
Ward 1CS 160

Input/Output

Ward 2CS 160

Computer Systems Structure

Computer

Main
Memory

Input
Output

Systems
Interconnection

Peripherals

Communication
lines

Central
Processing
Unit

Computer

Ward 3CS 160

Basic I/O Concepts &
Terminology

Ward 4CS 160

Examples of I/O Devices

• Human readable (Communicating with user)
– Screen, printer, keyboard, etc.

• Machine readable (Communicating with
equipment)
– Magnetic disk, tape systems, etc.
– Cameras, audio speakers, etc.
– Sensors, actuators, etc.

• Communication (Communicating with remote
devices)
– Modems, Network Interface Card (NIC), etc.

Ward 5CS 160

Illustration of Early Devices

• Independent of processor
– Separate circuitry & power

• Connected by digitals signals

Ward 6CS 160

Input/Output Problems

• Wide variety of peripherals
– Delivering different amounts of data
– At different speeds
– In different formats

• All slower than CPU and RAM

Ward 7CS 160

Typical I/O Data Rates (~Year 2000)

Ward 8CS 160

Input/Output Problems

• Wide variety of peripherals
– Delivering different amounts of data
– At different speeds
– In different formats

• All slower than CPU and RAM

Need I/O controllers with interfaces to
effectively handle.

Ward 9CS 160

Illustration of Modern Interface Controller

• Needed at each end of a physical connection
• Allows arbitrary voltage and signal on

connection

Ward 10CS 160

I/O Controller Functions

• Control & Timing
• CPU Communication
• Device Communication
• Data Buffering
• Error Detection

Ward 11CS 160

I/O Controller Illustration

Ward 12CS 160

Two Types of Interfaces

• Parallel interface
– Composed of many wires
– Each wire carries one bit at any time
– Width is number of wires

• Serial interface
– Single signal wire (also need a ground)
– Bits sent one-at-a-time
– Slower than parallel interface

Ward 13CS 160

Clock(s)

• Ends of connection typically use
separate clocks, and controllers manage
differences

• Transmission is self-clocking if signal
encoded in such a way that receiving
controller can determine boundary of
bits

Ward 14CS 160

Duplex Technology

• Full-duplex
– Simultaneous, bi-directional transfer
– Example: disk drive supports simultaneous

read and write
• Half-duplex

– Transfer in only one direction at a time
– Interfaces must negotiate access before

transmitting

Ward 15CS 160

Latency and Throughput

• The latency of an interface is a measure
of the time required to perform a single
bit transfer

• The throughput of an interface is a
measure of the data that can be
transferred per unit time

Ward 16CS 160

Data Multiplexing

• Fundamental idea
• Arises from hardware limits on parallelism

(pins or wires)
• Allows sharing of hardware
• Multiplexor

– Accepts input from many sources
– Sends small amount from one source before

accepting another

• Demultiplexor
– Receives transmission of pieces
– Sends each piece to appropriate destination

Ward 17CS 160

Illustration of Mutiplexing

• 64 bits of data multiplexed over 16-bit path

Ward 18CS 160

Multiplexing and I/O Interfaces

• Multiplexing is used to construct an I/O
interface that can transfer arbitrary
amounts of data over a fixed number of
parallel wires

• Multiplexing hardware divides the data
into blocks, and transfers each block
independently

Ward 19CS 160

Multiple Devices per External Interface

• Cannot afford separate interface per
device
– Too many wires
– Not enough pins on processor chip

• Example
– I/O devices, memory, etc. sharing a

common bus.

