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Abstract

Successful distributed sensing and control require data
to flow effectively between sensors, processors and actu-
ators on single robots, in groups and across the Inter-
net. We propose a mechanism for achieving this flow
that we have found to be powerful and easy to use; we
call it Player. Player combines an efficient message pro-
tocol with a simple device model. It is implemented as
a multi-threaded TCP socket server that provides trans-
parent network access to a collection of sensors and ac-
tuators, often comprising a robot. The socket abstrac-
tion enables platform- and language-independent control
of these devices, allowing the system designer to use the
best tool for the task at hand. Player is freely available
fromhttp://robotics.usc.edu/player.

1 Introduction

Since 1999, the robots at the University of South-
ern California Robotics Research Labs have had on-board
TCP/IP and 802.11 wireless Ethernet as standard equip-
ment. The same is true of many labs around the world; to-
day the cost, availability and ease of use of the equipment
has put it within reach of most professional and -academic
users. Communication with and between robots in the lab
is now cheap and easy. Better still, it supports the stan-
dard socket interface; the system that moves sensor data
between processes on the robot’s on-board computer will
just as easily move them to the workstation across the lab
or to the web page across the Internet.

We are using this equipment to provide transparent net-
work access to all sensing and control of our robots. This
paper describes our software Player, a network server in-
terface to a collection of sensors and actuators, typically
constituting a robot. Player has quickly become the most-
used interface to the hardware in our lab.

There are three main motivations for providing a socket-
based robot server:

Distribution: A client has access to sensors and ac-
tuators anywhere on the network. Clients can connect to
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multiple servers; servers accept connections from multi-
ple clients. A single program could control the behavior
of several robots; several programs could control different
aspects of one robot’s behavior. Section 2 describes a sce-
nario which illustrates some possibilities of remote sensing
and control.

Independence: Clients can be written in any language
and on any hardware platform that implements sockets;
most languages support this today. The user can choose the
most appropriate language and environment for the task at
hand; be it C for run-time speed, Java for ease of use, Mat-
Lab for algorithm prototyping, Perl for web integration, or
Tcl/Tk for GUI design.

Convenience: The server provides an abstract unified
interface to the devices attached to it. Client programs
(robot controllers, sensor data processors, etc.) ‘subscribe’
to a set of devices and specify the frequency at which data
should arrive. Data from the subscribed devices come as
one data packet at the requested interval. Distribution adds
to this convenience, for example enabling remote display
and logging of robot state and sensor data. Some of the
earliest Player clients were visualization tools for debug-
ging.

While distribution provides the primary scientific ben-
efit by enabling an interesting and little-explored class of
algorithms, the independence and convenience are of prac-
tical interest to researchers and students. Player’s ease of
use make it attractive even with a single client running
on-board a single robot. Player also interfaces with Stage
(Section 6) to simulate a population of devices interacting
in a virtual environment.

Player is primarily a protocol, as specified in the man-
ual [4]. Any program implementing the protocol counts as
a Player. Currently there is a single implementation; our
Player program written in C++ using POSIX services. It
has been tested on Linux and Solaris and should compile
on any POSIX-compliant system.

Player was written to support our labs’ research. Some
similar system is a prerequisite for any exploration of dis-
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Figure 1: Example scenario: Player servers (indicated with a ‘P’) distribute sensor data to clients (indicated with a ‘C’)

across a network of wired and wireless connections.

tributed sensing, control and coordination. The Player ex-
periment has been so successful in-house that we believe it
will be of immediate use to the robotics and sensor network
communities.

2 Scenario

To illustrate how Player can be used to support dis-
tributed sensing and control in a variety of ways, we con-
sider the following scenario, also shown in Figure 1: An
experimental team of robots patrols a building at Western
University, holding a tight formation. A formation-control
program runs on one of the robots. It subscribes to the
sonar range sensors and wheel motors on all three robots,
sending wheel speed commands to maintain a fixed range
and bearing between them. On another robot, a client sub-
scribes to the audio devices of its host and its closest team-
mate, processing the two audio streams to find the direction
of interesting sounds.

Meanwhile an experimenter is debugging the formation
controller; she examines the robots’ sonar readings from a
GUI client running on her workstation. A logging server
keeps a record of the robots’ ground-truth positions for the
experimenter’s future paper. The logger subscribes to the
tracking device running on an overhead vision system.

