

Today:

- All Pairs Shortest Paths

COSC 581, Algorithms

February 6, 2014

Reading Assignments

- Today's class:
 - Chapter 25.1-25.2
- Reading assignment for next class:
 - Chapter 16.1-16.2
- **Announcement:** Exam 1 is on Tues, Feb. 18
 - Will cover everything up through dynamic programming

All Pairs Shortest Paths (APSP)

- **given** : directed graph $G = (V, E)$,
weight function $\omega : E \rightarrow \mathbb{R}$, $|V| = n$
- **goal** : create an $n \times n$ matrix $L = (l_{ij})$ of shortest path distances
i.e., $l_{ij} = \delta(i, j)$
- **trivial solution** : run a SSSP algorithm n times, one for
each vertex as the source.

All Pairs Shortest Paths (APSP)

- ▶ all edge weights are nonnegative : use **Dijkstra's algorithm**
 - Priority Queue = linear array : $O(V^3 + VE) = O(V^3)$
 - Priority Queue = binary heap : $O(V^2 \lg V + EV \lg V) = O(V^3 \lg V)$
 - better only for sparse graphs
 - Priority Queue = Fibonacci heap : $O(V^2 \lg V + EV) = O(V^3)$
 - better only for sparse graphs
- ▶ negative edge weights : use **Bellman-Ford algorithm**
 - $O(V^2 E) = O(V^4)$ on dense graphs

Shortest Paths and Matrix Multiplication

Assumption : negative edge weights may be present, but no negative weight cycles.

(Step 1) Structure of a Shortest Path (new Optimal Substructure argument):

- Consider a **shortest path** p_{ij}^m from v_i to v_j such that $|p_{ij}^m| \leq m$
 - ▶ i.e., path p_{ij}^m has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple
 $\Rightarrow m$ is finite $\Rightarrow m \leq |V| - 1$
- $i = j \Rightarrow |p_{ii}| = 0 \text{ & } \omega(p_{ii}) = 0$
- $i \neq j \Rightarrow$ decompose path p_{ij}^m into p_{ik}^{m-1} & $v_k \rightarrow v_j$, where $|p_{ik}^{m-1}| \leq m - 1$
 - ▶ p_{ik}^{m-1} should be a shortest path from v_i to v_k by optimal substructure property.
 - ▶ Therefore, $\delta(i, j) = \delta(i, k) + \omega_{kj}$

Shortest Paths and Matrix Multiplication

(Step 2): A Recursive Solution to All Pairs Shortest Paths Problem :

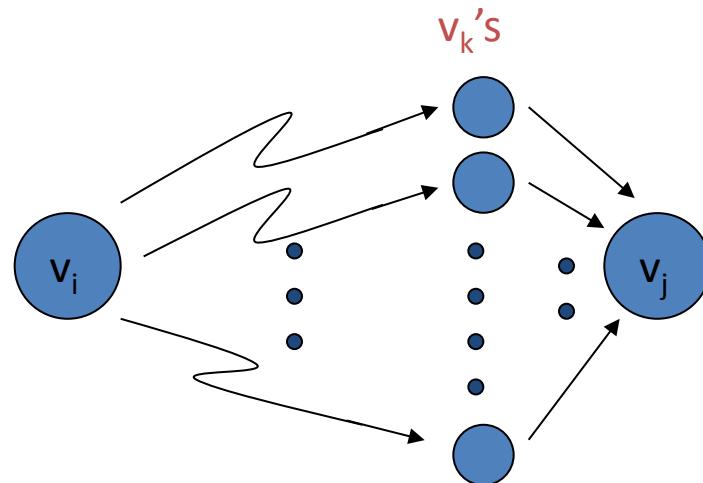
- l_{ij}^m = minimum weight of any path from v_i to v_j that contains at most “ m ” edges.
- $m = 0$: There exists a shortest path from v_i to v_j with no edges $\Leftrightarrow i = j$.

$$\blacktriangleright l_{ij}^0 = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

- $m \geq 1$: $l_{ij}^m = \min \{ l_{ij}^{m-1}, \min_{1 \leq k \leq n \wedge k \neq j} \{ l_{ik}^{m-1} + \omega_{kj} \} \}$
 $= \min_{1 \leq k \leq n} \{ l_{ik}^{m-1} + \omega_{kj} \}$ for all $v_k \in V$,
since $\omega_{jj} = 0$ for all $v_j \in V$.

