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Basic I/O Concepts & 
Terminology
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Examples of I/O Devices

• Human readable (Communicating with user)
– Screen, printer, keyboard, etc.

• Machine readable (Communicating with 
equipment)
– Magnetic disk, tape systems, etc.
– Cameras, audio speakers, etc.
– Sensors, actuators, etc.

• Communication  (Communicating with remote 
devices)
– Modems, Network Interface Card (NIC), etc.
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Illustration of Early Devices

• Independent of processor
– Separate circuitry & power

• Connected by digitals signals
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Input/Output Problems

• Wide variety of peripherals
– Delivering different amounts of data
– At different speeds
– In different formats

• All slower than CPU and RAM
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Typical I/O Data Rates  (~Year 2000)
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Input/Output Problems

• Wide variety of peripherals
– Delivering different amounts of data
– At different speeds
– In different formats

• All slower than CPU and RAM

Need I/O controllers with interfaces to 
effectively handle.
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Illustration of Modern Interface Controller

• Needed at each end of a physical connection
• Allows arbitrary voltage and signal on 

connection
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I/O Controller Functions

• Control & Timing
• CPU Communication
• Device Communication
• Data Buffering
• Error Detection
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I/O Controller Illustration
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Two Types of Interfaces

• Parallel interface
– Composed of many wires
– Each wire carries one bit at any time
– Width is number of wires

• Serial interface
– Single signal wire (also need a ground)
– Bits sent one-at-a-time
– Slower than parallel interface
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Clock(s)

• Ends of connection typically use 
separate clocks, and controllers manage 
differences

• Transmission is self-clocking if signal 
encoded in such a way that receiving 
controller can determine boundary of 
bits
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Duplex Technology

• Full-duplex
– Simultaneous, bi-directional transfer
– Example: disk drive supports simultaneous 

read and write
• Half-duplex

– Transfer in only one direction at a time
– Interfaces must negotiate access before 

transmitting
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Latency and Throughput

• The latency of an interface is a measure 
of the time required to perform a single 
bit transfer

• The throughput of an interface is a 
measure of the data that can be 
transferred per unit time
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Data Multiplexing

• Fundamental idea
• Arises from hardware limits on parallelism 

(pins or wires)
• Allows sharing of hardware
• Multiplexor

– Accepts input from many sources
– Sends small amount from one source before 

accepting another

• Demultiplexor
– Receives transmission of pieces
– Sends each piece to appropriate destination
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Illustration of Mutiplexing

• 64 bits of data multiplexed over 16-bit path
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Multiplexing and I/O Interfaces

• Multiplexing is used to construct an I/O 
interface that can transfer arbitrary
amounts of data over a fixed number of 
parallel wires

• Multiplexing hardware divides the data 
into blocks, and transfers each block 
independently
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Multiple Devices per External Interface

• Cannot afford separate interface per 
device
– Too many wires
– Not enough pins on processor chip

• Example  
– I/O devices, memory, etc. sharing a 

common bus.
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Processor View of I/O

• Processor does not access external 
devices directly

• Instead, processor uses a programming 
interface to pass requests to an 
interface controller

• Programming interface translates the 
requests into the appropriate external 
signals
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Buses & Bus Architectures
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Definition of a Bus

• Digital interconnection mechanism
• Allows two or more functional units to 

transfer data
• Typical use: connect processor to

– Memory
– I/O Devices

• Design can be
– Proprietary (owned by one company)
– Standardized (available to many 

companies)
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Illustration of a Bus
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Sharing

• Most buses are shared by multiple 
devices

• Need an access protocol
– Determines which device can use the bus 

at any time
– All attached devices must follow the 

protocol

• Note:  can have multiple buses in one 
computer
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Characteristics of a Bus

• Parallel data transfer
– Can transfer multiple bits at the same time
– Typical width is 32 or 64 bits

• Passive
– Bus does not contain many electronic components
– Attached devices handle communication

• Conceptual view: think of a bus as parallel wires
• Bus may have arbiter that handles sharing
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Physical Bus Connections

• Several possibilities
– Wires on a circuit board or chip
– Sockets on boards
– Combinations
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Illustration of Bus on a Motherboard
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Illustration of Circuit Board and 
Corresponding Sockets
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Bus Interface

• Nontrivial
• Controller circuit required
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Conceptual Design of a Bus

• Need three functions
– Control
– Address specification
– Data being transferred

