<section-header></section-header>	Classification of Parallel Architectures
CS 160 🕼 Ward 1	CS 160 🕼 Ward 2
Major Parallel Architectures	A Major Design Issue
 SIMD computers (diminishing/coprocessors) Shared memory multiprocessors Message-passing multicomputers Full taxonomy given later. 	 How are the CPUs and memory connected? Multiprocessors (shared memory system): all CPUs share common memory so processes on different CPUs communicate by accessing same memory location. One, single virtual address space. Multicomputers (distributed memory system): each CPU has its own, private memory. CPUs must pass messages to each other to communicate. Separate virtual address spaces per CPU.

Shared vs Distributed Memory

Flynn's Taxonomy of Parallel Computers

Distributed Shared Memory

- Multicomputers harder to program than multiprocessors because they have to code the sending and receiving of messages.
- Multicomputers *much* cheaper, easier to build than multiprocessors.
- One compromise is DSM (Distributed Shared Memory): multicomputer hardware with operating system that can simulate multiprocessor (shared) memory

CS 160 ೮

UMA Multiprocessor System

CS 160 😏

Speedup

• Speedup: how much faster program runs on parallel machine compared to non-parallel machine.

- Amdahl's law: can't get linear speedup because of sequential parts of code
- Also can't get linear speedup because added communication time comes with additional processors

CS 160 ೮

Ward 17

Amdahl's Law Applied to Parallel Computing [1]

Performance Issues

- Let N be the number of processors
- S the amount of time spent (by a serial processor) on serial parts of the program
- P is the amount of time spent (by a serial processor) on parts of the program that can be done in parallel
- Then Amdahl's law says that speedup is given by

Amdahl's Law Applied to Parallel Computing [2]

Speedup = (S + P) / (S + P/N)

or = 1 / (s + p/N)

where s is fraction of time spent in serial computation and p is fraction of time spent in parallel computation (i.e., s + p = 1).

CS 160 57

Example

Suppose we have a code with s = .25 (thus, p = .75), and we apply 20 processors to the problem. What is the expected speedup?

$$Speedup = \frac{1}{.25 + \frac{.75}{20}} = 3.5$$

CS 160 灯

Amdahl's Law Revisited "Scaled Speedup"

- Suppose problem involves data of size n and computation of size n².
- If we place 2 processors on the problem, then we can double the size of the problem to 2n, which would then involve 4n² computational work.
- If serial part does not grow proportionally to parallel part, then $s_2 << s_1$ and $p_1 << p_2$

Amdahl's Law Revisited (by Gustafson-Barsis)

- Maybe the picture isn't as grim as first imagined
- Amdahl assumes as N increases, that problem size remains fixed
 - In practice, this is not usually the case
- More processors usually implies larger, more complex problems to be solved and bigger problems usually increase the parallel part and with less effect upon the serial part

CS 160 💕

Ward 22

Example Revisited

- Suppose the code with original data n had $S_1 = 25$ and $P_1 = 75$, and we apply 20 processors to the problem with 20 times the data. Also, suppose the time for S_2 doubles, and the time for P grows as n^2 .
 - $\text{Time}_2 \approx 2*25 + 400*75 = 30,050$

$$s_2 = 50/30,050 = .0017$$

 $p_2 = 30,000/30,050 = .9983$

$$Speedup = \frac{1}{.0017 + \frac{.9983}{20}} = 19.4$$

CS 160 灯

Another Perspective• This is the parallel programming equivalent of
the old adage that while one woman can
have a baby in nine months, nine woman
can't have a baby in one month (Amdahl) –
but they can have nine babies in nine months
(Scaled Speedup).Top 500
Computerswww.top500.org