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Abstract—In this paper, we present an anomaly detection  The robot uses its additional sensors (e.g., a camera) to
system that is able to detect time-related anomalies by using a verify if there is an intruder in the area. We assume the
wireless sensor network and a mobile robot. The sensor network . d d in th Theref th bil
uses an unsupervised fuzzy Adaptive Resonance Theory (ART) intruder moves around in the area. ereiore, the mobiie
neural network to learn and detect intruders in a previously = fobot uses a camera to track moving objects. If there is a
unknown environment. Upon the detection of an intruder, a mo- moving object, the robot declares that an intruder is detkect
bile robot travels to the position where the intruder is detected An important challenge in WSN research is to determine a
to investigate by using its camera. The wireless sensor network systematic procedure to train these networks so that they ar

uses a hierarchical communication/learning structure, where sensitive only to real anomalies. To address this challenge
the mobile robot is the root node of the tree. Our fuzzy ART y ) g

network is based on Kulakov and Davcev’s implementation [8]. We have incorporated a machine learning t_eChnique into
However, we enhance their work by extending the fuzzy ART the WSN so that the networks can automatically learn to

neural network with a Markov model to learn a time series  recognize normal and abnormal modes of operation. Our
and detect time-related anomalies. Finally, a mobile robot is approach makes use of a fuzzy Adaptive Resonance Theory

employed to verify whether the detected anomalies were caused . . .
by intruders. The proposed architecture is tested on physical (ART) neural network, which was first implemented in [8].

