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Abstract— In this paper, we present an anomaly detection
system that is able to detect time-related anomalies by using a
wireless sensor network and a mobile robot. The sensor network
uses an unsupervised fuzzy Adaptive Resonance Theory (ART)
neural network to learn and detect intruders in a previously
unknown environment. Upon the detection of an intruder, a mo-
bile robot travels to the position where the intruder is detected
to investigate by using its camera. The wireless sensor network
uses a hierarchical communication/learning structure, where
the mobile robot is the root node of the tree. Our fuzzy ART
network is based on Kulakov and Davcev’s implementation [8].
However, we enhance their work by extending the fuzzy ART
neural network with a Markov model to learn a time series
and detect time-related anomalies. Finally, a mobile robot is
employed to verify whether the detected anomalies were caused
by intruders. The proposed architecture is tested on physical
hardware. Our results show that our enhanced detection system
with mobile robot verification has a higher accuracy and lower
false alarm rate than the original fuzzy ART system.

I. I NTRODUCTION

There are many advantages of using Wireless Sensor Net-
works (WSNs) to detect changes in the environment. Each
individual node in the network can monitor its local region
and communicate through a wireless channel with other
nodes to collaboratively produce a high-level representation
of the environment’s states. By using such a network, large
areas can be monitored with low cost.

In this research, we have investigated intruder detection
in a previously By “unknown environment”, we mean that
the sensor signatures and types of anomalies are previously
unknown to the WSN. We pre-deploy the static WSN into
the environment. The sensor nodes first learn an initial model
of the environment using a fuzzy ART neural network and
a Markov model; we refer to this as thenormal model of
the environment. After the training period, any changes com-
pared to the learned normal model are treated as anomalies
possibly caused by an intruder. Upon the detection of the
anomaly, an intrusion alert is generated, and an autonomous
mobile robot responds to the alert by traveling to the place
where the sensor nodes have detected the anomaly. A mobile
robot response makes the system more flexible upon the
detection of an intruder. The mobile robot is able to reach
places and perform tasks that static sensors cannot. Mobile
robots can also allow the design of a system where nodes
can find power sources, request the dispatch of other nodes
to perform tasks that require more sensing capability, and
seek out repair.

The robot uses its additional sensors (e.g., a camera) to
verify if there is an intruder in the area. We assume the
intruder moves around in the area. Therefore, the mobile
robot uses a camera to track moving objects. If there is a
moving object, the robot declares that an intruder is detected.

An important challenge in WSN research is to determine a
systematic procedure to train these networks so that they are
sensitive only to real anomalies. To address this challenge,
we have incorporated a machine learning technique into
the WSN so that the networks can automatically learn to
recognize normal and abnormal modes of operation. Our
approach makes use of a fuzzy Adaptive Resonance Theory
(ART) neural network, which was first implemented in [8].
The fuzzy ART neural network system is an unsupervised
Artificial Neural Network (ANN) that can perform dimen-
sionality reduction and pattern classification. The network
can continually learn from new events without forgetting
what has already been learned. No off-line training phase is
required. The algorithm is simple enough to be implemented
in the limited platform of the Crossbow motes [1], yet still
achieve good performance.

However, a shortcoming of the original fuzzy ART ap-
proach is that it does not detect time-related changes. We
have, therefore, enhanced the basic fuzzy ART system to
enable it to learn a time series through the use of a Markov
model. The approach builds a state transition model online
during the initial period of deployment, and considers the
built model as the normal model. After the training phase is
over, any events that occur in the environment that do not
fit the existing transition model are considered as abnormal
events. Being able to model the expected sensor signatures
for typical operations greatly simplifies the human designer’s
job; by enabling the system to autonomously characterize
the expected sensor data streams, the network can learn the
features of its environment that are important to monitor.
This, in turn, allows the sensor network to perform au-
tonomous anomaly detection to recognize when unexpected
sensor signals are detected.

In a prior paper [11], we presented aspects of this proposed
approach. This current paper, however, goes beyond this prior
publication by presenting new results and analysis showing
the benefit of our proposed approach over other competing
techniques.

