
ARM
Assembler
Workbook

CS160 Computer Organization
Version 1.1

October 27th, 2002
Revised Fall 2005

ARM University Program

Version 1.0
January 14th, 1997

ARM Assembler Workbook

2

Introduction

Aim
This workbook provides the student with a basic, practical understanding of how to write
ARM assembly language modules.

Pre-requisites
The student (that is: YOU) should be familiar with the following material:

• The ARM Instruction Set
• The ARM Command Line Toolkit Workbook

Before you continue, recall that the reference /assembler/session1/armex.s
should be read as ~/cs160/arm/assembler/session1/armex.s.

Building the example code

For the command line:
To build a file using the ARM assembler, issue the command:
 armasm -g code.s

The object code can then be linked to produce an executable:
 armlink code.o -o code

This can then be loaded into armsd and executed:
 armsd code

Note: The assembler’s -g option adds debugging information so that the assembly labels
are visible within the debugger.

Some exercises require you to compile a piece of C code. To do so, use the ARM C
compiler:
 armcc -g -c arm.c

In such exercises, you will also need to link your code with the ARM C library which can
be found in the lib subdirectory of the toolkit installation. Thus, type:
 armlink arm.o code.o $ARMLIB/armlib.32l -o arm

where the l (lowercase L) suffix indicates a little-endian version of the library. There is
also a big-endian version called armlib.32b.

ARM Assembler Workbook

3

Session 1: Structure of an ARM Assembler Module
The following is a simple example that illustrates some of the core constituents of an ARM
assembler module. See /assembler/session1/armex.s.

 AREA ARMex, CODE, READONLY ; name this block of code
 ENTRY ; mark first instruction
 ; to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop SWI 0x11 ; Terminate
 END ; Mark end of file

Description of the module

1) The AREA directive
Areas are chunks of data or code that are manipulated by the linker. A complete
application will consist of one or more areas. This example consists of a single area which
contains code and is marked as being read-only. A single CODE area is the minimum
required to produce an application.

2) The ENTRY directive
The first instruction to be executed within an application is marked by the ENTRY
directive. An application can contain only a single entry point and so in a multi-source-
module application, only a single module will contain an ENTRY directive. Note that when
an application contains C code, the entry point will often be contained within the C library.

3) General layout
The general form of lines in an assembler module is:

 <label> <whitespace> <instruction> <whitespace> ; <comment>

The important thing to note is that the three sections are separated by at least one
whitespace character (such as a space or a tab). Actual instructions never start in the first
column, because they must be preceded by whitespace, even if there is no label. All three
sections are optional and the assembler will also accept blank lines to improve the clarity
of the code.

4) Code description
The application code starts executing at routine of the label start by loading the decimal
values 10 and 3 into registers r0 and r1. These registers are then added together and the
result placed back into r0. The application then terminates using the software interrupt
0x11, at label stop, which causes control to return back to the debugger.

ARM Assembler Workbook

4

5) The END directive
This directive causes the assembler to stop processing this source file. Every assembly
language source module must therefore finish with this directive.

Exercise 1.1 - Running the example
Build the example file armex.s and load it into the debugger as described in the
introduction.

Set a breakpoint on start and begin execution of the program. Once the breakpoint is
reached, single-step through the code and display the registers after each step. You should
be able to see the register contents being updated. Continue until the program terminates
normally.

Exercise 1.2 - Extending the example
Modify the example so that it produces the sum (+), the difference (–) and the product (×)
of the two values originally stored in r0 and r1. Build the modified program and verify
that it executes correctly using the debugger.

Session 2: Loading Values into Registers
The following is a simple ARM code example that attempts to load a set of values into
registers. See /assembler/session2/value.s.

 AREA Value, CODE, READONLY ; name this block of code
 ENTRY ; mark first instruction
 ; to execute
start
 MOV r0, #0x1 ; = 1
 MOV r1, #0xFFFFFFFF ; = -1 (signed)
 MOV r2, #0xFF ; = 255
 MOV r3, #0x101 ; = 257
 MOV r4, #0x400 ; = 1024

stop SWI 0x11 ; Terminate
 END ; Mark end of file

Exercise 2.1 - What is wrong with the example?
Pass the example file value.s through armasm.

What error messages do you get and why?

[Hint: Look at the sections on using immediate values and loading 32-bit constants in the
ARM Programming Techniques document.]

Exercise 2.2 - Producing a correct version of the example
Copy the example file as value2.s and edit this so as to produce a version that will be
successfully assembled by armasm.

[Hint: Make use of LDR Rn,=const where appropriate.]

ARM Assembler Workbook

5

After assembling and linking, load the executable into the debugger. Set a breakpoint on
start and begin execution of the program. Once the breakpoint is reached, display the
registers. Single-step through the code until you reach stop, taking careful note of what
instruction is being used for each load command. Look at the updated register values to see
that the example has executed correctly and then execute the rest of the program to
completion.

Session 3: Loading Addresses into Registers
The following is a simple ARM code example that copies one string over the top of
another string. See /assembler/session3/copy.s.

