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Parallel Computer Organization
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Classification of Parallel Architectures
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Major Parallel Architectures

• SIMD computers (diminishing/coprocessors)
• Shared memory multiprocessors
• Message-passing multicomputers

Full taxonomy given later.
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A Major Design Issue

• How are the CPUs and memory connected?
– Multiprocessors (shared memory system): 

• all CPUs share common memory so processes on 
different CPUs communicate by accessing same 
memory location. 

• One, single virtual address space.

– Multicomputers (distributed memory system): 
• each CPU has its own, private memory. 
• CPUs must pass messages to each other to 

communicate. 
• Separate virtual address spaces per CPU.
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Multiprocessor with 16 CPUs
sharing memory holding image

CPU

Shared memory

Multicomputer with 16 CPUs
each with own, private memory
holding part of image

Private memory

Shared vs Distributed Memory
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Distributed Shared Memory

• Multicomputers harder to program than 
multiprocessors because they have to code 
the sending and receiving of messages.

• Multicomputers much cheaper, easier to 
build than multiprocessors.

• One compromise is DSM (Distributed Shared 
Memory): multicomputer hardware with 
operating system that can simulate 
multiprocessor (shared) memory
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Flynn’s Taxonomy of Parallel Computers

Single Instruction
Single Data

Multiple Instruction
Multiple Data

Uniform Memory Access
(Symmetric)

Non-Uniform 
Memory Access

Cluster of Workstations
Massively Parallel Processor
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UMA Multiprocessor System

Interconnection Network
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NUMA Multiprocessor System

Interconnection Network

Distributed Shared Memory
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Ring Multicomputer System

Interconnection Network

computer

memory

Ward 11CS 160

2-D Mesh Multicomputer System

Interconnection Network

computer

memory
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3-D Hypercube Multicomputer System

Interconnection Network
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Tree Multicomputer System

Fat Tree

4-Way Tree
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Hierarchy of Multicomputer
Interconnection Networks
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Parallel Virtual Machine (PVM)

• Multicomputer communication software: 
PVM (Parallel Virtual Machine)
– Public-domain, UNIX-based for COWs
– User-callable library and a daemon process 

that runs all the time to execute the 
function calls

– Uses synchronous sends (blocking sends)
– Also supports broadcasting
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Message Passing Interface (MPI)

• Multicomputer communication software: 
MPI (Message Passing Interface)
– More functions with more varied parameters 

than PVM. Has 4 basic concepts:
• Communicators: group of processes that will 

communicate with each other
• Message data types: type of data being sent (i.e., 

double)
• Communication operations: functions for 

sending/receiving data. Has functions for 
synchronous, buffered and non-blocking

• Virtual topologies: Processes can be arranged in 
tree, grid, torus, etc. so work well on different 
hardware and programs can specify paths to other 
programs by name
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Performance Issues
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Speedup

• Speedup: how much faster program runs on 
parallel machine compared to non-parallel 
machine. 

• Amdahl’s law: can’t get linear speedup 
because of sequential parts of code

• Also can’t get linear speedup because added 
communication time comes with additional 
processors
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Amdahl’s Law
Applied to Parallel Computing  [1]

• Let N be the number of processors
• S the amount of time spent (by a serial 

processor) on serial parts of the program
• P is the amount of time spent (by a serial 

processor) on parts of the program that can be 
done in parallel

• Then Amdahl’s law says that speedup is given by
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Amdahl’s Law
Applied to Parallel Computing  [2]

Speedup = (S + P) / (S + P/N)

or = 1 / (s + p/N)
where s is fraction of time spent in serial 
computation and p is fraction of time spent in 
parallel computation (i.e., s + p = 1).
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Example

• Suppose we have a code with s = .25 (thus, 
p = .75), and we apply 20 processors to the 
problem.  What is the expected speedup?

1 3.5.75.25
20

Speedup = =
+
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Amdahl’s Law Revisited
(by Gustafson-Barsis)

• Maybe the picture isn’t as grim as first 
imagined

• Amdahl assumes as N increases, that problem 
size remains fixed
– In practice, this is not usually the case

• More processors usually implies larger, more 
complex problems to be solved and bigger 
problems usually increase the parallel part 
and with less effect upon the serial part
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Amdahl’s Law Revisited
“Scaled Speedup”

• Suppose problem involves data of size n and 
computation of size n2.

• If we place 2 processors on the problem, then we 
can double the size of the problem to 2n, which 
would then involve 4n2 computational work.

• If serial part does not grow proportionally to 
parallel part, then s2 << s1 and p1 << p2
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Example Revisited

• Suppose the code with original data n had S1 = 25 
and P1 = 75, and we apply 20 processors to the 
problem with 20 times the data.  Also, suppose the 
time for S2 doubles, and the time for P grows as 
n2.

1
.9983.0017

2

4

0

19.Speedup = =
+

Time2 ≈ 2*25 + 400*75 = 30,050

s2 = 50/30,050 = .0017

p2 = 30,000/30,050 = .9983
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Another Perspective

• This is the parallel programming equivalent of 
the old adage that while one woman can 
have a baby in nine months, nine woman 
can’t have a baby in one month (Amdahl) –
but they can have nine babies in nine months
(Scaled Speedup).

Ward 26CS 160

Top 500 
Computers

www.top500.org


