
Ward 1CS 160

ARM* Instruction Set
&

Assembly Language

*Advanced RISC Machines

Web Sites:

http://www.heyrick.co.uk/assembler/

http://dec.bournemouth.ac.uk/staff/pknaggs/sysarch/ARMBook.pdf

http://www.arm.com/community/academy/university.html

Books (in addition to textbook):

Computers as Components by Wayne Wolf, Morgan Kaufman, 2000.

The ARM RISC Chip – A Programmer’s Guide by A. van Someren & C.
Atack, Addison-Wesley, 1994.

Jens Gregor, UTK CS Professor.

Ward 2CS 160

ARM Instruction Set
Overview & Registers

Ward 3CS 160

Main Features [1]

• All instructions are 32 bits long
• Registers are 32 bits long
• Memory addresses are 32 bits long
• Memory is byte addressable
• Most instructions execute in a single cycle
• Every instruction can be conditionally executed
• Can be configured at power-up as either little or

big endian

Ward 4CS 160

Main Features [2]

• A load/store architecture
– Data processing instructions act only on

registers
• Three operand format
• Combined ALU and shifter for high speed bit

manipulation
– Specific memory access instructions with

powerful auto-indexing addressing modes
• 32 bit and 8 bit data types

– And also 16 bit data types on ARM Architecture v4
• Flexible multiple register load and store

instructions

Ward 5CS 160

Processor Modes

• The ARM has six execution modes
– User (unprivileged mode under which most tasks run)
– FIQ (entered when a high priority (fast) interrupt is

raised)
– IRQ (entered when a low priority (normal) interrupt is

raised)
– Supervisor (entered on reset and when a Software

Interrupt instruction is executed)
– Abort (used to handle memory access violations)
– Undef (used to handle undefined instructions)

• ARM Architecture Version 4 adds a seventh mode
– System (privileged mode using the same registers as

user mode)

Ward 6CS 160

Registers
• ARM has 37 registers in total, all of which are 32-bits long

– 1 dedicated program counter (PC)
– 1 dedicated current program status register (cpsr)
– 5 dedicated saved program status registers (spsr)
– 30 general purpose registers

• However, these are arranged into several banks, with the
accessible bank being governed by the processor mode. Each
mode can access
– a particular set of r0-r12 registers
– a particular r13 (the stack pointer) and r14 (link register)
– r15 (the program counter)
– cpsr (the current program status register or status register)

and privileged modes can also access
– a particular spsr (saved program status register)

Ward 7CS 160

Register Organization

Ward 8CS 160

User Mode Registers

Ward 9CS 160

Program Status Registers (CPSR, SPSRs)

Condition Code Flags
N = Negative result from ALU flag
Z = Zero result from ALU flag
C = ALU operation Carried out
V = ALU operation oVerflowed

Mode Bits
M[4:0] define the processor mode

Interrupt Disable bits

I = 1, disables the IRQ
F = 1, disables the FIQ

T Bit (Architecture v4T only)
T = 0, processor in ARM state
T = 1, Processor in thumb state

ModeN Z C V

2831 8 4 0

I F T

Copies of the ALU status flags

Ward 10CS 160

Accessing Registers

• All instructions can access r0-r14 directly
• Most instructions also allow access of the

PC
• Specific instructions allow access to cpsr

Ward 11CS 160

Program Counter (r15)

• When the processor is executing in ARM state
– All instructions are 32 bits in length
– All instructions must be word aligned
– Addresses refers to byte (i.e., byte addressable)
– Therefore, the PC value is stored in bits [31:2] with

bits [1:0] equal to zero (as instructions cannot be
halfword or byte aligned)

• r14 used as the subroutine link register (lr) and
stores the return address when Branch with Link
(BL) operations are performed through registers
(place on stack in linked branch)

• Thus, to return from a linked branch using
registers, contents of r14 must be placed in r15
(from stack).

Ward 12CS 160

Instruction Pipeline

• ARM uses a 3-stage pipeline in order to increase the speed
of the flow of instructions to the processor

• The PC points to the instruction being fetched

ARM

FETCH

DECODE

EXECUTE

Instruction fetched from memory

Decoding of registers used in instruction

Register(s) read from Register Bank
Shift and ALU operation
Write register(s) back to Register Bank

PC

PC - 4

PC - 8

Ward 13CS 160

Conditional Execution

• Most instruction sets only allow branches to be executed
conditionally.

• However by reusing the condition evaluation hardware,
ARM effectively increases number of instructions.
– All instructions contain a condition field which determines whether

the CPU will execute them.
– Non-executed instructions soak up 1 cycle.

• Still have to complete cycle so as to allow fetching and
decoding of following instructions.

• This removes the need for many branches, which stall the
pipeline (3 cycles to refill).
– Allows very dense in-line code, without branches.
– The Time penalty of not executing several conditional instructions

is frequently less than overhead of the branch
or subroutine call that would otherwise be needed.