Simultaneously, a colleague at Eastern University with
access to a supercomputer runs an on-line mapping client
that subscribes to every available ranging device at Western
U, including a wall-mounted laser scanner and the three
robots’ sonars. The mapping application is not controlling
any actuators, so the 300ms transmission delay over the
Internet is not a problem. However, the map generated is
available online in case a Western robot should need it.

This scenario, while complicated, is fully supported by
the current Player protocol and implementation. Further,

we already have examples of many of these clients.

3 Related Work

Previous work in the area of robot programming in-
terfaces has focused primarily on providing a develop-
ment environment that suits a particular control philoso-
phy. For example, Ayllu [13], which, like Player, can be
used to control the ActivMedia Pioneer robots, provides
tools for creating concurrent behaviors and, further, en-
forces a behavior-based control structure [1]. Similarly,
COLBERT/Saphira [7], which can also control the Pioneer
robots (among others), is concerned mainly with the con-
struction of fuzzily-blended behavior-based control sys-
tems [10]. While such tools are very useful, we believe
that implementing them at such a low level imposes unnec-
essary restrictions on the programmer, who should have the
choice to build any kind of control system while still enjoy-
ing device abstraction and encapsulation. Thus in Player
we make a clear distinction between the programming in-
terface and the control structure, opting for a maximally
general programming interface, with the belief that users
will develop their own tools for building control systems.
Further, most robot interfaces confine the programmer to a
single language: Ayllu uses something akin to C, Saphira
uses something akin to LISP, and TeamBots [2] uses Java.
In contrast, the TCP socket abstraction of Player allows for
the use of virtually any programming language.

The system that is most similar to (and certainly some
inspiration for) Player is the TRIP server [6]; the main
difference between the two is that whereas TRIP was de-
signed as a sophisticated server to support extremely sim-
ple clients, we strove for minimalism in our server and sim-
plicity in our message protocol, at the possible expense of
causing the client to do more work.

Many other distributed device control and event service
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Figure 2: Overall system architecture of Player

systems have been developed, but we are not aware of one
that provides the tradeoff between power and simplicity
that makes Player well-suited to multi-agent robotic device
control.

4 Architecture

Player’s development was guided by our desire to con-
currently support many heterogeneous devices and many
heterogeneous clients. Each device operates at some in-
herent frequency, with wide variation among devices. For
example, the popular SICK LMS 200 laser range-finder
returns a full scan at approximately 5Hz, while the Sony
EVID30 pan-tilt-zoom camera can give encoder feedback
at almost 2500Hz. Similarly, each client operates at some
inherent frequency; while a simple client written in C++
may be capable of consuming new data at 100Hz, a graph-
ically intensive client written in Tk might operate at less
than 1Hz. We want to move data and commands between
clients and devices at the highest rate possible in order to
fully exploit the hardware and maximize the responsive-
ness of the system.

4.1 Server Structure

Given the requirement to support interaction with ex-
ternal entities (i.e., clients and physical devices) that oper-
ate at different timescales, we designed Player in the stan-
dard model of an asynchronous threaded server. Player
is implemented in C++ and makes extensive use of the
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POSIX-compliant pthread interface. A main thread lis-
tens for new client connections on a well-known TCP port,
spawning threads on demand to service clients and the de-
vices they request. The overall system structure of Player
is shown in Figure 2. The center portion of the figure is
Player itself; on the left are the physical devices and on the
right are the clients. Each client has a TCP socket connec-
tion to Player. If the client is executing on the same host as
Player, then this socket is simply a loopback connection;
otherwise, there is a physical network in between the two.
At the other end, Player connects to each device by what-
ever method is appropriate for that device (e.g., RS-232).
Within Player the threads communicate through a
shared global address space. As indicated in Figure 2,
each device has associated with it a command buffer and
a data buffer. These buffers provide an asynchronous com-
munication channel between the device threads and the
client reader and writer threads. For example, when a
client reader thread receives a new command for a device,
it writes the command into the command buffer for that
device. Later, when the device thread is ready for a new
command, it will read the command from its command
buffer and send it on to the device. Similarly, when a de-
vice thread receives new data from its device, it writes the
data into its data buffer. Later, when a client writer thread
is ready to send new data from that device, it reads the
data from the data buffer and passes it on to its client. In

this way, the client service threads are decoupled from the



device service threads (and thus the clients are decoupled
from the devices). Also, by the nature of threads, the de-
vices are decoupled from each other, and the clients are
decoupled from each other.

