Today:
— All Pairs Shortest Paths

COSC 581, Algorithms
February 6, 2014

Many of these slides are adapted from several online sources

Reading Assighments

e Today’s class:
— Chapter 25.1-25.2

 Reading assighment for next class:
— Chapter 16.1-16.2

e Announcement: Exam 1 is on Tues, Feb. 18

— Will cover everything up through dynamic
programming

All Pairs Shortest Paths (APSP)

e given :directed graphG=(V, E),
weight function w:E >R, |V]| =n

* goal :createannxn matrix L=(1;)of shortest path distances
e, l;=6(i])

e trivial solution : run a SSSP algorithm n times, one for
each vertex as the source.

All Pairs Shortest Paths (APSP)

P all edge weights are nonnegative : use Dijkstra’s algorithm
— Priority Queue = lineararray : O (V?+VE) =0 (V*)
— Priority Queue = binary heap : O (V?lgV + EVIgV) = 0 (VgV)
for dense graphs
e better only for sparse graphs

— Priority Queue = Fibonacci heap : O (V2IgV +EV) =0 (V?)
for dense graphs
e better only for sparse graphs
P negative edge weights : use Bellman-Ford algorithm
— O(V%E)=0(V*) ondense graphs

Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight
cycles.

(Step 1) Structure of a Shortest Path (new Optimal Substructure argument):
* Consider a shortest path p;™ from v, to v, such that |p,"| <m
» i.e., path p;™ has at most m edges.

* no negative-weight cycle = all shortest paths are simple
= m isfinte=>m<|V| -1

e i=]=|pil=0 & w(p;)=0

* i#] = decompose path p;" into P, & v, > v;, where| p, " sm-1
» p,""'should be a shortest path from v, to v, by optimal substructure
property.
» Therefore, 6 (i, j) = 6 (i, k) + w,;

Shortest Paths and Matrix Multiplication

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem :

. lijm = minimum weight of any path from v, to v; that contains
at most “m” edges.

* m=0:There exists a shortest path from v, to v, with no

edges <> i=].
(0 if i=]
> [0= <
oo if 1#]
« m21:1"=min{l[;"", Minygenpp Ui+ Wy 1

- : m-1
= Min, g, {L" "+ wy Horallv eV,
since w;; =0 forallv, e V.

Shortest Paths and Matrix Multiplication

* To consider all possible shortest paths with < m edges from v, to v,
P consider shortest path with <m - 1 edges, from v, to v, , where

(v,v;) €eE
V'S

O
o o
K

Shortest Paths and Matrix Multiplication

(Step 3) Computing the shortest-path weights bottom-up :

e Given W = L', compute a series of matrices L%, L3, ..., L"?,
where L™ =([;")form=1,2,.., [V| -1
» final matrix L"* contains actual shortest path weights,
e, " =6(,])

o SLOW-APSP(W)
RSN
form & 2 ton-1 do
L™ & EXTEND(L™, W)
return L"?

Shortest Paths and Matrix Multiplication

EXTEND (L, W)
» L=(1[;)isannxn matrix
fori< 1 ton do
forj< 1 ton do

[& o0
fork < 1 ton do
L < min{ly, [+w}

return L

MATRIX-MULT (A, B)
» C=(c;)isannxn result matrix
fori<1 ton do
forj< 1 ton do
c; <0
fork&< 1ton do
C;j € Cj + @y X bkj

return C

Shortest Paths and Matrix Multiplication

* Relation to matrix multiplication C=AxB: ¢;=3, ., ay X by;,
LTS A & WEB & LM C
Ilmin” H II+H & l(+H H HXH & ”00” H HOH

 Thus, we compute the sequence of matrix products

L!= 1% W = W ; note L° = identity matrix, 0 if i=j
L>=L'x W= W? e, =
LP=L*xW= W3 oo if [#]

Ln—1= Ln—2 X W — Wn—l

e Runningtime: O(V*)
» each matrix product : O(|V|?)
» number of matrix products : | V| -1

Shortest Paths and Matrix Multiplication

Example:

Shortest Paths and Matrix Multiplication

1 2 3 4 5

110]3]|8]