hardware. Our results show that our enhanced detection system The fuzzy ART neural network system is an unsupervised
with mobile robot verification has a higher accuracy and lower Artificial Neural Network (ANN) that can perform dimen-
false alarm rate than the original fuzzy ART system. sionality reduction and pattern classification. The nekwor
can continually learn from new events without forgetting
what has already been learned. No off-line training phase is
There are many advantages of using Wireless Sensor Net¢quired. The algorithm is simple enough to be implemented
works (WSNs) to detect changes in the environment. Eagh the limited platform of the Crossbow motes [1], yet still
individual node in the network can monitor its local regionachieve good performance.
and communicate through a wireless channel with other However, a shortcoming of the original fuzzy ART ap-
nodes to collaboratively produce a high-level represemtat proach is that it does not detect time-related changes. We
of the environment’s states. By using such a network, largeave, therefore, enhanced the basic fuzzy ART system to
areas can be monitored with low cost. enable it to learn a time series through the use of a Markov
In this research, we have investigated intruder detectianodel. The approach builds a state transition model online
in a previously By “unknown environment”, we mean thatduring the initial period of deployment, and considers the
the sensor signatures and types of anomalies are previoublyilt model as the normal model. After the training phase is
unknown to the WSN. We pre-deploy the static WSN int@mver, any events that occur in the environment that do not
the environment. The sensor nodes first learn an initial mod#t the existing transition model are considered as abnormal
of the environment using a fuzzy ART neural network anevents. Being able to model the expected sensor signatures
a Markov model; we refer to this as thmrmal model of for typical operations greatly simplifies the human desiigne
the environment. After the training period, any changes-conjob; by enabling the system to autonomously characterize
pared to the learned normal model are treated as anomaltee expected sensor data streams, the network can learn the
possibly caused by an intruder. Upon the detection of thfeatures of its environment that are important to monitor.
anomaly, an intrusion alert is generated, and an autonomotsis, in turn, allows the sensor network to perform au-
mobile robot responds to the alert by traveling to the placeenomous anomaly detection to recognize when unexpected
where the sensor nodes have detected the anomaly. A molsknsor signals are detected.
robot response makes the system more flexible upon theln a prior paper [11], we presented aspects of this proposed
detection of an intruder. The mobile robot is able to reachpproach. This current paper, however, goes beyond this pri
places and perform tasks that static sensors cannot. Mobfablication by presenting new results and analysis showing
robots can also allow the design of a system where nodése benefit of our proposed approach over other competing
can find power sources, request the dispatch of other nodeghniques.
to perform tasks that require more sensing capability, and In this paper, we first review related work in Section II.
seek out repair. Then, we present our approach in Section lll. In Section IV,
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we present the hardware platform that we have used to tesiuld not detect time-related changes. Thus, in this paper,
our system. Our experimental results from the physical exve present an algorithm to enhance the model so that it can
periments are presented in Section V. Finally, we summarizietect time-related changes.
our findings in Section VI. 7) Modular. Our system is designed to be modular. Each
component can be removed if its capability is not required.
For example, if time series analysis is not of interest, then
Our research objective is to design a scalable, efficiemie can turn off the Markov model; the system would then
and robust anomaly detection system using WSN and mobimply detect anomalies in the sensor signatures.
robots that will be deployed in an unknown environment. 8) Able to continuously monitor the environmeht our
The desired characteristics of the learning algorithm are @pproach, human intervention is not required to reset the
follows: system after an anomaly has been detected. Our system can
1) Able to detect anomalies in an unknown environmerneset itself.
with minimum human supervisiofihis characteristic makes 9) Robust We use the robots’ mobility to bring more
supervised, offline learning algorithms, such as Bayesiagbverage, sensing and processing capabilities to the WSN.
networks [7], unsuitable for our application. Possiblemia- There are some works that make use of mobile robots
tives include Self-Organizing Maps (SOM) [3] and Adaptivetogether with a WSN in other applications. For example,
Resonance Theory neural networks (ART) [8], as they ande authors in [9] explore parasitic mobility in WSNs. They
commonly-used unsupervised learning techniques. propose a solution to the problems of power usage, node size,
2) Able to easily scale to large numbers of motegice a and node complexity in the form of parasitically actuated
WSN typically has a large number of sensor motes, tuningodes. LaMarca, et al., [10] used robots to increase the
the parameters of learning algorithms can be a long arfdasibility of WSNs since sensor networks can acquire data
tedious process. Therefore, the learning algorithm shoulslit lack actuation, while robots have actuation but limited
have as few parameters to adjust as possible. The ART modelverage in sensing. Schaffert [14] adapts sensor network
allows the number of clusters to vary with problem sizemodels for use with information maps and verifies the ability
Furthermore, it allows the operator to control the degree aff such maps to improve robot localization. Ren, et al., [13]
similarity between members of the same cluster by mearfiscus on a fire and intruder detection application by using
of the user-defined vigilance parameter. sensors only on a mobile robot.
3) Able to support a hierarchical structurédeinzelman, 10) Able to adopt feedbaclkd human operator or higher-
et al., show in [6] that a hierarchical structure in a WSNevel clusterhead may have a more accurate, higher-level
is able to decrease communication requirements by reducin@gw of the environment. We desire our system to be able to
the size of the data transmitted; this in turn saves energydopt its learning according to the feedback from this highe
The fuzzy ART learning technique works well with thislevel. In the future, we plan to incorporate this feature im o
hierarchical structure. Our sensor motes are able to run tegstem.
same ART learning algorithm for cluster members as well In summary, there is no evidence that a specific cluster-
as clusterheads, just with different inputs. Some machiriag algorithm performs better in all tasks or applications.
learning techniques (e.g., association-rules [4]) miglitbe However, some clustering techniques may be more suitable
easily implemented as a single learning algorithm that workfor some specific types of data or applications. We have
for different types of input. chosen the fuzzy ART model [8] for our WSN implementa-
4) Computationally inexpensiv@he sensor motes gener-tion, because it satisfies most of our requirements for our
ally have limited computational resources and limited poweapplications. In future work, we will consider alternative
Typically, machine learning techniques like Expectationapproaches, such as SOMs, for the purposes of comparison.
Maximization (EM) and gradient-based algorithms are comin this current paper, we present an enhancement to the
putationally expensive. original fuzzy ART model to detect time-related anomalies.
5) Memory efficient The learning algorithm has to be To our best knowledge, no previous work addresses online
small enough to be implemented and installed on sensmtruder detection using a system that is able to detect-time
motes with limited memory. Thus, learning algorithms thatelated changes by using both a WSN and mobile robots.
use particle filters might not be a good choice, since they
require large amounts of memory during the learning process . APPROACH
6) Able to detect time-related anomalies onlifduch In this section, we first introduce our network architecture
attention has been focused on time series analysis in WSN&en, we describe the basic fuzzy ART network. Subsec-
Many approaches detect time series anomalies at the comntign 11I-C then discusses our approach to incorporating a
nication level of the WSNs such as network traffic, packag®arkov model for time series analysis.
routing, radio channel selection, and so forth (e.g. [16]). i
Some works focus on predicting sensor values in order f Architecture for the sensor networks
improve the performance of data collection and reduce the In our system, sensor motes are arranged hierarchically,
communication effort, e.g. [15], [2]. While we have selectedis shown in Figure 1. In our WSN, sensor motes are divided
the fuzzy ART model for this research, the original approachnto clusters. Each cluster has a clusterhead and multiple
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the Markov model if time series data is not of interest.
Fig. 1. Proposed fuzzy ART architecture, extended to eséimaissing