• Conceptually three separate groups of 
wires (lines)
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Illustration of Lines in a Bus
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Bus Access

• Bus only supports two operations
– fetch (also called read)
– store (also called write)

• Access paradigm known as fetch-store 
paradigm

• Obvious for memory access
• Surprise:  all operations, including I/O, 

must be performed using fetch-store 
paradigm
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Fetch-Store Over a Bus

• Fetch
– Place an address on the address lines
– Use control line to signal fetch operation
– Wait for control line to indicate operation complete

• Store
– Place an address on the address lines
– Place data items on the data lines
– Use control lines to signal store operation
– Wait for control line to indicate operation complete
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Width of a Bus

• Larger width
– Higher performance
– Higher cost
– Requires more pins

• Smaller width
– Lower cost
– Lower performance
– Requires fewer pins

• Compromise:  multiplex transfers to reduce width
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Multiplexing

• Reuse lines for multiple purposes
• Extreme case

– Serial bus has one line

• Typical case
– Bus has K lines
– Address and data are K bits wide
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Illustration of Multiplexing on a Bus

• Transfer takes longer with multiplexing
• Controller hardware is more sophisticated
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Effect of Bus Multiplexing on Design

• Addresses and data are multiplexed 
over a bus

• To optimize performance of the 
hardware, an architect chooses a single 
size for both data items and addresses
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Illustration of Memory Bus

• Address over bus used to activate desired 
memory unit
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Control Hardware and Addresses

• Although all interfaces receive all 
requests that pass across the bus, an 
interface only responds to requests that 
contain an address for which the 
interface has been configured
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Steps an Interface Takes

Let R be the range of addresses assigned to the memory

Repeat forever  {
Monitor the bus until a request appears;
if (the request specifies an address in R) {

respond to the request
}  else  {

ignore the request 
}

}
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Potential Errors on a Bus

• Address conflict
– Two devices attempt to respond to a given 

address

• Unassigned address
– No device responds to a given address

Bus hardware reports a bus error.
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Address Configuration and Sockets

• Two options for address configuration
– Configure each interface with the set of 

addresses
– Arrange sockets so that wiring limits each 

socket to a range of addresses
• Latter avoids misconfiguration: owner can 

plug in additional boards without 
configuring the hardware

• Note:  some systems allow MMU to detect 
and configure boards automatically
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Using Fetch-Store with Devices

• Example
– Imaginary status light controller
– Connected to 32-bit bus
– Contains N separate lights
– Desired functions are

• Turn display on
• Turn display off
• Set display brightness
• Turn status light i on or off
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Example: Meaning Assigned to Addresses

Low order sixteen bits of data value 
each controls a status light, where zero 
sets the corresponding light off and one 
sets it on

store108-111

Change brightness.  Low-order four bits 
of the data value specify brightness 
value from zero (dim) through sixteen 
(bright)

store104-107

Returns zero if display is currently off, 
and nonzero if display is currently onfetch100-103

Nonzero data value turns the display 
on, and a zero data value turns the 
display off

store100-103

MeaningOperationAddress
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Example:  Interpretation of Operations

• Semantics are
if (address == 100 && op == store && data != 0)

turn_on_display;
and

if (address == 100 && op == store && data == 0)
turn_off_display;

• Circuits actually test the address, operation, and data 
values in parallel and take appropriate action
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Unified Memory & Device Addressing

• Single bus can attach
– Multiple memories
– Multiple devices

• Bus address space includes all units
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Example: Bus with Memories & Devices

• Two memories and two I/O devices
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Example:  Bus Addressing

Address Assignments

Bus Address Space

Address space may be 
contiguous or may have holes
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Address Map
• Specifies types of hardware 

that can be used for 
different addresses

• Part of bus specification
• Example on the right 

– 16-bit bus
– Bus can support up to 32,768 

bytes
• In a typical computer, the 

part of the address space 
available to devices is 
sparsely populated – only a 
small percentage of address 
are used.
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Bridge Connecting Two Buses

• An interconnection device
• Maps range of addresses
• Forwards operations and replies from one bus 

to the other
• Especially useful for adding an auxiliary bus
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Bridge Address Mapping

Ward 52CS 160

Switching Fabric
• Alternative to bus

– Bus
• only one pair of attached units can communicate at any given 

time
• Process: (1) obtain exclusive use of bus, (2) transfer data, and

(3) release bus

• Switching fabric connects multiple devices
– Allows multiple attached units to communicate 

simultaneously

• Sender supplies data and destination device
• Fabric delivers data to specified destination
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Crossbar Switch

