
Today:  
− All Pairs Shortest Paths 
  

COSC 581, Algorithms 
February 6, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 25.1-25.2 

 
• Reading assignment for next class: 

– Chapter 16.1-16.2 
 

 
• Announcement:  Exam 1 is on Tues, Feb. 18 

– Will cover everything up through dynamic 
programming 



All Pairs Shortest Paths (APSP) 

•  given : directed graph G = ( V, E ),  
    weight function ω : E → R,  |V| = n 
  
•  goal   : create an n × n  matrix  L = ( 𝑙ij  ) of shortest path distances  
    i.e., 𝑙ij  =  δ ( i, j ) 
  
•  trivial solution : run a SSSP algorithm n times, one for   
              each vertex as the source. 



All Pairs Shortest Paths (APSP) 

► all edge weights are nonnegative : use Dijkstra’s algorithm 
– Priority Queue = linear array : O ( V3 + VE ) = O ( V3 ) 
– Priority Queue = binary heap : O ( V2lgV + EVlgV ) = O ( V3lgV ) 

                               for dense graphs 
• better only for sparse graphs 

– Priority Queue = Fibonacci heap : O ( V2lgV + EV ) = O ( V3 )  
              for dense graphs 

• better only for sparse graphs 

► negative edge weights : use Bellman-Ford algorithm 
– O ( V2E ) = O ( V4 )  on dense graphs    



 Shortest Paths and Matrix Multiplication 
Assumption : negative edge weights may be present, but no negative weight 

cycles.  
 
(Step 1) Structure of a Shortest Path (new Optimal Substructure argument): 
• Consider a shortest path  pij

m  from vi  to vj such that |pij
m| ≤ m 

   ► i.e., path pij
m has at most m edges. 

 
• no negative-weight cycle  ⇒  all shortest paths are simple  
   ⇒  m  is finite ⇒ m ≤ |V| – 1 
 
•  i = j  ⇒ |pii|= 0  &  ω(pii) = 0 
 
•  i ≠ j  ⇒  decompose path pij

m into pik
m-1 & vk → vj , where|pik

m-1| ≤ m - 1 
       ► pik

m-1 should be a shortest path from vi  to vk by optimal substructure                   
       property. 
   ► Therefore, δ (i, j) = δ (i, k) + ωk j 



 Shortest Paths and Matrix Multiplication 

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem : 
 

•  𝑙ij
m = minimum weight of any path from vi  to vj  that contains 

at most “m” edges. 
 
•  m = 0 : There exists a shortest path from vi  to vj  with no 

        edges ↔ i = j .  
            0    if   i = j 
    ► 𝑙ij

0 = 
           ∞   if   i ≠ j 
•  m ≥ 1 : 𝑙ij

m = min {𝑙ij
m-1 , min1≤k≤n Λ k≠j {𝑙ik

m-1 + ωkj  }} 
               = min1≤k≤n {𝑙ik

m-1 + ωkj } for all vk ∈ V,  
      since ωj j = 0  for all vj ∈ V. 
 



 Shortest Paths and Matrix Multiplication 

• To consider all possible shortest paths with ≤ m edges from vi to vj  
  ► consider shortest path with ≤ m - 1 edges, from vi  to vk  , where  
   (vk ,vj )  ∈ E 
  
 
 
 
 
 
 
 

vi vj 

vk’s 



 Shortest Paths and Matrix Multiplication 
(Step 3) Computing the shortest-path weights bottom-up : 
 
 

• Given W = L1 , compute a series of matrices L2, L3, ..., Ln-1 ,    
      where Lm = ( 𝑙ij

m ) for m = 1, 2,..., |V| -1  
    ► final matrix Ln-1 contains actual shortest path weights,  
         i.e., 𝑙ij

n-1 = δ (i, j)  
 
•    SLOW-APSP( W ) 
 L1 ← W 
 for m ← 2  to n-1  do 
       Lm ← EXTEND( Lm-1 , W ) 
 return Ln-1 