data and perform time series analysis. B. The fuzzy ART network

Kulakov and Davcev proposed a unsupervised fuzzy ART
) ) model for change detection in a WSN in [8]. Our basic fuzzy
cluster members. Each cluster covers a geometric region aR&T network is implemented in the same way. Figure 2 gives
is responsible for detecting the environmental changelsan t  yopresentation of their fuzzy ART network. A typical fuzzy
region. Bot_h cluster members.an_d clusterhequ run an ideRT network has three layers: an input layer, a comparison
tical detection system — a missing data estimator, a fuzz;gyer and a category layer. The comparison layer takes an
ART network, and a Markov model. Cluster members reaghs ¢ vector from the input layer and transfers it to its best
in raw sensor readings;, (€.g., light and sound) from the maich in the category layer. If the best matching node is
environment as input, and then classify data into categorig|pse enough to the input that is indicated by the vigilance
¢;. After the classification process, cluster members se rameter, the training process starts; otherwise, thé nex

their category labels to their clusterheads. The clust&fie pogt matching node is selected, transformed and compared.
first pre-process the collected category labels by identfy |t n existing nodes in the category layer meet the vigilance
and estimating the missing values (through a process N@feshold, then a new node is generated and adjusted to-
described here; see our companion paper [12] for detailg}args matching the input. The vigilance parameter influence
Then, the processed categorizations are used as inputito thee \whole system: a higher vigilance level produces more
fuzzy ART neural network and are fused together to reduGgyegories, while a lower vigilance level produces fewer

the size of the data. The output of the fuzzy ART networl,ieqories. For details on the fuzzy ART model, please refer
is a category labek;. After the classification process is g or companion paper [12].

finished, the system further checks if there are time-rdlate
changes. Clusterheads may have higher level clusterhedeis Markov model extension
which classify their output class labels. Finally, the root We enhance the existing fuzzy ART network by adding a
mote obtains the final model of the environment. With thisviarkov model to detect time-related changes. By definition,
architecture, our WSN can be easily scaled to large numbeisMarkov model is a discrete-time stochastic process with
of sensors. At the same time, this hierarchical approache Markov property, which states that, for a given process,
reduces communication, which in turn, saves energy in théhowledge of previous states is irrelevant in predicting th
WSN. probability of subsequent states. At each time increméet, t
The fuzzy ART model alone cannot detect time-relatedystem may either stay in the same state, or transition to a
abnormal events. For example, if people turning on the dighhew state. A Markov model is formally defined as a sequence
during the day and turning off the lights when they leavef random variablesX;, X, ..., which, given the current
work is considered as a normal event, then an intruder ongtate, the previous and next states are independent. Fgrmal
turning on the lights briefly in the evening should triggerPr(X,,+1 = z|X, = zn,....X1 = x1) = Pr(X,41 =
an alarm. We enhance the basic fuzzy ART network by|X, = z,).
using a Markov model to detect these abnormal events.In a WSN setting, the Markov model is built during the
The Markov model takes the output category/stgtérom  training phase using the algorithm shown in Algorithm 1.
the fuzzy ART network and checks if the transition to theSensor motes periodically sense the environment at a fixed
current state is probable based on the existing historye Notate and feed the normalized sensor readings to the neural
that the category; is the same as the Markov state. Ifnetwork to build categories of the environment. For each
the transition is not probable, an alarm is triggered. Weategory/state:], we keep an average time and the variance
believe that with this architecture, we can detect abnormaf the time the system remains in that particular state.
environmental changes as well as time-related changes. QAdditionally, for each state we record the state transition
design is flexible because it allows the operator to turn offrobabilities,p;;, to the next set of states. By doing so, an