In this paper, we first review related work in Section II.
Then, we present our approach in Section III. In Section IV,



we present the hardware platform that we have used to test
our system. Our experimental results from the physical ex-
periments are presented in Section V. Finally, we summarize
our findings in Section VI.

II. RELATED WORK

Our research objective is to design a scalable, efficient
and robust anomaly detection system using WSN and mobile
robots that will be deployed in an unknown environment.
The desired characteristics of the learning algorithm are as
follows:

1) Able to detect anomalies in an unknown environment
with minimum human supervision. This characteristic makes
supervised, offline learning algorithms, such as Bayesian
networks [7], unsuitable for our application. Possible alterna-
tives include Self-Organizing Maps (SOM) [3] and Adaptive
Resonance Theory neural networks (ART) [8], as they are
commonly-used unsupervised learning techniques.

2) Able to easily scale to large numbers of motes. Since a
WSN typically has a large number of sensor motes, tuning
the parameters of learning algorithms can be a long and
tedious process. Therefore, the learning algorithm should
have as few parameters to adjust as possible. The ART model
allows the number of clusters to vary with problem size.
Furthermore, it allows the operator to control the degree of
similarity between members of the same cluster by means
of the user-defined vigilance parameter.

3) Able to support a hierarchical structure. Heinzelman,
et al., show in [6] that a hierarchical structure in a WSN
is able to decrease communication requirements by reducing
the size of the data transmitted; this in turn saves energy.
The fuzzy ART learning technique works well with this
hierarchical structure. Our sensor motes are able to run the
same ART learning algorithm for cluster members as well
as clusterheads, just with different inputs. Some machine
learning techniques (e.g., association-rules [4]) might not be
easily implemented as a single learning algorithm that works
for different types of input.

4) Computationally inexpensive. The sensor motes gener-
ally have limited computational resources and limited power.
Typically, machine learning techniques like Expectation-
Maximization (EM) and gradient-based algorithms are com-
putationally expensive.

5) Memory efficient. The learning algorithm has to be
small enough to be implemented and installed on sensor
motes with limited memory. Thus, learning algorithms that
use particle filters might not be a good choice, since they
require large amounts of memory during the learning process.

6) Able to detect time-related anomalies online. Much
attention has been focused on time series analysis in WSNs.
Many approaches detect time series anomalies at the commu-
nication level of the WSNs such as network traffic, package
routing, radio channel selection, and so forth (e.g. [16]).
Some works focus on predicting sensor values in order to
improve the performance of data collection and reduce the
communication effort, e.g. [15], [2]. While we have selected
the fuzzy ART model for this research, the original approach

could not detect time-related changes. Thus, in this paper,
we present an algorithm to enhance the model so that it can
detect time-related changes.

7) Modular. Our system is designed to be modular. Each
component can be removed if its capability is not required.
For example, if time series analysis is not of interest, then
we can turn off the Markov model; the system would then
simply detect anomalies in the sensor signatures.

8) Able to continuously monitor the environment. In our
approach, human intervention is not required to reset the
system after an anomaly has been detected. Our system can
reset itself.

9) Robust. We use the robots’ mobility to bring more
coverage, sensing and processing capabilities to the WSN.
There are some works that make use of mobile robots
together with a WSN in other applications. For example,
the authors in [9] explore parasitic mobility in WSNs. They
propose a solution to the problems of power usage, node size,
and node complexity in the form of parasitically actuated
nodes. LaMarca, et al., [10] used robots to increase the
feasibility of WSNs since sensor networks can acquire data
but lack actuation, while robots have actuation but limited
coverage in sensing. Schaffert [14] adapts sensor network
models for use with information maps and verifies the ability
of such maps to improve robot localization. Ren, et al., [13]
focus on a fire and intruder detection application by using
sensors only on a mobile robot.

10) Able to adopt feedback. A human operator or higher-
level clusterhead may have a more accurate, higher-level
view of the environment. We desire our system to be able to
adopt its learning according to the feedback from this higher
level. In the future, we plan to incorporate this feature in our
system.