 AREA Copy, CODE, READONLY
 ENTRY ; mark the first instruction to call
start LDR r1, =srcstr ; pointer to first string
 LDR r0, =dststr ; pointer to second string
strcopy ; copy first string over second
 LDRB r2, [r1],#1 ; load byte and update address
 STRB r2, [r0],#1 ; store byte and update address;
 CMP r2, #0 ; check for zero terminator
 BNE strcopy ; keep going if not
stop
 SWI 0x11 ; terminate

 AREA Strings, DATA, READWRITE
srcstr DCB "First string - source",0
dststr DCB "Second string - destination",0

 END

Notable features in the module

1) LDR Rx, =label
This is a pseudo-instruction that can be used to generate the address of a label. It is used
here to load the addresses of srcstr and dststr into registers. This is done by the
assembler allocating space in a nearby literal pool (portion of memory set aside for
constants) for the address of the required label. The instruction placed in the code is
actually an LDR instruction that will load the address in from the literal pool.

2) DCB
“Define Constant Byte” is an assembler directive to allocate one or more bytes of memory.
It is a therefore a useful way to create a string in an assembly language module.

Exercise 3.1 - Running the example
Build the example file copy.s using armasm and load it into the debugger as described
in the introduction.

Set a breakpoint on start and begin execution of the program. Once the breakpoint is
reached, single-step through the code up to strcpy. Watch the addresses of the two
strings being loaded into r0 and r1, noting the instructions used to generate those
addresses. Now set two additional breakpoints, one on strcpy and the other on stop.

ARM Assembler Workbook

6

Now restart execution of the program. Each time the program reaches a breakpoint, look at
the updated string contents. Repeat this process until execution completes.

Session 4: Assembler Subroutines

Exercise 4.1 - Converting copy.s to use a subroutine
This file copy.s in /assembler/session4 is the same program as that used in
Exercise 3.1. Convert this version so that the code between strcpy and stop becomes a
subroutine that is called by the main program using a BL <label> instruction. The
subroutine should return using a MOV pc,lr instruction.

Build the converted copy.s using armasm and load it into the debugger. Follow the
execution as per Exercise 3.1 to ensure that the converted copy.s has the same result as
the original.

Session 5: Calling the Assembler from C
ARM defines an interface to functions called the ARM Procedure Call Standard (APCS).
This interface specifies that the first four arguments to a function are passed in registers r0
to r3 (any further parameters being passed on the stack) and a single-word result is
returned in r0. Using this standard it is possible to mix calls between C and assembler
routines.

The following is a simple C program that copies one string over the top of another string,
using a call to a subroutine. See /assembler/session5/strtest.c.

#include <stdio.h>
extern void strcopy(char *d, char *s);

int main() {
 char *srcstr = "First string - source ";
 char *dststr = "Second string - destination ";

 printf("Before copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 strcopy(dststr,srcstr);
 printf("After copying:\n");
 printf(" %s\n %s\n",srcstr,dststr);
 return (0);
}

Exercise 5.1 - Extracting strcopy from copy.s
Copy the file copy.s produced in Exercise 4.1 into /assembler/session5. Now
modify the file so that it only contains the subroutine strcopy. Note that you will also
need to remove the ENTRY statement as the entry point will now be in C. Also add
EXPORT strcopy so that the subroutine is visible outside of the module.

ARM Assembler Workbook

7

Build the application using armcc for strtest.c and armasm for copy.s, linking
with the ARM C library as detailed in the introduction. Load the executable into the
debugger and ensure that it functions correctly.

Session 6: Jump Tables
The following is a simple ARM code example that implements a jump table. This file can
be found in /assembler/session6/jump.s.

 AREA Jump, CODE, READONLY ; name this block of code

num EQU 2 ; Number of entries in jump table

 ENTRY ; mark the first instruction to call

start MOV r0, #0 ; set up the three parameters
 MOV r1, #3
 MOV r2, #2
 BL arithfunc ; call the function
 SWI 0x11 ; terminate

arithfunc ; label the function
 CMP r0, #num ; Treat function code as unsigned integer
 BHS DoAdd ; If code is >=2 then do operation 0.

 ADR r3, JumpTable ; Load address of jump table
 LDR pc, [r3,r0,LSL#2] ; Jump to the appropriate routine

JumpTable
 DCD DoAdd
 DCD DoSub

DoAdd ADD r0, r1, r2 ; Operation 0, >1
 MOV pc, lr ; Return

DoSub SUB r0, r1, r2 ; Operation 1
 MOV pc,lr ; Return

 END ; mark the end of this file

Description of the module
The function arithfunc takes three arguments. The first controls the operation carried
out on the second and third arguments. The result of the operation is passed back to the
caller routine in r0. The operations the function are
 0 : Result = argument2 + argument3
 1 : Result = argument2 - argument3
Values outside this range have the same effect as value 0.