Shortest Paths and Matrix Multiplication

- To consider all possible shortest paths with $\leq m$ edges from v_i to v_j
 - ▶ consider shortest path with $\leq m - 1$ edges, from v_i to v_k , where $(v_k, v_j) \in E$



Shortest Paths and Matrix Multiplication

(Step 3) Computing the shortest-path weights bottom-up :

- Given $W = L^1$, compute a series of matrices L^2, L^3, \dots, L^{n-1} , where $L^m = (l_{ij}^m)$ for $m = 1, 2, \dots, |V| - 1$
 - final matrix L^{n-1} contains actual shortest path weights, i.e., $l_{ij}^{n-1} = \delta(i, j)$
- SLOW-APSP(W)**

```
L1 ← W
for m ← 2 to n-1 do
    Lm ← EXTEND( Lm-1, W )
return Ln-1
```

Shortest Paths and Matrix Multiplication

EXTEND (L , W)

► $L = (l_{ij})$ is an $n \times n$ matrix

```
for  $i \leftarrow 1$  to  $n$  do  
  for  $j \leftarrow 1$  to  $n$  do
```

$l_{ij} \leftarrow \infty$

```
  for  $k \leftarrow 1$  to  $n$  do
```

$l_{ij} \leftarrow \min\{l_{ij}, l_{ik} + \omega_{kj}\}$

```
return L
```

MATRIX-MULT (A , B)

► $C = (c_{ij})$ is an $n \times n$ result matrix

```
for  $i \leftarrow 1$  to  $n$  do  
  for  $j \leftarrow 1$  to  $n$  do
```

$c_{ij} \leftarrow 0$

```
  for  $k \leftarrow 1$  to  $n$  do
```

$c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}$

```
return C
```

Shortest Paths and Matrix Multiplication

- Relation to matrix multiplication $C = A \times B$: $c_{ij} = \sum_{1 \leq k \leq n} a_{ik} \times b_{kj}$,

► $L^{m-1} \leftrightarrow A$ & $W \leftrightarrow B$ & $L^m \leftrightarrow C$

“min” \leftrightarrow “+” & “+” \leftrightarrow “ \times ” & “ ∞ ” \leftrightarrow “0”