Ward 20CS 160

Processor View of I/O

• Processor does not access external
devices directly

• Instead, processor uses a programming
interface to pass requests to an
interface controller

• Programming interface translates the
requests into the appropriate external
signals

Ward 21CS 160

Buses & Bus Architectures

Ward 22CS 160

Definition of a Bus

• Digital interconnection mechanism
• Allows two or more functional units to

transfer data
• Typical use: connect processor to

– Memory
– I/O Devices

• Design can be
– Proprietary (owned by one company)
– Standardized (available to many

companies)

Ward 23CS 160

Illustration of a Bus

Ward 24CS 160

Sharing

• Most buses are shared by multiple
devices

• Need an access protocol
– Determines which device can use the bus

at any time
– All attached devices must follow the

protocol

• Note: can have multiple buses in one
computer

Ward 25CS 160

Characteristics of a Bus

• Parallel data transfer
– Can transfer multiple bits at the same time
– Typical width is 32 or 64 bits

• Passive
– Bus does not contain many electronic components
– Attached devices handle communication

• Conceptual view: think of a bus as parallel wires
• Bus may have arbiter that handles sharing

Ward 26CS 160

Physical Bus Connections

• Several possibilities
– Wires on a circuit board or chip
– Sockets on boards
– Combinations

Ward 27CS 160

Illustration of Bus on a Motherboard

Ward 28CS 160

Illustration of Circuit Board and
Corresponding Sockets

Ward 29CS 160

Bus Interface

• Nontrivial
• Controller circuit required

Ward 30CS 160

Conceptual Design of a Bus

• Need three functions
– Control
– Address specification
– Data being transferred

• Conceptually three separate groups of
wires (lines)

Ward 31CS 160

Illustration of Lines in a Bus

Ward 32CS 160

Bus Access

• Bus only supports two operations
– fetch (also called read)
– store (also called write)

• Access paradigm known as fetch-store
paradigm

• Obvious for memory access
• Surprise: all operations, including I/O,

must be performed using fetch-store
paradigm

Ward 33CS 160

Fetch-Store Over a Bus

• Fetch
– Place an address on the address lines
– Use control line to signal fetch operation
– Wait for control line to indicate operation complete

• Store
– Place an address on the address lines
– Place data items on the data lines
– Use control lines to signal store operation
– Wait for control line to indicate operation complete

Ward 34CS 160

Width of a Bus

• Larger width
– Higher performance
– Higher cost
– Requires more pins

• Smaller width
– Lower cost
– Lower performance
– Requires fewer pins

• Compromise: multiplex transfers to reduce width

Ward 35CS 160

Multiplexing

• Reuse lines for multiple purposes
• Extreme case

– Serial bus has one line

• Typical case
– Bus has K lines
– Address and data are K bits wide

Ward 36CS 160

Illustration of Multiplexing on a Bus

• Transfer takes longer with multiplexing
• Controller hardware is more sophisticated

Ward 37CS 160

Effect of Bus Multiplexing on Design

• Addresses and data are multiplexed
over a bus

• To optimize performance of the
hardware, an architect chooses a single
size for both data items and addresses

Ward 38CS 160

Illustration of Memory Bus

• Address over bus used to activate desired
memory unit

Ward 39CS 160

Control Hardware and Addresses

• Although all interfaces receive all
requests that pass across the bus, an
interface only responds to requests that
contain an address for which the
interface has been configured

Ward 40CS 160

Steps an Interface Takes

Let R be the range of addresses assigned to the memory

Repeat forever {
Monitor the bus until a request appears;
if (the request specifies an address in R) {

respond to the request
} else {

ignore the request
}

}

Ward 41CS 160

Potential Errors on a Bus

• Address conflict
– Two devices attempt to respond to a given

address

• Unassigned address
– No device responds to a given address

Bus hardware reports a bus error.