Algorithm 1 Building the Markov model environment are not kept in the sensor nodes due to memory

1: for Each time steplo limitations. Therefore, any events that do not match the
2. if The current state is the same as the last time stexisting normal model will be treated as abnormal events
then by the sensor motes. When an intruder is detected, a mobile
3 Record the time spent in this state. robot moves to the area to investigate. We assume the robot
4. else knows the location of each cluster in advance. If the higher
5: Record the state transition. level clusterhead detects an anomaly (i.e., a categorygehan
6: end if after stabilization), the robot moves to the location of the
7: end for cluster that detected the change. The mobile robot is the
8: for Each state do root clusterhead of the hierarchical fuzzy ART system.
9:  Find the meary; and standard deviation; of the In order to navigate in the environment, the mobile robot
time the system remains in state first creates a laser map using Simultaneous Localizatidn an
10:  Find the transition probability;; for each possible Mapping (SLAM). After an intruder has been detected by
statej. the sensor network, the mobile robot uses a wavefront path
11: end for planning algorithm to plan a path from its current position

to the goal position. During motion, it localizes itself ngi
Monte Carlo localization.

alarm will trigger if the amount of time in a state is eitheoto
short or too long. In a similar fashion, if a state transition
not probable, then this may also trigger an abnormal alarm.
Thus, we can capture an anomaly from state transitions an
from state occupancy time.

IV. HARDWARE PLATFORMS

Our wireless sensor network consists of static sensors
(Crossbow motes) and mobile robots (Pioneer 3 robots).
A Crosshbow [1] mote contains a processing unit, a sensor
module, and a communication module. The processing board
contains an 8-bit processor &/ Hz, a 128 KB program-
ming memory and &12K B additional data flash memory.
The wireless transmission range is around 10 meters inside
a building. In our future work, we will extend the commu-
nication range by using intermediate motes as data routers
The sensor board has a buzzer, a light sensor, a microphon
2 magnetometers and 2 accelerometers. For the experiment|
reported in this paper, we used the light and sound sensin
components.

The mobile robot used in these experiments is a Pioneer
3 robot. Pioneer 3 is a mobile robot with a two-wheel
differential drive. The mobile robot uses the Linux opergti
system and runs the Player clieniserver device driver (ST, . SISO o e ML Sl S b O
The robot uses a SICK LMS-200 range-finding laser fogound device carried by the intruder is ind)i/cated by a ci(otad Iéft to
localization. The mobile robot can communicate with theight, top to bottom).
sensor motes by having a mote attached to an MIB500
programming board through a serial connection. In our We implemented and tested the intruder detection system
intrusion detection application, the robot runs the sameyiu on real motes along with a mobile robot and experimented
ART program as the motes. The robot takes the output fromith the system at both the University of Tennessee and
its cluster member motes and fuses them together to gebk Ridge National Laboratory (ORNL). Figure 3 shows
the highest level representation of the environment. Thusnapshots from the experiments at ORNL. We deployed
the mobile robot is a root mobile clusterhead with highep clusters of sensor motes in the environment. The first
processing power and more sensing capabilities. cluster was deployed into a conference room of ORNL’s JICS
building. The second cluster was deployed in an auditorium
] close by. The mobile robot was stationed in the hallway
A. Intruder detection system listening for abnormal changes. It detected abnormal aksng

In order to detect abnormal events in a previously unby learning the combination of changes of the 2 clusterheads
known environment, the sensor network first learns whasensor motes) deployed in the 2 rooms. The mobile robot
is normal for the environment. Abnormal states of thean the same learning algorithm as the sensor motes, namely,

