D matrices can be avoided by dropping all superscripts.
— m-th iteration of outermost for-loop
begins with D = D™*
ends with D = D™
— computation of d;" dependsond, ,™*and d ™.
no problemif d;, & d ; are already updated to d; " & d ;"
sinced;,,,"=d;,"" & d,"=d ™"

e Runningtime: O(n’)=0(V?)
simple code, no complex data structures, small hidden constants



Reading Assighments

e Reading assignment for next class:
— Chapter 16.1-16.2

e Announcement: Exam 1 is on Tues, Feb. 18

— Will cover everything up through dynamic
programming
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