• Solid dot indicates a connection
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Processor-I/O Interaction 
Techniques
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Input-Output Techniques

Three principle I/O techniques
– Programmed I/O

I/O occurs under the direct and continuous control 
of the CPU

– Interrupt-driven I/O
CPU issues an I/O command, then continues to 
execute, until interrupted by the I/O hardware 
signaling completion of the I/O operation

– Direct Memory Access (DMA)
Specialized I/O processor takes over control of an 
I/O operation from the CPU
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Programmed I/O:  Detail

• CPU requests I/O operation
• I/O device performs operation
• I/O device sets status bits
• CPU checks status bits periodically (polling)
• I/O device does not inform CPU directly
• I/O device does not interrupt CPU
• CPU may wait or come back later

CPU may waste considerable time
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Programmed I/O:  Example

• Print a new line of text on a printer

Operation: Cause printer to advance the paper
Poll: Determine when paper has advanced
Operation: Move print head to beginning of line
Poll: Determine when print head reaches beginning

of line
Operation: Specify character to print
Poll: Determine when character locked in place
Operation: Cause hammer to strike the character
Poll: Determine when hammer is finished striking
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Interrupt-Driven I/O

• Overcomes CPU waiting
• No repeated CPU checking of device
• I/O device interrupts when ready

Major improvement in CPU performance.
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Interrupt-Driven I/O: Example
• Print a new line of text on a printer

CPU issues command to device for printer to advance the 
paper

CPU continues with other execution until receives interrupt 
from the I/O device

CPU issues command to move print head to beginning of 
line

CPU continues with other execution until receives interrupt 
from the I/O device

CPU issues command to specify character to print
CPU continues with other execution until receives interrupt

from the I/O device
. . . 
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Interrupt-Driven I/O: Interrupts

• Issues I/O command
• Does other work
• Checks for interrupt at end of each instruction 

cycle  (recall basic Instruction Cycle – next 
slide)
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Basic Instruction Cycle States
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Handling an Interrupt

• Save the current execution state
– Values in registers
– Program counter
– Condition code

• Determine which device issued the interrupt
• Call the procedure that handles the device

– Runs code for the specific interrupt (e.g., fetch & store)
• Clear the interrupt signal from the bus
• Restore the current execution state
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Direct Memory Access

• Interrupt driven and programmed I/O 
require active CPU intervention
– Transfer rate is limited

• CPU saves process state information
– CPU is tied up

DMA is the solution.
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DMA Operation

• CPU tells DMA controller:
– Read/Write
– Device address
– Starting address of memory block for data
– Amount of data to be transferred

• CPU carries on with other work
• DMA controller has necessary digital logic to 

deal with transfer
• DMA controller sends interrupt when finished
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DMA Transfer

• DMA controller requests bus
– Bus must allow multiple units to access the bus 

without interference
• When control of bus given, DMA controller 

begins transfer of data
• CPU can request bus for its operations and is 

given higher priority
• Slows down CPU but not as much as CPU 

doing transfer
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Effect of Cache

• What effect does a system with caching 
memory have on DMA?
– Cache reduces the number of memory 

accesses, thus bus is available more often 
for DMA use
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DMA Configurations  [1]

• Single Bus, Detached DMA controller
• Each transfer uses bus twice

– I/O to DMA then DMA to memory
• Twice the potential interference with the CPU
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DMA Configurations  [2]

• Single Bus, Integrated DMA controller
• Controller may support >1 device
• Each transfer uses bus once

– DMA to memory
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DMA Configurations  [3]

• Separate I/O Bus
• Bus supports all DMA enabled devices
• Each transfer uses bus once

– DMA to memory
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I/O Processors

• I/O devices getting more sophisticated
– e.g. 3D graphics cards

• I/O Module enhanced to become a processor
(with memory)

• CPU instructs I/O controller to do transfer
• I/O controller does entire transfer
• Improves speed

– Takes load off CPU
– Dedicated processor is faster
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Evolution of I/O

• CPU directly controlled peripheral device
• I/O module (controller) added using 

programmed I/O
• Interrupts employed for notification
• I/O module given direct access to memory 

(called DMA)
• I/O module enhanced to become a processor  

(called I/O channel or processor)
• I/O module adds local memory
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Standard I/O Interfaces
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Computer System & Different Interfaces

No Standard
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Bus Standards
• Industry Standard 