EQU

The EQU assembler directive is used to give a value to a label name. In this example it
assigns num the value 2. Thus when num is used elsewhere in the code, the value 2 will be
substituted (similar to using #define to set up a constant in C).

ARM Assembler Workbook

8

ADR

This is a pseudo-instruction that can be used to generate the address of a label. It is thus
similar to LDR Rx,=label encountered earlier. However rather than using a literal pool
to store the address of the label, it instead constructs the address directly by using its offset
from the current program counter. It should be used with care though as it has only a
limited range (255 words for a word-aligned address and 255 bytes for a byte-aligned
address). It is advisable to use it only for generating addresses to labels within the same
area, as the user cannot easily control how far areas will be apart at link time.

An error will be generated if the required address cannot be generated using a single
instruction. In such circumstances either an ADRL (which generates the address in two
instructions) or LDR Rx,=label mechanism can be used.

DCD

This declares one or more words. In this case each DCD stores a single word - the address
of a routine to handle a particular clause of the jump table. This can then be used to
implement the jump using LDR pc, [r3,r0,LSL#2].

LDR pc, [r3,r0,LSL#2]

This instruction causes the address of the required clause of the jump table be loaded into
the program counter. This is done by multiplying the clause number by four (to give a
word offset), adding this to the address of the jump table, and then loading the contents of
the combined address into the program counter (from the appropriate DCD).

Exercise 6.1 - Running the example
Build the example file jump.s using armasm and load it into the debugger as described
in the introduction.

Set a breakpoint on arithfunc and begin execution of the program. Once the breakpoint
is reached, verify the contents of the registers to ensure that the parameters have been set
up correctly. Now single-step through the code, ensuring that the correct jump is taken
based on the value in stored in r0. When you return from arithfunc to the main
program, verify that the correct result has been returned. Now tell the debugger to execute
the rest of the program to completion.

Reload the program and execute up to the breakpoint on arithfunc. Check the registers
to ensure that the parameters have been set up, but alter r0 so that another action will be
carried out by the jump table. Single-step through the program again and verify that the
correct path is taken for the altered parameter.

Exercise 6.2 - Logical operations
Create a new module called gate.s based on jump.s, which implements the following
operations depending on the value passed through r0:
 0 : Result = argument2 AND argument3
 1 : Result = argument2 OR argument3
 2 : Result = argument2 EOR argument3
 3 : Result = argument2 AND NOT argument3 (bit clear)
 4 : Result = NOT (argument2 AND argument3)

ARM Assembler Workbook

9

 5 : Result = NOT (argument2 OR argument3)
 6 : Result = NOT (argument2 EOR argument3)
Values outside this range should have the same effect as value 0.

Add a loop to the main program that cycles through the each of these values. Build
gate.s using armasm and verify that it functions correctly.

Session 7: Block Copy
The following is a simple ARM code example that copies a set of words from a source
location to a destination. See /assembler/session7/word.s.

 AREA CopyBlock, CODE, READONLY ; name this block of code

num EQU 20 ; Set number of words to be copied

 ENTRY ; mark the first instruction to call

start LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy

wordcopy
 LDR r3, [r0], #4 ; a word from the source
 STR r3, [r1], #4 ; store a word to the destination
 SUBS r2, r2, #1 ; decrement the counter
 BNE wordcopy ; ... copy more

stop SWI 0x11 ; and exit

 AREA Block, DATA, READWRITE

src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

 END

Exercise 7.1 - Running the example
Build the example file word.s using armasm and load it into the debugger as described
in the introduction.

Set breakpoints on wordcopy and stop. Begin execution of the program. Once the
breakpoint on wordcopy is reached, check the registers to ensure that they have been set
correctly and examine (using the examine command) the src and dst blocks of
memory. Restart the program – each time a breakpoint is reached, re-examine the src and
dst blocks. Continue until the program runs to completion.

Exercise 7.2 - Using multiple loads and stores
Create a new module called block.s based on word.s, which implements the block
copy using LDM and STM for as much of the copying as possible. A sensible number of
words to transfer at one time is eight. The number of eight-word multiples in the block to
be copied can be found (if r2 contains the number of words to be copied) using:

ARM Assembler Workbook

10

 MOVS r3, r2, LSR #3 ; number of eight word multiples

The number of single-word LDRs and STRs remaining after copying the eight-word
multiples can be found using:

 ANDS r2, r2, #7 ; number of words left to copy

Build block.s using armasm and verify that it functions correctly by setting
breakpoints on the loop containing the code to perform eight-word multiple copies as well
as the code to perform single word copies. Examine the src and dst blocks of memory
once a breakpoint is reached.

Continue testing your code by modifying the number of words to be copied (specified in
num) to be 7 and then 3.

Exercise 7.3 - Extending block.s
Copy the file block.s produced in Exercise 7.2 as block2.s. Extend this so that once
the copying of eight-word multiples has completed, if there are four or more remaining
words, four-word groups will be copied using LDM and STM. In other words your code will
have three sections: copy eight-word groups, copy four-word groups, copy single words.

Test your code with num set to 20, 7, and 3.