V. EXPERIMENTAL RESULTS



the fuzzy ART system. In the beginning, it was quiet and :
the lights were off in both rooms. The WSN learned that
“quiet” and “dark” were normal in this environment. Then, '
an intruder entered the conference room and turned on the o8
lights. The WSN detected the abnormal event and notified ol
the robot. The robot planned a path using its wavefront path T —
planner and moved to the conference room to check on the o4r :
abnormal event — “light on”. The intruder then moved to 0zl
the auditorium. He turned on the lights and a buzzer to make

noise in the auditorium. The robot detected the abnormal % 500 1000 1500 zoggm(zss)‘oo 2000 300 000 500

activities in the auditorium — “buzzer on” and “lights on”.

The robot then planned a path and moved to the auditoriuply 4. An example: normalized light and microphone readingiecied
to check on the abnormal event. Once the robot arrived by a sensor mote. From time 0 to 510, light was on (0.5), microphveas

it ; ; i on (1); From time 510 to 1200, light was on (0.5), microphone wag0);
the auditorium, it used its camera to track the intruder. From fime 1200 1o 1800, light was on (0.5). microphone was off Etom

In future work, we p_Ian to réemove the. implementationime 1800 to 2300, light was off (0.1), microphone was off (1. e
dependency on synthetic intruder noises (i.e., buzzer).

B. Performance metrics “
To evaluate our system, we collected statistics on the miss
rate, false alarm rate, sensitivity and specificity. Thesmis
rate is calculated a%, where False NegativeF(V)
denotes the number of faults that the system failed to detect
and True PositiveIl P) denotes the number of true faults that
are detected by the system. The false alarm rate is defined as
(FPF%, where False Positivel{P) denotes the number of
detected faults that were not true faults, and True Negative
(T N) denotes number of “no faults” that were detected by R e T R e

the system. The sensitivity is definedﬁaff’w. The false

. . FP Fig. 5. An example of the detected changes from a cluster of @shot
aIarn_1_ r_ate IS deﬁngq _a%FPJrTN ’ Idea”y' the values of fuzzy ART networks during the training phase from sensora ddown in
sensitivity and specificity are at 100%, and the false alarmgure 4.

rate and miss rate are at 0%.

Category

C. Temporal change detection experiment sensor readings collected from the environment. The light

In this experiment, we began by having the system learsensory readings are normalized between 0 and 1. Figure
the normal model; then, the testing began. Both training shows the categories learned by the fuzzy ART neural
and testing were performed online. All sensors sampled theetwork from the data shown in Figure 4 during the training
environment at a rate of 1 sample per second. Six mot@eriod. After the classification process, a Markov model
were used during this experiment. One mote acted aswas built by using Algorithm 1. Figure 6 shows a Markov
clusterhead, and the rest as cluster members of that moteodel built from the data shown in Figure 4 and Figure 5.
The cluster member motes were uniformly deployed arourthble | shows the mean and standard deviation values of the
the clusterhead and all cluster members were within théme the environment remained in each category/state &efor
communication range of the clusterhead. The vigilancddevetransiting to a different category/state. This is one ofttieds
for cluster members were set to 0.90, while those for thef our experiment. In this particular example, the numbers
clusterheads were set to 0.97. on the Markov model is nicely rounded (e.g., 0.5 and 1).

The training process took approximately 1.5 hours peddowever, in more realistic situations, the Markov model can
trial. During the training period, states were visited np# be much more complex; these experiments are designed to
times. The averaged time was computed over the multifustrate our approach.
ple visits of the same state. We treated this as a normal

environment. Two sensors were used by cluster members TABLE |

— light and microphone. Raw light readings between 0 TIME DURATION IN EACH STATE
and 2000 indicated dark and light, respeptwely. Micropghon Category T3
readings came from a hardware detection system onboard. Mean time (s) 571 555 538
The values were binary — 1 indicates no noise is detected, Standard deviation (s) 62 75 43

and O indicates noise is detected. We used a buzzer as a

sound source, which operatesddf z. The sound sensor can  Three different testing suites with four trials were run for
detect the buzzer within a radius of 3 to 4 meters in oueach testing suite. In test suite 1, the environment started
testing environment. Figure 4 is an example of the typicdfom “light and quiet” (category 1), and remained in thatsta