- Thus, we compute the sequence of matrix products

$$L^1 = L^0 \times W = W ; \text{ note } L^0 = \text{identity matrix,}$$

$$L^2 = L^1 \times W = W^2$$

$$L^3 = L^2 \times W = W^3$$

$$\vdots$$

$$L^{n-1} = L^{n-2} \times W = W^{n-1}$$

i.e., $l_{ij}^0 = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$

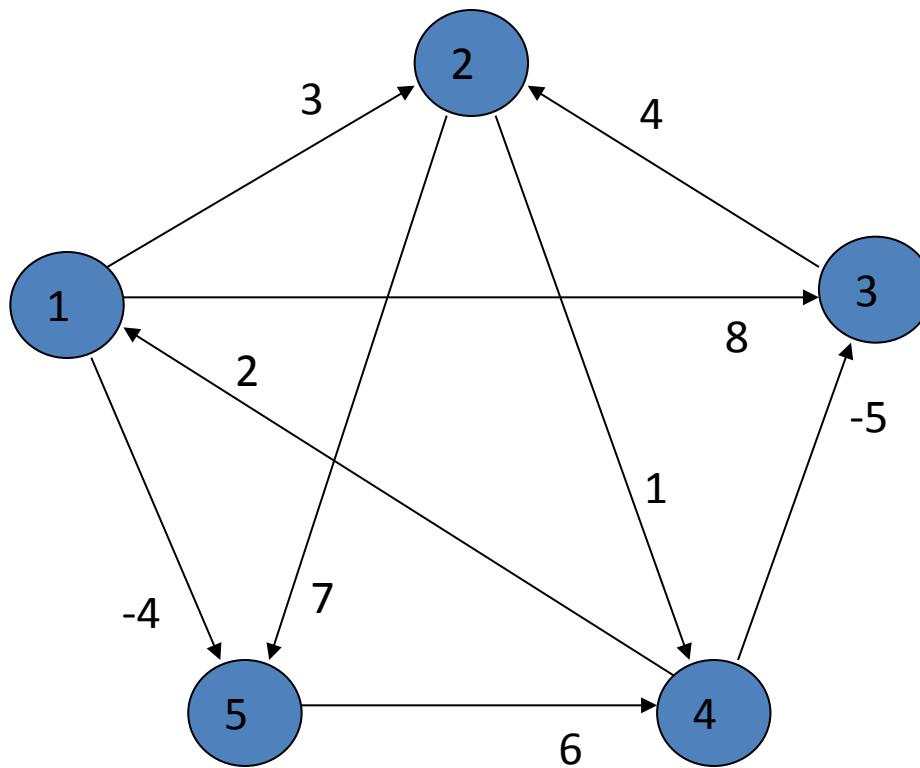
- Running time : $\Theta(V^4)$

► each matrix product : $\Theta(|V|^3)$

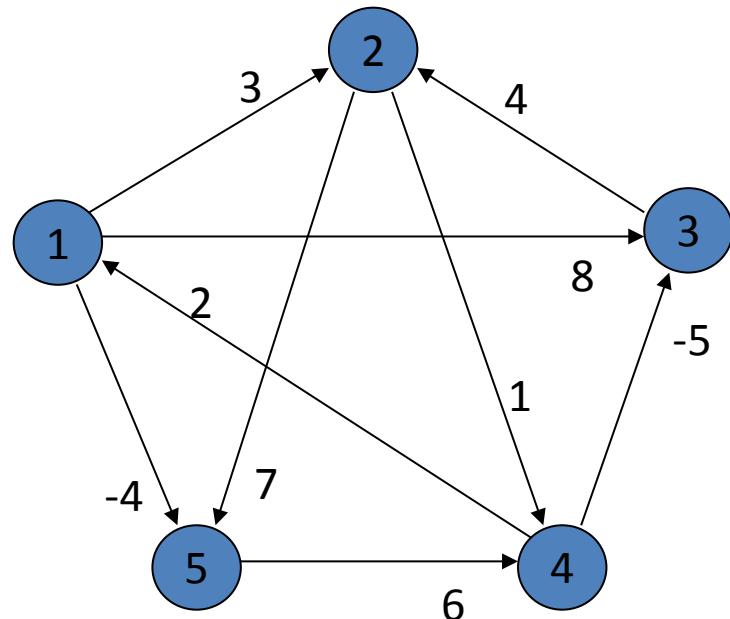
► number of matrix products : $|V| - 1$

Shortest Paths and Matrix Multiplication

Example:



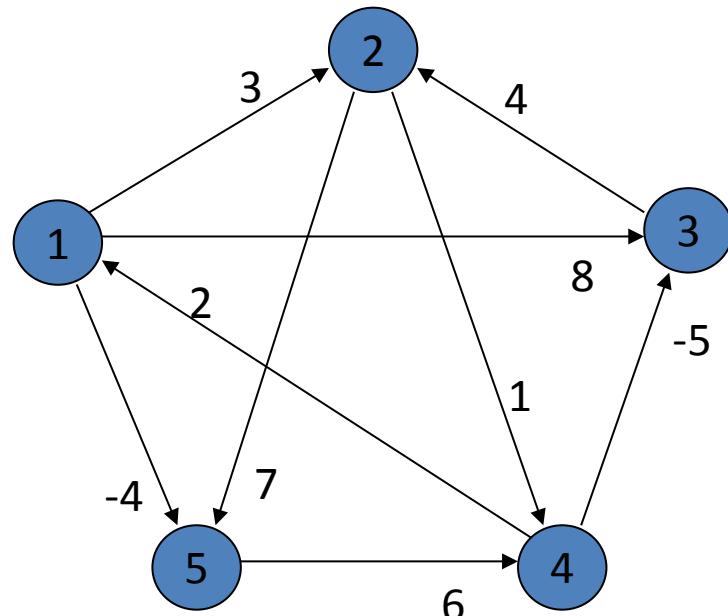
Shortest Paths and Matrix Multiplication



	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0

$$L^1 = L^0 W$$

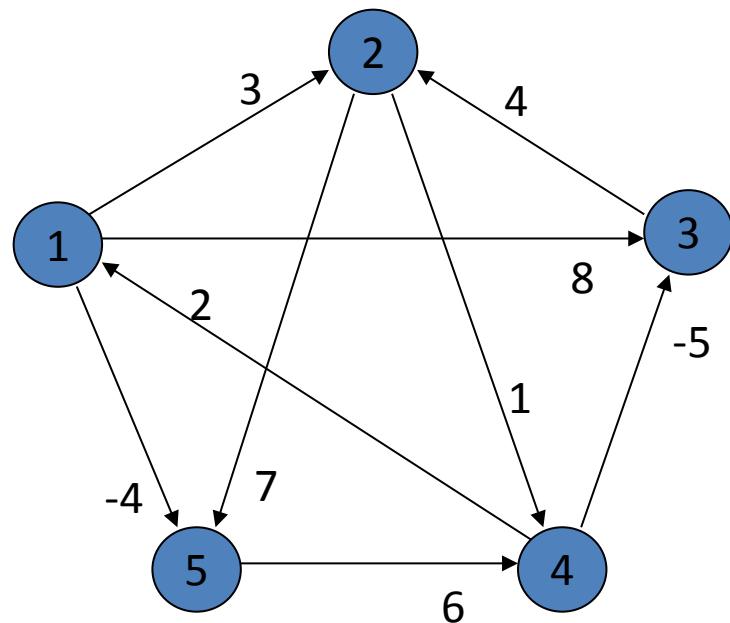
Shortest Paths and Matrix Multiplication



1	2	3	4	5	
1	0	3	8	2	-4
2	3	0	-4	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	8	∞	1	6	0

$$L^2 = L^1 W$$

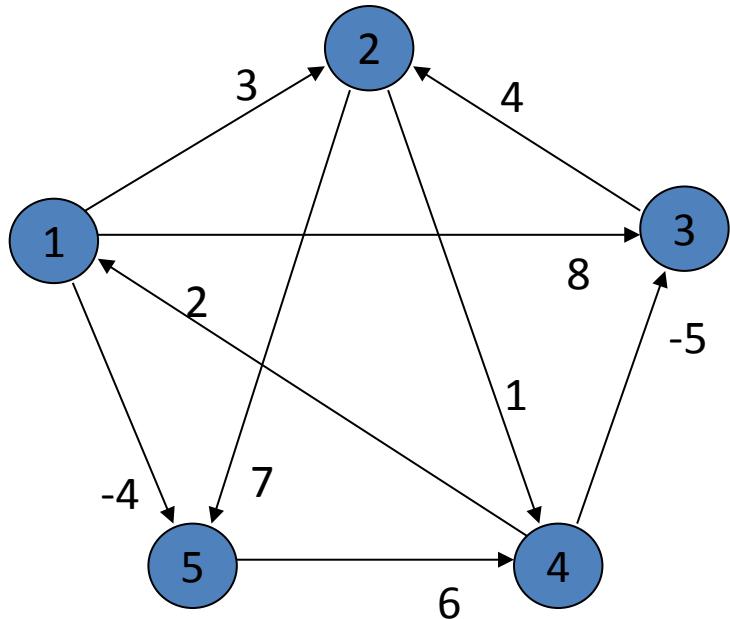
Shortest Paths and Matrix Multiplication