In summary, there is no evidence that a specific cluster-
ing algorithm performs better in all tasks or applications.
However, some clustering techniques may be more suitable
for some specific types of data or applications. We have
chosen the fuzzy ART model [8] for our WSN implementa-
tion, because it satisfies most of our requirements for our
applications. In future work, we will consider alternative
approaches, such as SOMs, for the purposes of comparison.
In this current paper, we present an enhancement to the
original fuzzy ART model to detect time-related anomalies.
To our best knowledge, no previous work addresses online
intruder detection using a system that is able to detect time-
related changes by using both a WSN and mobile robots.

III. A PPROACH

In this section, we first introduce our network architecture.
Then, we describe the basic fuzzy ART network. Subsec-
tion III-C then discusses our approach to incorporating a
Markov model for time series analysis.

A. Architecture for the sensor networks

In our system, sensor motes are arranged hierarchically,
as shown in Figure 1. In our WSN, sensor motes are divided
into clusters. Each cluster has a clusterhead and multiple



Fig. 1. Proposed fuzzy ART architecture, extended to estimate missing
data and perform time series analysis.

cluster members. Each cluster covers a geometric region and
is responsible for detecting the environmental changes in that
region. Both cluster members and clusterheads run an iden-
tical detection system — a missing data estimator, a fuzzy
ART network, and a Markov model. Cluster members read
in raw sensor readings,si, (e.g., light and sound) from the
environment as input, and then classify data into categories
ci. After the classification process, cluster members send
their category labels to their clusterheads. The clusterheads
first pre-process the collected category labels by identifying
and estimating the missing values (through a process not
described here; see our companion paper [12] for details).
Then, the processed categorizations are used as input to their
fuzzy ART neural network and are fused together to reduce
the size of the data. The output of the fuzzy ART network
is a category labelci. After the classification process is
finished, the system further checks if there are time-related
changes. Clusterheads may have higher level clusterheads
which classify their output class labels. Finally, the root
mote obtains the final model of the environment. With this
architecture, our WSN can be easily scaled to large numbers
of sensors. At the same time, this hierarchical approach
reduces communication, which in turn, saves energy in the
WSN.

The fuzzy ART model alone cannot detect time-related
abnormal events. For example, if people turning on the lights
during the day and turning off the lights when they leave
work is considered as a normal event, then an intruder only
turning on the lights briefly in the evening should trigger
an alarm. We enhance the basic fuzzy ART network by
using a Markov model to detect these abnormal events.
The Markov model takes the output category/stateci from
the fuzzy ART network and checks if the transition to the
current state is probable based on the existing history. Note
that the categoryci is the same as the Markov state. If
the transition is not probable, an alarm is triggered. We
believe that with this architecture, we can detect abnormal
environmental changes as well as time-related changes. Our
design is flexible because it allows the operator to turn off

Fig. 2. A typical fuzzy ART architecture (see [8]).

the Markov model if time series data is not of interest.

B. The fuzzy ART network

Kulakov and Davcev proposed a unsupervised fuzzy ART
model for change detection in a WSN in [8]. Our basic fuzzy
ART network is implemented in the same way. Figure 2 gives
a representation of their fuzzy ART network. A typical fuzzy
ART network has three layers: an input layer, a comparison
layer and a category layer. The comparison layer takes an
input vector from the input layer and transfers it to its best
match in the category layer. If the best matching node is
close enough to the input that is indicated by the vigilance
parameter, the training process starts; otherwise, the next
best matching node is selected, transformed and compared.
If no existing nodes in the category layer meet the vigilance
threshold, then a new node is generated and adjusted to-
wards matching the input. The vigilance parameter influences
the whole system: a higher vigilance level produces more
categories, while a lower vigilance level produces fewer
categories. For details on the fuzzy ART model, please refer
to our companion paper [12].

C. Markov model extension

We enhance the existing fuzzy ART network by adding a
Markov model to detect time-related changes. By definition,
a Markov model is a discrete-time stochastic process with
the Markov property, which states that, for a given process,
knowledge of previous states is irrelevant in predicting the
probability of subsequent states. At each time increment, the
system may either stay in the same state, or transition to a
new state. A Markov model is formally defined as a sequence
of random variablesX1,X2, ..., which, given the current
state, the previous and next states are independent. Formally,
Pr(Xn+1 = x|Xn = xn, ...,X1 = x1) = Pr(Xn+1 =
x|Xn = xn).

