
Ward 1CS 160

Parallel Computer Organization

Ward 2CS 160

Classification of Parallel Architectures

Ward 3CS 160

Major Parallel Architectures

• SIMD computers (diminishing/coprocessors)
• Shared memory multiprocessors
• Message-passing multicomputers

Full taxonomy given later.

Ward 4CS 160

A Major Design Issue

• How are the CPUs and memory connected?
– Multiprocessors (shared memory system):

• all CPUs share common memory so processes on
different CPUs communicate by accessing same
memory location.

• One, single virtual address space.

– Multicomputers (distributed memory system):
• each CPU has its own, private memory.
• CPUs must pass messages to each other to

communicate.
• Separate virtual address spaces per CPU.

Ward 5CS 160

Multiprocessor with 16 CPUs
sharing memory holding image

CPU

Shared memory

Multicomputer with 16 CPUs
each with own, private memory
holding part of image

Private memory

Shared vs Distributed Memory

Ward 6CS 160

Distributed Shared Memory

• Multicomputers harder to program than
multiprocessors because they have to code
the sending and receiving of messages.

• Multicomputers much cheaper, easier to
build than multiprocessors.

• One compromise is DSM (Distributed Shared
Memory): multicomputer hardware with
operating system that can simulate
multiprocessor (shared) memory

Ward 7CS 160

Flynn’s Taxonomy of Parallel Computers

Single Instruction
Single Data

Multiple Instruction
Multiple Data

Uniform Memory Access
(Symmetric)

Non-Uniform
Memory Access

Cluster of Workstations
Massively Parallel Processor

Ward 8CS 160

UMA Multiprocessor System

Interconnection Network

Ward 9CS 160

NUMA Multiprocessor System

Interconnection Network

Distributed Shared Memory

Ward 10CS 160

Ring Multicomputer System

Interconnection Network

computer

memory

Ward 11CS 160

2-D Mesh Multicomputer System

Interconnection Network

computer

memory

Ward 12CS 160

3-D Hypercube Multicomputer System

Interconnection Network

Ward 13CS 160

Tree Multicomputer System

Fat Tree

4-Way Tree

Ward 14CS 160

Hierarchy of Multicomputer
Interconnection Networks

Ward 15CS 160

Parallel Virtual Machine (PVM)

• Multicomputer communication software:
PVM (Parallel Virtual Machine)
– Public-domain, UNIX-based for COWs
– User-callable library and a daemon process

that runs all the time to execute the
function calls

– Uses synchronous sends (blocking sends)
– Also supports broadcasting

Ward 16CS 160

Message Passing Interface (MPI)

• Multicomputer communication software:
MPI (Message Passing Interface)
– More functions with more varied parameters

than PVM. Has 4 basic concepts:
• Communicators: group of processes that will

communicate with each other
• Message data types: type of data being sent (i.e.,

double)
• Communication operations: functions for

sending/receiving data. Has functions for
synchronous, buffered and non-blocking

• Virtual topologies: Processes can be arranged in
tree, grid, torus, etc. so work well on different
hardware and programs can specify paths to other
programs by name

Ward 17CS 160

Performance Issues

Ward 18CS 160

Speedup

• Speedup: how much faster program runs on
parallel machine compared to non-parallel
machine.

• Amdahl’s law: can’t get linear speedup
because of sequential parts of code

• Also can’t get linear speedup because added
communication time comes with additional
processors

Ward 19CS 160

Amdahl’s Law
Applied to Parallel Computing [1]

• Let N be the number of processors
• S the amount of time spent (by a serial

processor) on serial parts of the program
• P is the amount of time spent (by a serial

processor) on parts of the program that can be
done in parallel

• Then Amdahl’s law says that speedup is given by

Ward 20CS 160

Amdahl’s Law
Applied to Parallel Computing [2]

Speedup = (S + P) / (S + P/N)

or = 1 / (s + p/N)
where s is fraction of time spent in serial
computation and p is fraction of time spent in
parallel computation (i.e., s + p = 1).

Ward 21CS 160

Example

• Suppose we have a code with s = .25 (thus,
p = .75), and we apply 20 processors to the
problem. What is the expected speedup?

1 3.5.75.25
20

Speedup = =
+

Ward 22CS 160

Amdahl’s Law Revisited
(by Gustafson-Barsis)

• Maybe the picture isn’t as grim as first
imagined

• Amdahl assumes as N increases, that problem
size remains fixed
– In practice, this is not usually the case

• More processors usually implies larger, more
complex problems to be solved and bigger
problems usually increase the parallel part
and with less effect upon the serial part

Ward 23CS 160

Amdahl’s Law Revisited
“Scaled Speedup”

• Suppose problem involves data of size n and
computation of size n2.

• If we place 2 processors on the problem, then we
can double the size of the problem to 2n, which
would then involve 4n2 computational work.

• If serial part does not grow proportionally to
parallel part, then s2 << s1 and p1 << p2

Ward 24CS 160

Example Revisited

• Suppose the code with original data n had S1 = 25
and P1 = 75, and we apply 20 processors to the
problem with 20 times the data. Also, suppose the
time for S2 doubles, and the time for P grows as
n2.

1
.9983.0017

2

4

0

19.Speedup = =
+

Time2 ≈ 2*25 + 400*75 = 30,050

s2 = 50/30,050 = .0017

p2 = 30,000/30,050 = .9983

Ward 25CS 160

Another Perspective

• This is the parallel programming equivalent of
the old adage that while one woman can
have a baby in nine months, nine woman
can’t have a baby in one month (Amdahl) –
but they can have nine babies in nine months
(Scaled Speedup).

Ward 26CS 160

Top 500
Computers

www.top500.org