Ward 42CS 160

Address Configuration and Sockets

• Two options for address configuration
– Configure each interface with the set of

addresses
– Arrange sockets so that wiring limits each

socket to a range of addresses
• Latter avoids misconfiguration: owner can

plug in additional boards without
configuring the hardware

• Note: some systems allow MMU to detect
and configure boards automatically

Ward 43CS 160

Using Fetch-Store with Devices

• Example
– Imaginary status light controller
– Connected to 32-bit bus
– Contains N separate lights
– Desired functions are

• Turn display on
• Turn display off
• Set display brightness
• Turn status light i on or off

Ward 44CS 160

Example: Meaning Assigned to Addresses

Low order sixteen bits of data value
each controls a status light, where zero
sets the corresponding light off and one
sets it on

store108-111

Change brightness. Low-order four bits
of the data value specify brightness
value from zero (dim) through sixteen
(bright)

store104-107

Returns zero if display is currently off,
and nonzero if display is currently onfetch100-103

Nonzero data value turns the display
on, and a zero data value turns the
display off

store100-103

MeaningOperationAddress

Ward 45CS 160

Example: Interpretation of Operations

• Semantics are
if (address == 100 && op == store && data != 0)

turn_on_display;
and

if (address == 100 && op == store && data == 0)
turn_off_display;

• Circuits actually test the address, operation, and data
values in parallel and take appropriate action

Ward 46CS 160

Unified Memory & Device Addressing

• Single bus can attach
– Multiple memories
– Multiple devices

• Bus address space includes all units

Ward 47CS 160

Example: Bus with Memories & Devices

• Two memories and two I/O devices

Ward 48CS 160

Example: Bus Addressing

Address Assignments

Bus Address Space

Address space may be
contiguous or may have holes

Ward 49CS 160

Address Map
• Specifies types of hardware

that can be used for
different addresses

• Part of bus specification
• Example on the right

– 16-bit bus
– Bus can support up to 32,768

bytes
• In a typical computer, the

part of the address space
available to devices is
sparsely populated – only a
small percentage of address
are used.

Ward 50CS 160

Bridge Connecting Two Buses

• An interconnection device
• Maps range of addresses
• Forwards operations and replies from one bus

to the other
• Especially useful for adding an auxiliary bus

Ward 51CS 160

Bridge Address Mapping

Ward 52CS 160

Switching Fabric
• Alternative to bus

– Bus
• only one pair of attached units can communicate at any given

time
• Process: (1) obtain exclusive use of bus, (2) transfer data, and

(3) release bus

• Switching fabric connects multiple devices
– Allows multiple attached units to communicate

simultaneously

• Sender supplies data and destination device
• Fabric delivers data to specified destination

Ward 53CS 160

Crossbar Switch

• Solid dot indicates a connection

Ward 54CS 160

Processor-I/O Interaction
Techniques

Ward 55CS 160

Input-Output Techniques

Three principle I/O techniques
– Programmed I/O

I/O occurs under the direct and continuous control
of the CPU

– Interrupt-driven I/O
CPU issues an I/O command, then continues to
execute, until interrupted by the I/O hardware
signaling completion of the I/O operation

– Direct Memory Access (DMA)
Specialized I/O processor takes over control of an
I/O operation from the CPU

Ward 56CS 160

Programmed I/O: Detail

• CPU requests I/O operation
• I/O device performs operation
• I/O device sets status bits
• CPU checks status bits periodically (polling)
• I/O device does not inform CPU directly
• I/O device does not interrupt CPU
• CPU may wait or come back later

CPU may waste considerable time

Ward 57CS 160

Programmed I/O: Example

• Print a new line of text on a printer

Operation: Cause printer to advance the paper
Poll: Determine when paper has advanced
Operation: Move print head to beginning of line
Poll: Determine when print head reaches beginning

of line
Operation: Specify character to print
Poll: Determine when character locked in place
Operation: Cause hammer to strike the character
Poll: Determine when hammer is finished striking

Ward 58CS 160

Interrupt-Driven I/O

• Overcomes CPU waiting
• No repeated CPU checking of device
• I/O device interrupts when ready

Major improvement in CPU performance.