 



 Shortest Paths and Matrix Multiplication 

EXTEND ( L , W )  
 ► L = ( 𝑙ij ) is an n x n matrix 
 for i ← 1  to n  do 
      for j ← 1  to n  do 
   𝑙ij ← ∞ 
   for k ← 1  to n  do 
         𝑙ij ← min{𝑙 ij , 𝑙 ik + ωk j} 
 return L 

 MATRIX-MULT ( A , B ) 
 ► C = ( cij ) is an n x n result matrix 
      for i ←1  to n  do 
            for j ← 1  to n  do 
    cij ← 0 
    for k ← 1 to n  do 
          cij ← cij + aik x bk j 
      return C 



 Shortest Paths and Matrix Multiplication 

• Relation to matrix multiplication C = A   B :  cij = ∑1≤k≤n aik x bk j , 
 ► Lm-1 ↔ A   &   W ↔ B   &   Lm ↔ C  
      “min” ↔ “+”   &   “+” ↔ “x”   &   “∞” ↔ “0” 
 
• Thus, we compute the sequence of matrix products 
  L1 = L0 x W =  W  ;  note L0 = identity matrix,                       0    if   i = j 
  L2 = L1 x W =  W2                    i.e., 𝑙ij

0 =  
  L3 = L2 x W =  W3                            ∞   if   i ≠ j 
   
  Ln-1= Ln-2 x W =  Wn-1 

 

•  Running time :   Θ( V4 ) 
    ► each matrix product :  Θ(|V|3 )  
    ► number of matrix products : |V| -1 

×



 Shortest Paths and Matrix Multiplication 
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Example: 



 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 3 8 ∞ -4 
2 ∞ 0 ∞ 1 7 
3 ∞ 4 0 ∞ ∞ 
4 2 ∞ -5 0 ∞ 
5 ∞ ∞ ∞ 6 0 

L1= L0W  
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 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 3 8 2 -4 
2 3 0 -4 1 7 
3 ∞ 4 0 5 11 
4 2 -1 -5 0 -2 
5 8 ∞ 1 6 0 

L2= L1W  
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 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 3 -3 2 -4 
2 3 0 -4 1 -1 
3 7 4 0 5 11 
4 2 -1 -5 0 -2 
5 8 5 1 6 0 

L3= L2W  
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 Shortest Paths and Matrix Multiplication 

1 2 3 4 5 
1 0 1 -3 2 -4 
2 3 0 -4 1 -1 
3 7 4 0 5 3 
4 2 -1 -5 0 -2 
5 8 5 1 6 0 

L4= L3W  
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•  Idea : goal is not to compute all Lm  matrices 
      ► we are interested only in matrix Ln-1 
 

•  Recall : no negative-weight cycles ⇒ Lm  = Ln-1  for all m ≥ |V| -1 
 

•  We can compute Ln-1  with only  lg(n-1)  matrix products as 
  L1   =  W 
  L2  =  W2 = W x W 
  L4  =  W4  = W2 x W2  
  L8  =  W8  = W4  x W4  

 
                                                
               =                 =                           

 
• This technique is called repeated squaring. 
 

)1-lg(2L
n)1-lg(2L

n1) -lg(n 2L
)1-lg(2L

n

×
1- 1-

Improving Running Time Through 
Repeated Squaring 



Improving Running Time Through Repeated 
Squaring 

•  FASTER-APSP ( W ) 
       L1 ← W 
       m ← 1 
       while m < n-1 do 
            L2m ← EXTEND ( Lm , Lm ) 
    m ← 2m 
       return Lm 
 

•  Final iteration computes L2m  for some n-1 ≤ 2m ≤ 2n-2 ⇒ L2m  = Ln-1 
 

•  Running time :  Θ( n3lgn ) = Θ( V3lgV ) 
 
  ► each matrix product :  Θ( n3 ) 
  ► # of matrix products :  lg( n-1 ) 
  ► simple code, no complex data structures, small hidden  

      constants in Θ-notation. 
 