4.2 Device Model

In order to provide a uniform abstraction for a vari-
ety of devices, we chose to follow the UNIX model of
treating devices as files. Thus the familiar file semantics
hold for Player devices. For example, to begin receiving
sensor readings, the client opens the appropriate device
with read access; likewise, before controlling an actuator,
the client must open the appropriate device with write
access!. As this model has served UNIX-like operating
systems well for many years, we expect that it will suffice
for the devices the Player will control in the future.

Player currently supports a number of devices, includ-
ing the popular Pioneer research robot and various periph-
erals (for a complete list, see the Player home page, listed
in Section 8). We have also introduced the concept of vir-
tual devices. Rather than being tied directly to a piece of
hardware, a virtual device performs aggregation and pro-
cessing on data gathered from one or more other sensors,
and exports the result. By integrating useful algorithms di-
rectly into Player, we can easily share expertise and reuse
code throughout the lab (and the world).

4.3 Client Interaction

By default, clients receive data at 10Hz2. Thus, every
100ms, a client can expect to receive a data packet con-
taining the current data from all the subscribed devices. Of
course, by sending all the data at once, Player might re-
peatedly send old data from a device that operates at less
than 10Hz. We designed Player in this way for one rea-
son: simplicity. By always transmitting the current state
for all subscribed devices, regardless of the timescale of
the device, we facilitate the writing of client programs. As
a result, clients are able to use a simple blocking read loop
to receive data from Player. If the client is multi-threaded
(many are), the blocking read could be compartmentalized

to a single thread, allowing the rest of the client program -

to proceed unhindered.

Of course, receiving data at 10Hz may not be reasonable
for all clients; for these situations, we provide a method for
changing the frequency, and also for placing the serverin a
request/reply mode. So, if a client wants vision data at full
frame rate, it can configure Player to send data at 30Hz,
with the tradeoff that it will also receive (sometimes re-
peated) data from the other currently requested devices at
the higher rate. Alternatively, if there is a low-bandwidth

IDevices in Player can also be configured similarly to ioctl ().
2We chose 10Hz because most of our currently supported devices op-
erate at or near that frequency.

connection between Player and a client using laser data
(which is comparatively large), that client might lower the
datarate to SHz in order to minimize message-passing and
thus conserve bandwidth, with the tradeoff that data from
other requested devices will also arrive more slowly3. It
is important to remember that even when a client receives
data slowly, there is no backlog and it always receives the
most current data; it has simply missed out on some inter-
vening information. Also, these frequency changes affect
the server’s behavior with respect to each client individu-
ally; the client at 30Hz and the client at 5Hz can be con-
nected simultaneously, and the server will feed each one
data at its preferred rate.

Analogous to the issue of repetition of old data is the
fact that there is no guarantee that a command given by a
client will ever be sent to the physical device. Player does
not implement any device locking, so when multiple clients
are connected to a Player server, they can both write into
a single device’s command buffer. In general, there is no
queuing of commands, and each new command will over-
write the old one; the service thread for the device will
only send to the device itself whatever command it finds
each time it reads its command buffer. We chose not to
implement locking in order to provide maximal power and
flexibility to the client programs. In our view, if multiple
clients are concurrently controlling a single device, such
as a robot’s wheels, then those clients are probably coop-
erative, in which case they should implement their own ar-
bitration mechanism at a higher level than Player. If the
clients are not cooperative, then the subject of research is
presumably the interaction of competitive agents, in which
case device locking would be a hindrance.

5 Evaluating the implementation

To evaluate the performance of our Player implemen-
tation, we performed a series of stress tests®. A number
of simultaneous connections were made to a Player server,
and data were requested from a typical set of devices. We
performed 54 experiments, testing all combinations of the
following parameters:

Number of clients {1, 10, 50}

Client update frequency {1, 10, 50Hz}

Data size {small (85 bytes), large (807 bytes)}

Network type {loopback, Ethernet, 802.11}

For each of the 54 parameter combinations, we ran the sys-
tem for 2 minutes and measured the end-to-end data packet
latency® and time interval between arriving data packets
for each connected client. End-to-end latency is the sum of

31f a client requires different data rates from devices, it can simply
make separate connections to the server, one for each device.

4These tests were conducted with Player version 0.8d.