Ward 59CS 160

Interrupt-Driven I/O: Example
• Print a new line of text on a printer

CPU issues command to device for printer to advance the
paper

CPU continues with other execution until receives interrupt
from the I/O device

CPU issues command to move print head to beginning of
line

CPU continues with other execution until receives interrupt
from the I/O device

CPU issues command to specify character to print
CPU continues with other execution until receives interrupt

from the I/O device
. . .

Ward 60CS 160

Interrupt-Driven I/O: Interrupts

• Issues I/O command
• Does other work
• Checks for interrupt at end of each instruction

cycle (recall basic Instruction Cycle – next
slide)

Ward 61CS 160

Basic Instruction Cycle States

Ward 62CS 160

Handling an Interrupt

• Save the current execution state
– Values in registers
– Program counter
– Condition code

• Determine which device issued the interrupt
• Call the procedure that handles the device

– Runs code for the specific interrupt (e.g., fetch & store)
• Clear the interrupt signal from the bus
• Restore the current execution state

Ward 63CS 160

Direct Memory Access

• Interrupt driven and programmed I/O
require active CPU intervention
– Transfer rate is limited

• CPU saves process state information
– CPU is tied up

DMA is the solution.

Ward 64CS 160

DMA Operation

• CPU tells DMA controller:
– Read/Write
– Device address
– Starting address of memory block for data
– Amount of data to be transferred

• CPU carries on with other work
• DMA controller has necessary digital logic to

deal with transfer
• DMA controller sends interrupt when finished

Ward 65CS 160

DMA Transfer

• DMA controller requests bus
– Bus must allow multiple units to access the bus

without interference
• When control of bus given, DMA controller

begins transfer of data
• CPU can request bus for its operations and is

given higher priority
• Slows down CPU but not as much as CPU

doing transfer

Ward 66CS 160

Effect of Cache

• What effect does a system with caching
memory have on DMA?
– Cache reduces the number of memory

accesses, thus bus is available more often
for DMA use

Ward 67CS 160

DMA Configurations [1]

• Single Bus, Detached DMA controller
• Each transfer uses bus twice

– I/O to DMA then DMA to memory
• Twice the potential interference with the CPU

Ward 68CS 160

DMA Configurations [2]

• Single Bus, Integrated DMA controller
• Controller may support >1 device
• Each transfer uses bus once

– DMA to memory

Ward 69CS 160

DMA Configurations [3]

• Separate I/O Bus
• Bus supports all DMA enabled devices
• Each transfer uses bus once

– DMA to memory

Ward 70CS 160

I/O Processors

• I/O devices getting more sophisticated
– e.g. 3D graphics cards

• I/O Module enhanced to become a processor
(with memory)

• CPU instructs I/O controller to do transfer
• I/O controller does entire transfer
• Improves speed

– Takes load off CPU
– Dedicated processor is faster

Ward 71CS 160

Evolution of I/O

• CPU directly controlled peripheral device
• I/O module (controller) added using

programmed I/O
• Interrupts employed for notification
• I/O module given direct access to memory

(called DMA)
• I/O module enhanced to become a processor

(called I/O channel or processor)
• I/O module adds local memory

Ward 72CS 160

Standard I/O Interfaces

Ward 73CS 160

Computer System & Different Interfaces

No Standard

Ward 74CS 160

Bus Standards
• Industry Standard

Architecture (ISA)
– A de facto standard

due to IBM PC

– Basically the PC/AT bus
running at 8.33 MHz
with 16-bit transfer

• Other three widely used bus standards:
– PCI (Peripheral Component Interconnect)

– SCSI (Small Computer System Interface)

– USB (Universal Serial Bus)

Ward 75CS 160

PCI [1]
• Peripheral Component

Interconnect (PCI)
– a standard promoted by Intel
– supports functions found on a

processor bus but in standardized
format

– appear to processor to be connected
to processor bus

– supports high-speed disks and
graphic and video devices (64-bit
transfers, 66 MHz → 528 MB/sec)

– processor independent
• The PCI bridge acts as a data

buffer to keep the PCI
independent of the processor
speed.

memory

Host

PCI bridge

Ethernet
PrinterDisk interface

PCI bus

Main

Ward 76CS 160

PCI [2]

– plug-and-play
– extremely popular, used by the Pentium

and the Sun UltraSPARC Iii
– uses a centralized bus arbiter, mostly is

built into one of the bridge chips.