	1	2	3	4	5
1	0	3	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	11
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$L^3 = L^2 W$$

Shortest Paths and Matrix Multiplication



	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$L^4 = L^3 W$$

Improving Running Time Through Repeated Squaring

- Idea : goal is **not** to compute all L^m matrices
 - ▶ we are interested only in matrix L^{n-1}
- Recall : no negative-weight cycles $\Rightarrow L^m = L^{n-1}$ for all $m \geq |V| - 1$
- We can compute L^{n-1} with only $\lceil \lg(n-1) \rceil$ matrix products as

$$L^1 = W$$

$$L^2 = W^2 = W \times W$$

$$L^4 = W^4 = W^2 \times W^2$$

$$L^8 = W^8 = W^4 \times W^4$$

⋮

$$L^{2^{\lceil \lg(n-1) \rceil}} = L^{2^{\lceil \lg(n-1) \rceil}} = L^{2^{\lceil \lg(n-1) \rceil - 1}} \times L^{2^{\lceil \lg(n-1) \rceil - 1}}$$

- This technique is called **repeated squaring**.

Improving Running Time Through Repeated Squaring

- **FASTER-APSP (W)**

$L^1 \leftarrow W$

$m \leftarrow 1$

while $m < n-1$ **do**

$L^{2m} \leftarrow \text{EXTEND} (L^m, L^m)$

$m \leftarrow 2m$

return L^m

- Final iteration computes L^{2m} for some $n-1 \leq 2m \leq 2n-2 \Rightarrow L^{2m} = L^{n-1}$
- **Running time :** $\Theta(n^3 \lg n) = \Theta(V^3 \lg V)$

► each matrix product : $\Theta(n^3)$

► # of matrix products : $\lceil \lg(n-1) \rceil$

► simple code, no complex data structures, small hidden constants in Θ -notation.

Exercise

Give an efficient algorithm to find the length (number of edges) of a minimum-length negative-weight cycle in a graph.

Floyd-Warshall Algorithm

Assumption : negative-weight edges, but **no** negative-weight cycles

(Step 1) The Structure of a Shortest Path (yet another optimal substructure argument):

- **Definition** : intermediate vertex of a path $p = < v_1, v_2, v_3, \dots, v_k >$
 - ▶ any vertex of p other than v_1 or v_k .
- p_{ij}^m : a shortest path from v_i to v_j with all intermediate vertices from $V_m = \{ v_1, v_2, \dots, v_m \}$
- Relationship between p_{ij}^m and p_{ij}^{m-1}
 - ▶ depends on whether v_m is an intermediate vertex of p_{ij}^m
 - Case 1: v_m is not an intermediate vertex of p_{ij}^m
⇒ all intermediate vertices of p_{ij}^m are in V_{m-1}
⇒ $p_{ij}^m = p_{ij}^{m-1}$