In a WSN setting, the Markov model is built during the
training phase using the algorithm shown in Algorithm 1.
Sensor motes periodically sense the environment at a fixed
rate and feed the normalized sensor readings to the neural
network to build categories of the environment. For each
category/state (i), we keep an average time and the variance
of the time the system remains in that particular state.
Additionally, for each state we record the state transition
probabilities,pij , to the next set of states. By doing so, an



Algorithm 1 Building the Markov model
1: for Each time stepdo
2: if The current state is the same as the last time step

then
3: Record the time spent in this state.
4: else
5: Record the state transition.
6: end if
7: end for
8: for Each statei do
9: Find the meanµi and standard deviationσi of the

time the system remains in statei.
10: Find the transition probabilitypij for each possible

statej.
11: end for

alarm will trigger if the amount of time in a state is either too
short or too long. In a similar fashion, if a state transitionis
not probable, then this may also trigger an abnormal alarm.
Thus, we can capture an anomaly from state transitions and
from state occupancy time.

IV. H ARDWARE PLATFORMS

Our wireless sensor network consists of static sensors
(Crossbow motes) and mobile robots (Pioneer 3 robots).
A Crossbow [1] mote contains a processing unit, a sensor
module, and a communication module. The processing board
contains an 8-bit processor at8MHz, a 128KB program-
ming memory and a512KB additional data flash memory.
The wireless transmission range is around 10 meters inside
a building. In our future work, we will extend the commu-
nication range by using intermediate motes as data routers.
The sensor board has a buzzer, a light sensor, a microphone,
2 magnetometers and 2 accelerometers. For the experiments
reported in this paper, we used the light and sound sensing
components.

The mobile robot used in these experiments is a Pioneer
3 robot. Pioneer 3 is a mobile robot with a two-wheel
differential drive. The mobile robot uses the Linux operating
system and runs the Player-client/server device driver [5].
The robot uses a SICK LMS-200 range-finding laser for
localization. The mobile robot can communicate with the
sensor motes by having a mote attached to an MIB500
programming board through a serial connection. In our
intrusion detection application, the robot runs the same fuzzy
ART program as the motes. The robot takes the output from
its cluster member motes and fuses them together to get
the highest level representation of the environment. Thus,
the mobile robot is a root mobile clusterhead with higher
processing power and more sensing capabilities.

V. EXPERIMENTAL RESULTS

A. Intruder detection system

In order to detect abnormal events in a previously un-
known environment, the sensor network first learns what
is normal for the environment. Abnormal states of the

environment are not kept in the sensor nodes due to memory
limitations. Therefore, any events that do not match the
existing normal model will be treated as abnormal events
by the sensor motes. When an intruder is detected, a mobile
robot moves to the area to investigate. We assume the robot
knows the location of each cluster in advance. If the higher
level clusterhead detects an anomaly (i.e., a category change
after stabilization), the robot moves to the location of the
cluster that detected the change. The mobile robot is the
root clusterhead of the hierarchical fuzzy ART system.

In order to navigate in the environment, the mobile robot
first creates a laser map using Simultaneous Localization and
Mapping (SLAM). After an intruder has been detected by
the sensor network, the mobile robot uses a wavefront path
planning algorithm to plan a path from its current position
to the goal position. During motion, it localizes itself using
Monte Carlo localization.

Fig. 3. Snapshots of the intruder detection system in operation at ORNL.
Motes and the mobile robot are indicated by rectangles on the picture. The
sound device carried by the intruder is indicated by a circle(read left to
right, top to bottom).