Ward 77CS 160

SCSI [1]

• Small Computer System Interface (SCSI) is a
standard for interfaces to I/O devices defined by
American National Standards Institute (ANSI)
under the designation X3.131.
– 8 – 16 data lines

– 5 MB/sec to 160 MB/sec

– maximum capacity: 8 – 16 devices

• The SCSI bus is connected to the processor bus
through a SCSI controller that uses DMA for data
transfer.

Ward 78CS 160

SCSI [2]

• There are two types of controllers connected to

a SCSI bus.

– An initiator (such as the SCSI controller) has

the ability to select a particular target and to

send commands specifying the operations.

– A target (such as the disk controller) carries

out the commands it receives from the

initiator.

Ward 79CS 160

SCSI [3]

• There are 4 phases involved in a SCSI bus
operations : arbitration, selection, reselection,
and data transfer.

• Example: The processor sends a command to the

SCSI controller to read 2 non-contiguous disk

sectors from a disk drive.

– 1) The initiator (SCSI controller) contends for bus

control (arbitration).

Ward 80CS 160

SCSI [4]

– 2) When the initiator wins the arbitration (distributed

arbitration), it selects the target (selection) and hands

over control of the bus to the target (logical connection

established).

– 3) The target requests an input from initiator; the
initiator sends a command specifying the read operation.

– 4) The target suspends the connection, releases the bus;
then performs the disk seek operation (may be several
ms long delay).

Ward 81CS 160

SCSI [5]

– 5) The target sends a seek command to the disk drive

to read the first sector; then requests control of the bus;

wins the arbitration; then reselects the initiator to

restore the connection (reselection).

– 6) The target transfers the first sector to the initiator

(data transfer), then suspends the connection again.

– 7) The target sends a seek command to the disk drive

to read the second sector, then transfers it to the

initiator as before. The logical connection is then

terminated.

Ward 82CS 160

SCSI [6]

• The data transfers are always controlled
by the target controller.

• While a particular connection is
suspended, other devices can use the
bus. This ability to overlap data
transfer requests leads to its high
performance.

Ward 83CS 160

USB [1]

• The Universal Serial Bus (USB)
– developed by collaborative efforts of computer and

communications companies, including Compaq,
Hewlett-Packard, Intel, Lucent, Microsoft, Nortel
Networks, and Philips

– provide a simple, low-cost, and easy to use
interconnection system

– accommodate a wide range of data transfer
characteristics for I/O devices, including Internet
connections (low-speed: 1.5Mbits/s, full-speed:
12Mbits/s, high-speed: 480Mbits/s (USB 2.0))

Ward 84CS 160

USB [2]

– plug-and-play
• when a new I/O device is plugged in, the root hub

detects this event and interrupts the OS

• The OS queries the device to find out what it is and
how much USB bandwidth it needs

• If the OS decides that there is enough bandwidth, it
assigns the new device a unique address and
downloads this address and other information to
configuration registers inside the device

Ward 85CS 160

Host computer

Root
hub

Hub

I/O
device

Hub I/O
device

I/O
device

Hub

I/O
device

I/O
device

I/O
device

USB [3]

• A USB system consists of a
root hub that usually plugs
into the main bus; the root
hub can be connected to I/O
devices or to expansion hubs –
a tree topology.

• A message sent by the host
computer is broadcast to all
I/O devices.

• A message from an I/O device
is sent only upstream towards
the root of the tree.

• USB has its own 7-bit address
space

Ward 86CS 160

Architecture of a
Typical Pentium II System

Bridge is used to
translate the signals and
protocols of one bus into

those of the other.