5The test computers’ clocks were synchronized with the network time
protocol (NTP) [8], which can maintain precision of less than 1ms.
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network latency and Player-induced delay due to the asyn-
chronous client and server loops. This delay is bounded
above by the lesser of the update intervals of the client
and device; the expected value of the delay will be half the
lesser interval. A more interesting metric is the inter-packet
arrival time, as it captures Player’s ability to maintain a re-
quested data rate; if a client asks for updates at 10Hz, then,
if Player is working properly, the client will receive a data
packet every 100ms.

In all but the extreme case described below, Player was
able to track the desired data rate very closely. The mean
interval between packets was always < 50us from the tar-
get interval (less than our clock precision).

Player is therefore generally able to provide data in a
timely manner. However, we observed that in the toughest
case we examined, transferring large packets via 802.11
(of the networks tested, the wireless has the least band-
width [at =~~1.9Mbps] and greatest overhead), Player was
unable to support the larger populations of subscribers. In
these cases some or all of the clients’ connections were
broken by Player. Due to lack of space we present here
only these worst performing results. Figure 3 plots the
measured time interval between packets received. For a
population P = 1 client, Player is able to maintain 20, 100
& 1000ms intervals with little variance (Figure 3(a)). For
P = 10 the 1000ms interval is maintained as before. The
100 and 20ms intervals are also maintained as means, but
increased variance is observed (Figure 3(b)). For P = 50
the 1000ms interval is maintained, but again with relatively
large variance. For the 100ms interval, Player was found
to close connections to 34 of the 50 clients, leaving only
16 connected which it served at 100ms with high variance.
When 50 clients connected requesting 20ms update rates,
Player closed all connections within a few seconds and no
data were served (Figure 3(c), no plot for 20ms interval).

These results allow us to determine rough upper bounds
for Player’s performance. For example, the server is unable
to handle 50 clients requesting laser data at 10Hz across
the wireless network, but it will work across the 10Mbps
wired Ethernet. Our initial estimates of the bandwidth re-
quirements of this service seem to show the wireless is suf-
ficient. Our next step is to examine these failures more
closely to determine if we are up against a hardware/OS
limit, or whether our implementation can be improved.

6 Stage

Stage simulates a population of Player devices, allowing
development and testing of clients in an environment very
similar to that provided by the real hardware. Stage spawns
several copies of Player, replacing the real device drivers
with its simulated equivalents. The user interfaces with
Player in the normal way; clients see the identical interface
to real and simulated hardware.



We have found that agents developed in simulation will
work with little or no modification on the real devices and
vice-versa. The Stage distribution includes a variety of en-
vironments suitable for large and small-scale experiments
in multi-agent sensing, communications and control.

7 Usage

Player is the default interface for the Pioneer robots at
USC and has been used for many projects. Incoming grad-
uate students write their first single-robot controllers for it,
and it is used with Stage for graduate courses in robotic
sensing and planning,

Some examples of our research projects using Player
(and its precursor ArenaServer) are ant-inspired trail-
following in robot teams [11], cooperative box pushing
and multiple target tracking [3], reducing interference in
teams by aggressive behavior [12], investigation of inter-
action between network and behavior designs [14], simul-
taneous localization and mapping [5], and online resource
allocation [9].

8 Conclusion and future work

In this paper we have attempted to make explicit some
opportunities presented by ubiquitous network communi-
cations for robotics. We have identified a niche for a novel
piece of software that provides language and platform in-
dependent network access and an abstract interface to col-
lections of sensors and actuators: a Robot device server.
Player is our candidate design for such a server. We have
described it here and made the source and documentation
available for evaluation by the community.

Our Player implementation is deliberately simple and
is based on the well-understood multi-threaded blocking
server design. A modular device driver interface makes
adding additional devices straightforward.

We are working on an implementation for the QNX real-
time operating system for use with the USC AVATAR robot
helicopter. We also aim to create a lightweight, low mem-
ory, low thread-count version for handhelds and small em-
bedded devices. The Player protocol and implementations
will evolve as we push them with more complex clients,
additional I/O devices and smaller server platforms.

Player and Stage distributions, including source code,
exam-
ple client programs and documentation are freely available
under the GNU General Public License at the Player home
page: http://robotics.usc.edu/player.

The acid test of Player will be its uptake. We hope that
Player will develop over the next few years into a well-used
tool. It will not suit every application, but it has proved
useful in a variety of roles in our labs. Our work would be
less fun without it.
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