We implemented and tested the intruder detection system
on real motes along with a mobile robot and experimented
with the system at both the University of Tennessee and
Oak Ridge National Laboratory (ORNL). Figure 3 shows
snapshots from the experiments at ORNL. We deployed
2 clusters of sensor motes in the environment. The first
cluster was deployed into a conference room of ORNL’s JICS
building. The second cluster was deployed in an auditorium
close by. The mobile robot was stationed in the hallway
listening for abnormal changes. It detected abnormal changes
by learning the combination of changes of the 2 clusterheads
(sensor motes) deployed in the 2 rooms. The mobile robot
ran the same learning algorithm as the sensor motes, namely,



the fuzzy ART system. In the beginning, it was quiet and
the lights were off in both rooms. The WSN learned that
“quiet” and “dark” were normal in this environment. Then,
an intruder entered the conference room and turned on the
lights. The WSN detected the abnormal event and notified
the robot. The robot planned a path using its wavefront path
planner and moved to the conference room to check on the
abnormal event — “light on”. The intruder then moved to
the auditorium. He turned on the lights and a buzzer to make
noise in the auditorium. The robot detected the abnormal
activities in the auditorium — “buzzer on” and “lights on”.
The robot then planned a path and moved to the auditorium
to check on the abnormal event. Once the robot arrived at
the auditorium, it used its camera to track the intruder.

In future work, we plan to remove the implementation
dependency on synthetic intruder noises (i.e., buzzer).

B. Performance metrics

To evaluate our system, we collected statistics on the miss
rate, false alarm rate, sensitivity and specificity. The miss
rate is calculated as FN

(TP+FN) , where False Negative (FN )
denotes the number of faults that the system failed to detect,
and True Positive (TP ) denotes the number of true faults that
are detected by the system. The false alarm rate is defined as

FP
(FP+TN) , where False Positive (FP ) denotes the number of
detected faults that were not true faults, and True Negative
(TN ) denotes number of “no faults” that were detected by
the system. The sensitivity is defined asTP

(TP+FN) . The false
alarm rate is defined as FP

(FP+TN) . Ideally, the values of
sensitivity and specificity are at 100%, and the false alarm
rate and miss rate are at 0%.

C. Temporal change detection experiment

In this experiment, we began by having the system learn
the normal model; then, the testing began. Both training
and testing were performed online. All sensors sampled the
environment at a rate of 1 sample per second. Six motes
were used during this experiment. One mote acted as a
clusterhead, and the rest as cluster members of that mote.
The cluster member motes were uniformly deployed around
the clusterhead and all cluster members were within the
communication range of the clusterhead. The vigilance levels
for cluster members were set to 0.90, while those for the
clusterheads were set to 0.97.

The training process took approximately 1.5 hours per
trial. During the training period, states were visited multiple
times. The averaged time was computed over the multi-
ple visits of the same state. We treated this as a normal
environment. Two sensors were used by cluster members
— light and microphone. Raw light readings between 0
and 2000 indicated dark and light, respectively. Microphone
readings came from a hardware detection system onboard.
The values were binary — 1 indicates no noise is detected,
and 0 indicates noise is detected. We used a buzzer as a
sound source, which operates at4Hz. The sound sensor can
detect the buzzer within a radius of 3 to 4 meters in our
testing environment. Figure 4 is an example of the typical
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Fig. 4. An example: normalized light and microphone readings collected
by a sensor mote. From time 0 to 510, light was on (0.5), microphone was
on (1); From time 510 to 1200, light was on (0.5), microphone wason (0);
From time 1200 to 1800, light was on (0.5), microphone was off (1); From
time 1800 to 2300, light was off (0.1), microphone was off (1), etc.
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Fig. 5. An example of the detected changes from a cluster of 6 motes’
fuzzy ART networks during the training phase from sensory data shown in
Figure 4.

sensor readings collected from the environment. The light
sensory readings are normalized between 0 and 1. Figure
5 shows the categories learned by the fuzzy ART neural
network from the data shown in Figure 4 during the training
period. After the classification process, a Markov model
was built by using Algorithm 1. Figure 6 shows a Markov
model built from the data shown in Figure 4 and Figure 5.
Table I shows the mean and standard deviation values of the
time the environment remained in each category/state before
transiting to a different category/state. This is one of thetrials
of our experiment. In this particular example, the numbers
on the Markov model is nicely rounded (e.g., 0.5 and 1).
However, in more realistic situations, the Markov model can
be much more complex; these experiments are designed to
illustrate our approach.