Floyd-Warshall Algorithm

- Case 2 : v_m is an intermediate vertex of p_{ij}^m

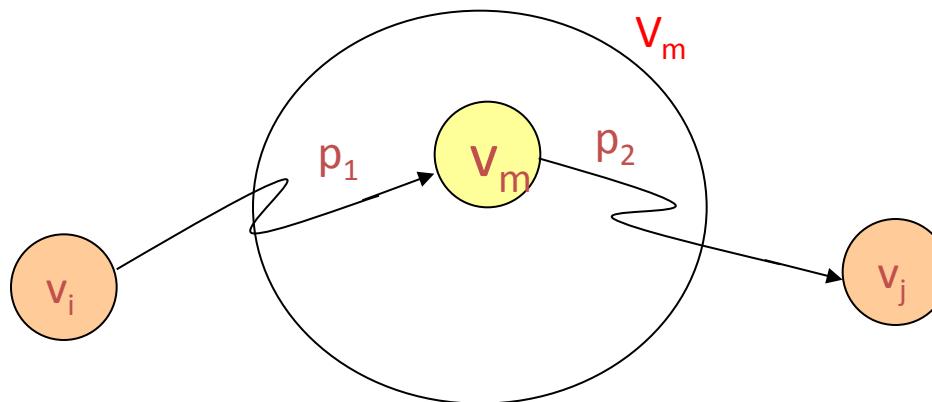
- decompose path as $v_i \rightsquigarrow v_m \rightsquigarrow v_j$

$$\Rightarrow p_1 : v_i \rightsquigarrow v_m \quad \& \quad p_2 : v_m \rightsquigarrow v_j$$

- by opt. structure property both p_1 & p_2 are shortest paths.

- v_m is not an intermediate vertex of p_1 & p_2

$$\Rightarrow p_1 = p_{im}^{m-1} \quad \& \quad p_2 = p_{mj}^{m-1}$$



Floyd-Warshall Algorithm

(Step 2) A Recursive Solution to APSP Problem :

- $d_{ij}^m = \omega(p_{ij})$: weight of a shortest path from v_i to v_j with all intermediate vertices from

$$V_m = \{ v_1, v_2, \dots, v_m \}.$$

- Note : $d_{ij}^n = \delta(i, j)$ since $V_n = V$
 - i.e., all vertices are considered for being intermediate vertices of p_{ij}^n .

Floyd-Warshall Algorithm

- Compute d_{ij}^m in terms of d_{ij}^k with smaller $k < m$
- $m = 0 : V_0 = \text{empty set}$
 - ⇒ path from v_i to v_j with no intermediate vertex.
i.e., v_i to v_j paths with at most one edge
 - ⇒ $d_{ij}^0 = \omega_{ij}$
- $m \geq 1 : d_{ij}^m = \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}$

Floyd-Warshall Algorithm

(Step 3) Computing Shortest Path Weights Bottom Up :

FLOYD-WARSHALL(W)

► D^0, D^1, \dots, D^n are $n \times n$ matrices

for $m \leftarrow 1$ to n do

 for $i \leftarrow 1$ to n do

 for $j \leftarrow 1$ to n do

$d_{ij}^m \leftarrow \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}$

return D^n

Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)

► D is an $n \times n$ matrix

$D \leftarrow W$

for $m \leftarrow 1$ to n do

 for $i \leftarrow 1$ to n do

 for $j \leftarrow 1$ to n do

 if $d_{ij} > d_{im} + d_{mj}$ then

$d_{ij} \leftarrow d_{im} + d_{mj}$

 return D

Floyd-Warshall Algorithm

- Maintaining n D matrices can be avoided by dropping all superscripts.
 - m -th iteration of **outermost for-loop**
 - begins with $D = D^{m-1}$
 - ends with $D = D^m$
 - computation of d_{ij}^m depends on d_{im}^{m-1} and d_{mj}^{m-1} .
no problem if d_{im} & d_{mj} are already updated to d_{im}^m & d_{mj}^m
since $d_{im}^m = d_{im}^{m-1}$ & $d_{mj}^m = d_{mj}^{m-1}$.
- **Running time** : $\Theta(n^3) = \Theta(V^3)$
simple code, no complex data structures, small hidden constants

Reading Assignments

- Reading assignment for next class:
 - Chapter 16.1-16.2
- **Announcement:** Exam 1 is on Tues, Feb. 18
 - Will cover everything up through dynamic programming