Architecture (ISA)
– A de facto standard 

due to IBM PC

– Basically the PC/AT bus 
running at 8.33 MHz 
with 16-bit transfer

• Other three widely used bus standards:
– PCI (Peripheral Component Interconnect)

– SCSI (Small Computer System Interface)

– USB (Universal Serial Bus)
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PCI  [1]
• Peripheral Component 

Interconnect (PCI)
– a standard promoted by Intel
– supports functions found on a 

processor bus but in standardized 
format

– appear to processor to be connected 
to processor bus

– supports high-speed disks and 
graphic and video devices (64-bit 
transfers, 66 MHz → 528 MB/sec)

– processor independent
• The PCI bridge acts as a data 

buffer to keep the PCI 
independent of the processor 
speed.

memory

Host

PCI bridge

Ethernet
PrinterDisk interface

PCI bus

Main
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PCI  [2]

– plug-and-play 
– extremely popular, used by the Pentium 

and the Sun UltraSPARC Iii
– uses a centralized bus arbiter, mostly is 

built into one of the bridge chips.
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SCSI  [1]

• Small Computer System Interface (SCSI) is a 
standard for interfaces to I/O devices defined by 
American National Standards Institute (ANSI) 
under the designation X3.131.
– 8 – 16 data lines

– 5 MB/sec to 160 MB/sec

– maximum capacity: 8 – 16 devices

• The SCSI bus is connected to the processor bus 
through a SCSI controller that uses DMA for data 
transfer.
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SCSI  [2]

• There are two types of controllers connected to 

a SCSI bus. 

– An initiator (such as the SCSI controller) has 

the ability to select a particular target and to 

send commands specifying the operations.  

– A target (such as the disk controller) carries 

out the commands it receives from the 

initiator.
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SCSI  [3]

• There are 4 phases involved in a SCSI bus 
operations : arbitration, selection, reselection, 
and data transfer. 

• Example: The processor sends a command to the 

SCSI controller to read 2 non-contiguous disk 

sectors from a disk drive.

– 1) The initiator (SCSI controller) contends for bus 

control (arbitration).
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SCSI  [4]

– 2) When the initiator wins the arbitration (distributed 

arbitration), it selects the target (selection) and hands 

over control of the bus to the target (logical connection 

established).

– 3) The target requests an input from initiator; the 
initiator sends a command specifying the read operation.

– 4) The target suspends the connection, releases the bus; 
then performs the disk seek operation (may be several 
ms long delay).
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SCSI  [5]

– 5) The target sends a seek command to the disk drive 

to read the first sector; then requests control of the bus; 

wins the arbitration; then reselects the initiator to 

restore the connection (reselection).

– 6) The target transfers the first sector to the initiator 

(data transfer), then suspends the connection again.

– 7) The target sends a seek command to the disk drive 

to read the second sector, then transfers it to the 

initiator as before. The logical connection is then 

terminated.
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SCSI  [6]

• The data transfers are always controlled 
by the target controller.

• While a particular connection is 
suspended, other devices can use the 
bus.  This ability to overlap data 
transfer requests leads to its high 
performance.
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USB  [1]

• The Universal Serial Bus (USB)
– developed by collaborative efforts of computer and 

communications companies, including Compaq, 
Hewlett-Packard, Intel, Lucent, Microsoft, Nortel 
Networks, and Philips

– provide a simple, low-cost, and easy to use 
interconnection system

– accommodate a wide range of data transfer 
characteristics for I/O devices, including Internet 
connections (low-speed: 1.5Mbits/s, full-speed: 
12Mbits/s, high-speed: 480Mbits/s (USB 2.0))
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USB  [2]

– plug-and-play
• when a new I/O device is plugged in, the root hub 

detects this event and interrupts the OS

• The OS queries the device to find out what it is and 
how much USB bandwidth it needs

• If the OS decides that there is enough bandwidth, it 
assigns the new device a unique address and 
downloads this address and other information to 
configuration registers inside the device
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USB  [3]

• A USB system consists of a
root hub that usually plugs 
into the main bus; the root 
hub can be connected to I/O 
devices or to expansion hubs –
a tree topology.

• A message sent by the host 
computer is broadcast to all 
I/O devices.

• A message from an I/O device 
is sent only upstream towards 
the root of the tree.

• USB has its own 7-bit address 
space
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Architecture of a 
Typical Pentium II System

Bridge is used to 
translate the signals and 
protocols of one bus into 

those of the other.