TABLE I

TIME DURATION IN EACH STATE

Category C1 C2 C3
Mean time (s) 571 555 538
Standard deviation (s) 62 75 43

Three different testing suites with four trials were run for
each testing suite. In test suite 1, the environment started
from “light and quiet” (category 1), and remained in that state



Fig. 6. An example of a learned Markov model for the training phase.
The model was the normal model of the environment. States “S” and “E”
denote the start and end states, respectively. They were manually added to
the system. State C1 denotes lights were on and buzzer was off.State C2
denotes lights were on and buzzer was on. State C3 denotes lights were off
and buzzer was off.

for 600 s. Then, it transited to “light and noisy” (category
2), and remained in that state for 600 s. Lastly, it transitedto
“dark and noisy” (category 4), and remained in that state for
600 s. Note that “dark and noisy” had never occurred before
during our training phase. This was an abnormal event. This
testing suite only contained a new abnormal state; however,
it did not include any temporal-related changes.

In test suite 2, the environment started from “light and
noisy” (category 2), and remained in that state for 600 s.
Then, it transited to “dark and noisy” (category 4), and
remained in that state for 300 s. Lastly, it transited to
“dark and quiet” (category 3), and remained in that state for
600 s. The environment started with abnormal transitions to
state 2, then the abnormal state 4 was detected. Lastly, an
abnormal transition occurred from abnormal state 4 to state
3. This testing suite contained both abnormal events of a new
abnormal state and abnormal time transitions.

In test suite 3, the environment started from “light and
quiet” (category 1), and remained in that state for 300 s.
Then, it transited to “dark and quiet” (category 3), and
remained in that state for 900 s. The environment abnormally
remained at state 1 too briefly and in state 3 for too long. This
testing suite only contained time-related abnormal changes.

TABLE II

PERFORMANCE EVALUATION BETWEEN THE BASIC FUZZYART AND

ENHANCED FUZZY ART

False Miss Sensitivity Specificity
Alarm Rate

Original mean 6% 59% 41% 94%
fuzzy ART stdev 12 4 38 12
Enhanced mean 6% 14% 86% 94%
fuzzy ART stdev 12 2 2 1

We used these testing suites to compare the performance of
the basic fuzzy ART system (Kulakov and Davcev’s imple-
mentation) and our enhanced fuzzy ART system. The experi-
mental results are shown in Table II, which are averaged over
3 testing suites (for a total of 12 trials). Approximately 1500
observations were made from each sensor for each trial. The
experimental results illustrate that our enhanced fuzzy ART
system is able to detect more anomalies than the original
fuzzy ART system (i.e., approximately 86% vs. 41%). This
is due to the fact that our enhanced system learns a time

series, and is able to detect time-related anomalies, whereas
the original fuzzy ART cannot. Both the fuzzy ART system
and the enhanced fuzzy ART system have a low false alarm
rate (approximately 6%). To determine the significance of
these results, we applied the Student’s T-test to the miss rate
and sensitivity results for the original fuzzy ART and our
enhanced fuzzy ART. This test confirms that the differences
in these results are statistically significant, with a confidence
level of 99.5%. Thus, our enhanced fuzzy ART approach
provides a significant improvement over the original fuzzy
ART approach.

In these experiments, the time duration in each state is
manually selected to illustrate the concept. In practical appli-
cations, the time duration could be very different, such as for
comparisons between daytime versus nighttime expectations.
However, in general, the proposed Markov model would
be implemented similarly. We also realize that in some
applications, the duration of time within a state is not of
interest, but, instead, the order of the states is what is most
important (e.g., if people always turn on the light before
making noise in the room, regardless of the time duration
in each state, then making noise in the dark room would
be abnormal). In that case, the system would not have to
maintain the time duration in each state. It can instead simply
keep track of the expected state transitions.