Ward 14CS 160

The Condition Field

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = HS / CS - C set (unsigned
higher or same)

0011 = LO / CC - C clear (unsigned
lower)

0100 = MI - N set (negative)

0101 = PL - N clear (positive or
zero)

0110 = VS - V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear
(unsigned higher)

1001 = LS - C clear or Z (set unsigned
lower or same)

1010 = GE - N set and V set, or N clear
and V clear (>or =)

1011 = LT - N set and V clear, or N clear
and V set (>)

1100 = GT - Z clear, and either N set and
V set, or N clear and V set (>)

1101 = LE - Z set, or N set and V clear,or
N clear and V set (<, or =)

1110 = AL - always

1111 = NV - reserved.

2831 24 20 16 12 8 4 0

Cond

Ward 15CS 160

Using and updating the Condition Field
• To execute an instruction conditionally, simply postfix it with

the appropriate condition:
– For example an add instruction takes the form:

• ADD r0,r1,r2 ; r0 = r1 + r2 (ADDAL)
– To execute this only if the zero flag is set:

• ADDEQ r0,r1,r2 ; If zero flag set then…
; ... r0 = r1 + r2

• By default, data processing operations do not affect the
condition flags (apart from the comparisons where this is the
only effect). To cause the condition flags to be updated, the
S bit of the instruction needs to be set by postfixing the
instruction (and any condition code) with an “S”.
– For example to add two numbers and set the condition

flags:
• ADDS r0,r1,r2 ; r0 = r1 + r2

; ... and set flags
Ward 16CS 160

Instruction Formats and

Addressing Modes

Ward 17CS 160

Basic Instruction Format

• Most instructions use the format

Conditional Execution Code – bits 28-31

Opcode – bits 20-27

2 or 3 Registers – bits 16-19, 12-15 & 0-3

Other information – bits 4-11 & maybe 0-3

Ward 18CS 160

ARM Instruction Encoding Formats [1]

From Appendix B

Ward 19CS 160

ARM Instruction Encoding Formats [2]

From Appendix B

Ward 20CS 160

Addressing Modes [1]

Examples: Instruction Operation
LDR R0,[R1,#12] R0 [[R1]+12]

STR R0,[R1,#12]! Loc([R1]+12]) R0
R1 [R1]+12

&

Between ±4095

Ward 21CS 160

Addressing Modes [2]

LDR R0,[R1,R2,LSL#2] R0 [[R1]+4*[R2]]

STR R0,[R1],-R2,LSR#4 Loc([R1]) R0
R1 [R1] – [R2]/16 (truncated)&

Ward 22CS 160

Examples:
LDR R1,[R5] R1 [[R5]]
STR R3,[R0,-R6] Loc([R0]-[R6]) R3

• Do not have to specify an offset or shift

More on Addressing Modes

LDR R0,Address offset [Address] - [PC] - 8
R0 Loc([PC] + offset)

• No Direct Addressing mode but assembler turns
it into Relative addressing mode:

Ward 23CS 160

More on Load & Store

• Can Load & Store bytes rather than words
Use LDRB rather than LDR and STRB rather than STR .

– Loads & stores from 8 bits in low-order byte position

• Can Load to and Store from multiple registers
– Can only load and store multiple words (32 bits)
– Pre and post indexing with or without writeback modes are

all available
– Mnemonic is LDM and STM and may have suffixes such as

IA and FD (see next slide)
Example: STMFD R5!,{R0,R1,R2,R3}

Store R3 in [R5-4], R2 in [R5-8], R1 in
[R5-12], R0 in [R5-16]

Ward 24CS 160

Multiple Word Transfers

Ward 25CS 160

ARM Assembly Instructions

Ward 26CS 160

ARM Assembly Language

• Fairly standard assembly language:

LDR r0,[r8] ; a comment
label ADD r4,r0,r1

Ward 27CS 160

ALU Instructions [1]

• Basic format:
ADD r0,r1,r2
– r0 [r1] + [r2]
– Computes r1+r2, stores in r0.

• Immediate operand:
ADD r0,r1,#2
– r0 [r1] + 2
– Computes r1+2, stores in r0.

Ward 28CS 160

ALU Instructions [2]

Ward 29CS 160

ALU Instructions [3]

Ward 30CS 160

Comparison/Test Instructions

• These instructions set only the NZCV bits of CPSR.

Ward 31CS 160

Branching Instructions

Examples:

BEQ LOC1

BNE LOC2

BL ROUTINE

Ward 32CS 160

ARM Move Instructions

MOV r0,r1 ; sets r0 to r1

Ward 33CS 160

Load/Store Instructions

• LDR, LDRB : load (word, byte)
• STR, STRB : store (word, byte)
• Addressing modes:

– register indirect : LDR r0,[r1]
– with second register : LDR r0,[r1,-r2]
– with constant : LDR r0,[r1,#4]

Ward 34CS 160

ADR pseudo-op

ADR r1,FOO
• Loads the 32-bit address FOO into r1
• Not an actual machine instruction
• Assembler replaces with real machine

instructions to produce desired results

Ward 35CS 160

ARM subroutine linkage
• Branch and link instruction:

BL ROUTINE
– Copies current PC to r14.

• Initial instructions in ROUTINE
– Save registers used in subroutine and r14 on stack

(allows nested calls); for example:
ROUTINE STMFD R13!,{r0,r1,r2,r14}

• Final instructions in ROUTINE:
– Restore saved registers from stack and return r14

address from stack to r15; for example:
LBMFD R13!,{r0,r1,r2,r15}

• Nested and recursive calls handled properly
with this process

