B. Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

3/1/17

Motivation

- Idea: with low probability, go against the local field
 - move up the energy surface
 - make the "wrong" microdecision
- Potential value for optimization: escape from local optima
- Potential value for associative memory: escape from spurious states
 - because they have higher energy than imprinted states

3/1/17

Properties of Logistic Sigmoid

$$\sigma(h) = \frac{1}{1 + e^{-2h/T}}$$

- As $h \to +\infty$, $\sigma(h) \to 1$
- As $h \to -\infty$, $\sigma(h) \to 0$
- $\sigma(0) = 1/2$

3/1/17

Logistic Sigmoid
With Varying TT varying from 0.05 to ∞ (1/ $T = \beta = 0, 1, 2, ..., 20$)

Pseudo-Temperature

- Temperature = measure of thermal energy (heat)
- Thermal energy = vibrational energy of molecules
- A source of random motion
- Pseudo-temperature = a measure of nondirected (random) change
- Logistic sigmoid gives same equilibrium probabilities as Boltzmann-Gibbs distribution

3/1/17 15

Transition Probability

Recall, change in energy $\Delta E = -\Delta s_k h_k$ = $2s_k h_k$

$$\Pr\{s'_k = \pm 1 | s_k = \mp 1\} = \sigma(\pm h_k) = \sigma(-s_k h_k)$$

$$\Pr\{s_k \to -s_k\} = \frac{1}{1 + \exp(2s_k h_k/T)}$$
$$= \frac{1}{1 + \exp(\Delta E/T)}$$

3/1/17

16

Stability

- Are stochastic Hopfield nets stable?
- Thermal noise prevents absolute stability
- But with symmetric weights: average values $\langle s_i \rangle$ become time - invariant

3/1/17

17

Does "Thermal Noise" Improve Memory Performance?

- Experiments by Bar-Yam (pp. 316-20):
 - n = 100
 - p = 8
- Random initial state
- To allow convergence, after 20 cycles set *T* = 0
- How often does it converge to an imprinted pattern?

3/1/17

Analysis of Stochastic Hopfield Network

- Complete analysis by Daniel J. Amit & colleagues in mid-80s
- See D. J. Amit, *Modeling Brain Function:* The World of Attractor Neural Networks, Cambridge Univ. Press, 1989.
- The analysis is beyond the scope of this course

3/1/17 21

Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)

3/1/17

25

Dilemma

- In the early stages of search, we want a high temperature, so that we will explore the space and find the basins of the global minimum
- In the later stages we want a low temperature, so that we will relax into the global minimum and not wander away from it
- Solution: decrease the temperature gradually during search

3/1/17

26

Quenching vs. Annealing

- Quenching:
 - rapid cooling of a hot material
 - may result in defects & brittleness
 - local order but global disorder
 - locally low-energy, globally frustrated
- Annealing:
 - slow cooling (or alternate heating & cooling)
 - reaches equilibrium at each temperature
 - allows global order to emerge
 - achieves global low-energy state

3/1/17

3/1/17

Effect of High Temperature (Low Perk)

(fig. from Anderson Intr. Neur. Comp.)

Annealing Schedule

- Controlled decrease of temperature
- Should be sufficiently slow to allow equilibrium to be reached at each temperature
- With sufficiently slow annealing, the global minimum will be found with probability 1
- Design of schedules is a topic of research

3/1/17

Typical Practical Annealing Schedule

- Initial temperature T_0 sufficiently high so all transitions allowed
- Exponential cooling: $T_{k+1} = \alpha T_k$
 - typical $0.8 < \alpha < 0.99$
 - fixed number of trials at each temp.
 - expect at least 10 accepted transitions
- Final temperature: three successive temperatures without required number of accepted transitions

3/1/17

34

Summary

- Non-directed change (random motion) permits escape from local optima and spurious states
- Pseudo-temperature can be controlled to adjust relative degree of exploration and exploitation

3/1/1

35

Quantum Annealing

• See for example D-wave Systems

<www.dwavesys.com>

3/1/17

Hopfield Network for Task Assignment Problem

- Six tasks to be done (I, II, ..., VI)
- Six agents to do tasks (A, B, ..., F)
- They can do tasks at various rates

 - A (10, 5, 4, 6, 5, 1) B (6, 4, 9, 7, 3, 2)
- What is the optimal assignment of tasks to agents?

3/1/17

Continuous Hopfield Net

$$\dot{U}_i = \sum_{j=1}^n T_{ij} V_j + I_i - \frac{U_i}{\tau}$$

$$V_i = \sigma(U_i) \in (0,1)$$