D. Intruder detection experiment

After a change is detected in the environment, it does not
necessarily mean that an intruder caused the anomaly. To
determine if the anomaly is caused by an intruder, a mobile
robot is sent to investigate using an additional sensor (i.e.,
a camera). In our enhanced intruder detection system, the
sensor motes run our proposed change detection system, and
a mobile robot serves as the mobile clusterhead. Once a
change is detected by the mobile robot, it travels to the area
and checks for an intruder using the camera mounted on
the top of the robot. The camera tracks the intruder using
a motion tracking program. The motion tracking program
only detects moving objects. In the general case, we would
want our mobile robot to carry its own light source or use a
thermal image to detect a human in any lighting conditions,
rather than just a moving object; this is the subject of future
work.

If the mobile robot detects the intruder, the alarm is
confirmed by the mobile robot. However, if the robot does
not detect any intruder (human) within 120 seconds, it
turns off the alarm and claims that there is no change in
the environment. In this way, the robot does not miss any
abnormal events occurring in the environment and at the
same time reduces false alarms.

We ran the intruder detection system for the same sets
of experiments in Section V-C except the abnormal state
number 4 (“light off and noise”) is not caused by an intruder.
Instead, it is a normal state of the environment that never
occurred in the initial learning process.

We compared the performance of the basic fuzzy ART
system, the enhanced fuzzy ART system, and the enhanced



TABLE III

PERFORMANCE EVALUATION OF THE INTRUDER DETECTION SYSTEM

False Miss Sensitivity Specificity
Alarm Rate

Original mean 46% 70% 30% 54%
fuzzy ART stdev 36 42 42 36
Enhanced mean 46% 17% 83% 54%
fuzzy ART stdev 36 20 25 40
Enhanced
fuzzy ART w. mean 26% 17% 83% 74%
mobile robot stdev 19 25 24 19

fuzzy ART system with intelligent mobile robot responder.
The results are shown in Table III, which are averaged
over 3 testing suites for a total of 12 trials. We applied
the Student’s T-test to the miss rate and sensitivity results
for the original fuzzy ART and our enhanced fuzzy ART.
We also applied the Student’s T-test to the false alarm
rate and specificity for the enhanced fuzzy ART and the
enhanced fuzzy ART with intelligent mobile robot responder.
The tests confirmed that the differences in the results are
statistically significant, with a confidence level of 99.5%.The
experimental results illustrate that our enhanced fuzzy ART
system and the enhanced system with mobile robot is able to
detect more anomalies than the original fuzzy ART system
(i.e., 83% vs. 30%). This is due to the fact that our enhanced
system learns a time series and is able to detect time-
related anomalies, whereas the original fuzzy ART cannot.
The enhanced fuzzy ART system with intelligent mobile
robot responder approach is able to reduce the false alarms
compared to original fuzzy ART system and the enhanced
fuzzy ART system (i.e., 26% vs. 46%). Thus, our enhanced
fuzzy ART with mobile robot approach provides a significant
improvement both in miss rate and false alarm rate over the
original fuzzy ART approach.

We expect that if the mobile robot could provide feedback
to the sensor motes regarding false alarms and the motes
could correct their learning models based on this information,
then the detection performance could be further improved.
Additionally, the mobile robots could save their battery
power by avoiding repeated checks of similar false alarms.
Thus, in our future work, we plan to enhance our detection
system by adding a feedback loop to the learning model,
enabling learning from false alarms.

VI. CONCLUSION

We have presented an intruder detection system that is able
to detect time-related anomalies by using a wireless sensor
network and mobile robots. To our knowledge, this is the
first intruder detection system that can detect time-related
anomalies by using a sensor network to detect intruders and
a mobile robot for traveling to the location where the intruder
is detected. We have implemented and tested our system on
physical motes and robots. The sensor network uses a fuzzy
ART neural network to detect intruders. We have enhanced
the original fuzzy ART system to detect time-related changes
by using a Markov model. Our experimental results show that
our detection system has high accuracy and is able to detect

time-related changes. With an intelligent robot responding to
alarms, the system is able to further reduce the false alarm
rate.

As future work, we plan to enable the static sensors to
make use of the mobile robot’s feedback to improve the
detection process. In addition, we are investigating how to
use mobile robots to save energy in WSNs.
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