Exercise 

Give an efficient algorithm to find the length 
(number of edges) of a minimum-length negative-
weight cycle in a graph.  
 

 



Floyd-Warshall Algorithm 

Assumption : negative-weight edges, but no negative-weight cycles 
 
 

(Step 1) The Structure of a Shortest Path (yet another optimal substructure 
argument): 

 

•  Definition : intermediate vertex of a path p = < v1 , v2 , v3 , ... , vk > 

  ► any vertex of p other than v1 or vk . 
 

•  pij
m  : a shortest path from vi   to vj  with all intermediate vertices 

    from Vm = { v1 , v2 , ... , vm } 
 
•  Relationship between pij

m  and pij
m-1  

  ► depends on whether vm is an intermediate vertex of pij
m    

 

      - Case 1:    vm  is not an intermediate vertex of pij
m 

  ⇒ all intermediate vertices of pij
m  are in Vm -1  

  ⇒ pij
m =  pij

m-1 



Floyd-Warshall Algorithm 

 - Case 2 :    vm  is an intermediate vertex of pij
m   

  - decompose path as vi         vm         vj  

   ⇒ p1 : vi         vm     &    p2 : vm         vj  

  - by opt. structure property both p1 & p2  are shortest paths. 

  - vm    is not an intermediate vertex of p1  & p2   

   ⇒ p1 = pim
m-1    &   p2 = pmj

m-1  

vi vj 

vm p1 p2 

Vm 



Floyd-Warshall Algorithm 

(Step 2) A Recursive Solution to APSP Problem : 
 

• dij
m = ω(pij ) : weight of a shortest path from vi to vj   

with all intermediate vertices from  
  Vm = { v1 , v2 , ... , vm }. 

 
• Note :   dij

n = δ (i, j) since Vn = V  

► i.e., all vertices are considered for being    
intermediate vertices of pij

n . 
  



Floyd-Warshall Algorithm 

•  Compute dij
m in terms of dij

k with smaller k < m  
 

•  m = 0 :  V0 = empty set  
         ⇒ path from  vi  to vj  with no intermediate vertex. 
         i.e., vi  to vj   paths with at most one edge  
              ⇒ dij

0 = ωi j  
 

•  m ≥ 1 :  dij
m  =  min {dij

m-1 , dim
m-1 + dmj

m-1 } 



Floyd-Warshall Algorithm 

(Step 3) Computing Shortest Path Weights Bottom Up : 
 
 FLOYD-WARSHALL( W ) 
  ►D0, D1, ... , Dn are n x n  matrices 
  for m ← 1 to n do 
            for i ← 1 to n do 
            for j ← 1 to n do 
         dij

m  ← min {dij
m-1 , dim

m-1 + dmj
m-1 }  

   return Dn 



Floyd-Warshall Algorithm 
  
  

 FLOYD-WARSHALL ( W ) 
  ► D  is an n x n matrix 
  D ← W 
  for m ← 1 to n do 
           for i ← 1 to n do 
            for j ← 1 to n do 
     if  dij  > dim  + dmj   then  
         dij  ← dim  + dmj   
  return D 



Floyd-Warshall Algorithm 

• Maintaining n  D matrices can be avoided by dropping all superscripts. 
–   m-th iteration of outermost for-loop  

            begins with D = Dm-1    
            ends with D = Dm 

–  computation of dij
m  depends on dim

m-1 and dmj
m-1 . 

   no problem if dim & dmj are already updated to dim
m & dmj

m 
since dim

m = dim
m-1    &   dmj

m = dmj
m-1. 

 
•  Running time :  Θ( n3 ) = Θ( V3 ) 
  simple code, no complex data structures, small hidden constants 



Reading Assignments 

 

• Reading assignment for next class: 
– Chapter 16.1-16.2 

 
 

• Announcement:  Exam 1 is on Tues, Feb. 18 
– Will cover everything up through dynamic 

programming 
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