4

510 |

3| |4 |0 ||

4|2 |

5lowo|oo|o| 6|0

[°w

L=

Shortest Paths and Matrix Multiplication

2 3 4 5

1

-2

6|0

5|0

-1

3l | 4|05 |11

4| 2

518 o] 1

Liw

[°=

Shortest Paths and Matrix Multiplication

2 3 4 5

1
1103

-4
-1

-2
0

6

-3 | 2

41

5|0

1

410|511

-1

7

2130

3

4 | 2

51 8|5

[°W

1=

Shortest Paths and Matrix Multiplication

2 3 4 5

1
110

-4
-1

-2
0

6

-3 | 2

-4 11

-5 0

1

1

-1

2130

3714|053

4 | 2

5|18 |9

W

[4=

Improving Running Time Through
Repeated Squaring

e Idea: goalis not to compute all L™ matrices
» we are interested only in matrix L™

e Recall : no negative-weight cycles = L™ = L" forall m > | V| -1

e We can compute L™ with only ﬁg(n—lﬂ matrix products as
L' =w
L2 = W2=WxW
L* = w* = w2 x W?
L% = w8 =w* x W

Mg(n-1)| Tg(n-1)1 lg(n-1)1-1 [1g(n-1)l -1
LZr _ L2 _ L2 XL2

e This technique is called repeated squaring.

Improving Running Time Through Repeated
Squaring

e FASTER-APSP (W)
L'< W
m«&< 1
while m<n-1do
LM & EXTEND (L™, L™)
m & 2m
return L™

e Final iteration computes L*™ for some n-1 <2m < 2n-2 = L°™ = "*

e Runningtime: ®(n’lgn)=0O(V3IgV)

» each matrix product : O(n?)
» # of matrix products : ﬁg(n-1ﬂ

» simple code, no complex data structures, small hidden
constants in ®-notation.

Exercise

Give an efficient algorithm to find the length
(number of edges) of a minimum-length negative-
weight cycle in a graph.

Floyd-Warshall Algorithm

Assumption : negative-weight edges, but no negative-weight cycles

(Step 1) The Structure of a Shortest Path (yet another optimal substructure
argument):
e Definition : intermediate vertex of apath p =<v,,v,, v5, ..., v, >
» any vertex of p other than v, orv,.

. pijm : a shortest path from v, to v, with all intermediate vertices
fromV_ ={v,,v,, .., v}

* Relationship between pijm and pijm'1
» depends on whether v_ is an intermediate vertex of pijm
- Case 1: v, is not an intermediate vertex of pijm

= all intermediate vertices of pijm areinV_ 4
m _ m-1
= Pij = Pj

Floyd-Warshall Algorithm

-Case 2: v, is anintermediate vertex of pijm
- decompose pathas v, » v, _~V,
= P:vinV, & Pyiv, ALY,
- by opt. structure property both p; & P, are shortest paths.

-V, isnotan intermediate vertex of p; & p,

m

m-1

= P1=Pim & P, = pmjm_l

Floyd-Warshall Algorithm

(Step 2) A Recursive Solution to APSP Problem :

* d;" =w(p;) : weight of a shortest path from v;to v,
with all intermediate vertices from

Vo={v,,Vy, ..,V }

* Note: d;"=6(i,])sinceV, =V

» i.e., all vertices are considered for being
intermediate vertices of p;".

Floyd-Warshall Algorithm

* Compute d;"in terms of d, with smaller k < m

e m=0: V,=empty set
— path from v, to v, with no intermediate vertex.
i.e., v, to v, paths with at most one edge

= d;’ = w;,

e m=1:d™= min {dijm_lr dimm_1+ dmjm-l}

Floyd-Warshall Algorithm

(Step 3) Computing Shortest Path Weights Bottom Up :

FLOYD-WARSHALL(W)
»D° D! ... D"arenxn matrices
form & 1tondo
fori<-1tondo
forj¢& 1tondo
d;" < min {dijm'l, d_mt+ dmjm'l}

return D"

Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)
» D isan n xn matrix
D&W
form<& 1tondo
fori< 1tondo
forjé& 1tondo
if d;>d, +d,; then
d; < d;, +d;
return D

Floyd-Warshall Algorithm

e Maintaining n D matrices can be avoided by dropping all superscripts.
— m-th iteration of outermost for-loop
begins with D = D™*
ends with D = D™
— computation of d;" dependsond, ,™*and d ™.
no problemif d;, & d ; are already updated to d; " & d ;"
sinced;,,,"=d;,"" & d,"=d ™"

e Runningtime: O(n’)=0(V?)
simple code, no complex data structures, small hidden constants

Reading Assighments

e Reading assignment for next class:
— Chapter 16.1-16.2

e Announcement: Exam 1 is on Tues, Feb. 18

— Will cover everything up through dynamic
programming

	Today: �− All Pairs Shortest Paths�	
	Reading Assignments
	All Pairs Shortest Paths (APSP)
	All Pairs Shortest Paths (APSP)
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	Slide Number 8
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	 Shortest Paths and Matrix Multiplication
	Slide Number 16
	Improving Running Time Through Repeated Squaring
	Exercise
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Floyd-Warshall Algorithm
	Reading Assignments