series, and is able to detect time-related anomalies, \where
the original fuzzy ART cannot. Both the fuzzy ART system
and the enhanced fuzzy ART system have a low false alarm
rate (approximately 6%). To determine the significance of
these results, we applied the Student’s T-test to the miss ra
and sensitivity results for the original fuzzy ART and our
enhanced fuzzy ART. This test confirms that the differences
in these results are statistically significant, with a caafice
Fig. 6. An example of a leamed Markov model for the trainingsgha |evel of 99.5%. Thus, our enhanced fuzzy ART approach
ggﬁortzogg ;Vtzftt:r?dngr:g”?taTé)sd’er'eZL;T;ViT;'r?ﬂg/ecvtégﬂa:;;dﬁeﬂg provides a significant improvement over the original fuzzy
the system. State C1 denotes lights were on and buzzer wasStafe c2 ART approach.
denotes lights were on and buzzer was on. State C3 denotés Vigre off In these experimems, the time duration in each state is
and buzzer was off. manually selected to illustrate the concept. In practipglia
cations, the time duration could be very different, suchoas f
for 600 s. Then, it transited to “light and noisy” (categorycomparisons between daytime versus nighttime expectation
2), and remained in that state for 600 s. Lastly, it trangited However, in general, the proposed Markov model would
“dark and noisy” (category 4), and remained in that state fdee implemented similarly. We also realize that in some
600 s. Note that “dark and noisy” had never occurred befor@pplications, the duration of time within a state is not of
during our training phase. This was an abnormal event. Thigterest, but, instead, the order of the states is what ig mos
testing suite only contained a new abnormal state; howevémportant (e.g., if people always turn on the light before
it did not include any temporal-related changes. making noise in the room, regardless of the time duration
In test suite 2, the environment started from “light andn each state, then making noise in the dark room would
noisy” (category 2), and remained in that state for 600 $€ abnormal). In that case, the system would not have to
Then, it transited to “dark and noisy” (category 4), andnaintain the time duration in each state. It can insteadlgimp
remained in that state for 300 s. Lastly, it transited tdeep track of the expected state transitions.
“dark and quiet” (category 3), and remained in that state f?lé Intruder detection experiment
600 s. The environment started with abnormal transitions to° P
state 2, then the abnormal state 4 was detected. Lastly, arAfter a change is detected in the environment, it does not
abnormal transition occurred from abnormal state 4 to stafecessarily mean that an intruder caused the anomaly. To
3. This testing suite contained both abnormal events of a ned¢termine if the anomaly is caused by an intruder, a mobile
abnormal state and abnormal time transitions. robot is sent to investigate using an additional sensor, (i.e
In test suite 3, the environment started from “light and@ camera). In our enhanced intruder detection system, the
quiet” (category 1), and remained in that state for 300 $ensor motes run our proposed change detection system, and
Then, it transited to “dark and quiet” (category 3), ancR mobile robot serves as the mobile clusterhead. Once a
remained in that state for 900 s. The environment abnormalhange is detected by the mobile robot, it travels to the area
remained at state 1 too briefly and in state 3 for too long. Thignd checks for an intruder using the camera mounted on
testing suite only contained time-related abnormal changethe top of the robot. The camera tracks the intruder using
a motion tracking program. The motion tracking program
only detects moving objects. In the general case, we would
want our mobile robot to carry its own light source or use a
thermal image to detect a human in any lighting conditions,

TABLE Il
PERFORMANCE EVALUATION BETWEEN THE BASIC FUZZYART AND
ENHANCED FUzzY ART

False  Miss  Sensitvity _ Specificity rather than just a moving object; this is the subject of feitur
Alarm  Rate work.
ggg;”i'm mean ffg" 53% 431g/° 9142% If the mobile robot detects the intruder, the alarm is
Enhanced T mean | 6%  14% 56%% 94% confirmed by the mobile robot. However, if the robot does
fuzzy ART | stdev | 12 2 2 1 not detect any intruder (human) within 120 seconds, it

turns off the alarm and claims that there is no change in

We used these testing suites to compare the performancetloé environment. In this way, the robot does not miss any
the basic fuzzy ART system (Kulakov and Davcev's impleabnormal events occurring in the environment and at the
mentation) and our enhanced fuzzy ART system. The expesame time reduces false alarms.
mental results are shown in Table Il, which are averaged overWe ran the intruder detection system for the same sets
3 testing suites (for a total of 12 trials). ApproximatelyOD5 of experiments in Section V-C except the abnormal state
observations were made from each sensor for each trial. Theamber 4 (“light off and noise”) is not caused by an intruder.
experimental results illustrate that our enhanced fuzzyl ARInstead, it is a normal state of the environment that never
system is able to detect more anomalies than the originatcurred in the initial learning process.
fuzzy ART system (i.e., approximately 86% vs. 41%). This We compared the performance of the basic fuzzy ART
is due to the fact that our enhanced system learns a tinsgstem, the enhanced fuzzy ART system, and the enhanced



PERFORMANCE EVALUATION OF THE INTRUDER DETECTION SYSTEM

TABLE Il

time-related changes. With an intelligent robot respogd
alarms, the system is able to further reduce the false alarm

As future work, we plan to enable the static sensors to
make use of the mobile robot’s feedback to improve the
detection process. In addition, we are investigating how to

use mobile robots to save energy in WSNSs.
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Original mean | 46% 70% 30% 54%

fuzzy ART stdev 36 42 42 36

Enhanced mean | 46% 17% 83% 54%

fuzzy ART stdev 36 20 25 40

Enhanced

fuzzy ART w. | mean | 26% 17% 83% 74%

mobile robot | stdev 19 25 24 19
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fuzzy ART system with intelligent mobile robot responderimplementing the fuzzy ART algorithm, the operator control
The results are shown in Table Ill, which are averageBrogram, and integrating the Deluge system, and Shaddi
over 3 testing suites for a total of 12 trials. We appliedt@san for implementing the motion tracking program.

the Student’s T-test to the miss rate and sensitivity result
for the original fuzzy ART and our enhanced fuzzy ART.
We also applied the Student's T-test to the false alarnﬁ]
rate and specificity for the enhanced fuzzy ART and the
enhanced fuzzy ART with intelligent mobile robot responder
The tests confirmed that the differences in the results arE’!
statistically significant, with a confidence level of 99.5%he
experimental results illustrate that our enhanced fuzzyr AR [4]
system and the enhanced system with mobile robot is able to
detect more anomalies than the original fuzzy ART system
(i.e., 83% vs. 30%). This is due to the fact that our enhancedf!
system learns a time series and is able to detect time-
related anomalies, whereas the original fuzzy ART cannot.
The enhanced fuzzy ART system with intelligent mobile [€]
robot responder approach is able to reduce the false alarms
compared to original fuzzy ART system and the enhanceg)
fuzzy ART system (i.e., 26% vs. 46%). Thus, our enhanced
fuzzy ART with mobile robot approach provides a significant
improvement both in miss rate and false alarm rate over thes]
original fuzzy ART approach.

We expect that if the mobile robot could provide feedback
to the sensor motes regarding false alarms and the motes
could correct their learning models based on this inforomati
then the detection performance could be further improvegIO
Additionally, the mobile robots could save their battery
power by avoiding repeated checks of similar false alarms.
Thus, in our future work, we plan to enhance our detectioal]
system by adding a feedback loop to the learning model,

enabling learning from false alarms. 12

VI. CONCLUSION

We have presented an intruder detection system that is able
to detect time-related anomalies by using a wireless sendd?!
network and mobile robots. To our knowledge, this is the
first intruder detection system that can detect time-rdlate
anomalies by using a sensor network to detect intruders aHd!
a mobile robot for traveling to the location where the ingud
is detected. We have implemented and tested our system [&¥i
physical motes and robots. The sensor network uses a fuzzy
ART neural network to detect intruders. We have enhancggs)
the original fuzzy ART system to detect time-related change
by using a Markov model. Our experimental results show that
our detection system has high accuracy and is able to detect
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