Part 4A:

Neural Network Learning

IV. Neural Networks and Learning

3/3/17 1

A.
Artificial Neural Net Learning

31317

Supervised Learning

* Produce desired outputs for training inputs

* Generalize reasonably & appropriately to
other inputs

* Good example: pattern recognition
* Feedforward multilayer networks

31317 3

Feedforward Network

hidden output
layers layer

31317

Typical Artificial Neuron

connection

—
Q 51 weights
inputs -<

threshold

31317 5

Typical Artificial Neuron

linear activation
U\IHI‘II] |l|(m ful'lCthIl

M@

net input
sn 9 (local field)

31317

3/3/17

Part 4A:

Neural Network Learning

Equations

Net input:

Neuron output:

3/3/17

Single-Layer Perceptron

31317

Variables

Single Layer Perceptron
Equations

Binary threshold activation function :

1, ifh>0
Sighs D)= {0, ith=0

SR 1, ifzjw,.x,.w
otherwise

i (=)

ifw-x>6

£

ifw-x<6

31317

I
3317 9
2D Weight Vector
W
w- x =||w|x]cos ¢ @ X @
cos¢=L
Il .
S
¢
w

w:'x>0 W, K \ :
@HWHV >0 /‘9/
v B/HWH Treoll

3/3/17

N-Dimensional Weight Vector
@

normal
w vector
separating <
hyperplane

31317

3/3/17

Part 4A:

Neural Network Learning

Goal of Perceptron Learning

¢ Suppose we have training patterns x', x,
..., XP with corresponding desired outputs
yl’yZ, .”,yP

e where x? € {0, 1}, € {0, 1}

* We want to find w, 8 such that
wY=0(wx"-0)forp=1,...,P

3/3/17 13

Treating Threshold as Weight
h =[wajxj]—0

n
=-0+ ijxi
j=1

o

31317 14

Treating Threshold as Weight

31317 15

Augmented Vectors

0 -1
= w, - xlp
w=| . SE=| %

W o

We want y” =®(v~v~i”), ko

31317 16

Reformulation as Positive
Examples

We have positive (y” =1) and negative (y” =0) examples
Want w- X’ >0 for positive, W- X” <0 for negative

Let z” = X” for positive, z” = -X” for negative
Wantw-z” 20, forp=1,...,P

Hyperplane through origin with all z” on one side

31317 17

Adjustment of Weight Vector

31317 18

3/3/17

Part 4A:

Neural Network Learning

Outline of

Perceptron Learning Algorithm

1. initialize weight vector randomly

2. until all patterns classified correctly, do:

a) forp=1,...,Pdo:

1) if 2 classified correctly, do nothing

2) else adjust weight vector to be closer to correct

classification

3/3/17

Weight Adjustment
W"‘ﬂzpnzp
W Jw
72

=\

31317 20

Improvement in Performance

31317

Perceptron Learning Theorem

* If there is a set of weights that will solve the
problem,
then the PLA will eventually find it

e (for a sufficiently small learning rate)
* Note: only applies if positive & negative
examples are linearly separable

313117 22

NetLogo Simulation of
Perceptron Learning

Run Perceptron-Geometry.nlogo

31317

Classification Power of
Multilayer Perceptrons

* Perceptrons can function as logic gates
Therefore MLP can form intersections,
unions, differences of linearly-separable
regions

» Classes can be arbitrary hyperpolyhedra
* Minsky & Papert criticism of perceptrons

* No one succeeded in developing a MLP
learning algorithm

3317 24

3/3/17

Part 4A:

Neural Network Learning

Hyperpolyhedral Classes

3/3/17 25

Credit Assignment Problem

How do we adjust the weights of the hidden layers?
\

Desired
output

L4 _'_I
input hidden output
layer layers layer

31317 26

NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo

31317 27

Adaptive System

Evaluation Function
System (Fitness, Figure of Merit)

Control
Algorithm

Control Parameters
3317 28

Gradient

JF 4 o
—— measures how F is altered by variation of P,
k
oF
o
_| OF
sl

JF
oF,
VF points in direction of maximum local increase in F'

3/3/17 29

Gradient Ascent
on Fitness Surface

313117 30

3/3/17

Part 4A:

Neural Network Learning

Gradient Ascent
by Discrete Steps

N

3/3/17

Gradient Ascent is Local
But Not Shortest

G

31317 52

Gradient Ascent Process
P =nVF(P)
Change in fitness :
A dF m Or)F dP m o
ES E = Ekﬂadilk ~ Ek=|(VF)kP’<
F=VF-P

F =VF-nVF =1|VF|" 20

Therefore gradient ascent increases fitness
(until reaches O gradient)

31317

General Ascent in Fitness
Note that any adaptive process P(t) will increase
fitness provided :
0<F=VF-P= HVFHHPHcoscp

where @ is angle between VF and P

Hence we need cosg >0

or |¢| < 90°

313117 34

General Ascent
on Fitness Surface

<

Q

N

31317

Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',...,t°

Suppose for parameters P the corresponding actual outputs
arey',...,y°

Suppose D(t,y) € [0,%0) measures difference between

target & actual outputs

LetE? = D(t" ,y") be error on gth sample

Let F(P) = —i E‘(P)= _i D[tq,y"(P)]

Part 4A: Neural Network Learning

Gradient of Fitness

VF=V|-Y E*|=-YVE*
q q

9720 e - EM%

oP, P, <oy gF)
dD(t",y") ay?
T JP,

3/3/17

Jacobian Matrix

ay! /o »

JP,

m

Define Jacobian matrix J? = 4 i i
yy y,
@GR op,
Note J? € R™" and VD(tq,yq) ISE)
) E4 7 gD(t?,y?
Since (VEq)k - OE") %@7
dP, 3 dP, ay’

~VE" =(J7)' VD" y")

31317

Distance

Suppose D(t,y) =t - yH2 = Ei(ti = yi)2

31317

Derivative of Squared Euclidean

Gradient of Error on g™ Input

oE* _dD(t'y") gy
oP, dy' 4P,

pi 2(yq _tq).%
k
ay!
ol

Ve (s =)

313117 40

Recap
P, () (-

actual & desired outputs,

(given the gth input)

in this case, a feedforward neural network
3317

To know how to decrease the differences between

q
we need to know elements of Jacobian, & %D :
k

which says how jth output varies with kth parameter

The Jacobian depends on the specific form of the system,

Multilayer Notation

31317

3/3/17

Part 4A:

Neural Network Learning

Notation

L layers of neurons labeled 1, ..., L

* N, neurons in layer /

* s/ = vector of outputs from neurons in layer /

¢ input layer s! = x¢ (the input pattern)
* output layer s = y4 (the actual output)
» W! = weights between layers / and /+1

* Problem: find out how outputs y vary with

weights ijl (I=1,...,L-1)

3/3/17

Typical Neuron

s

31317

44

Error Back-Propagation

q
We will compute il

; starting with last layer (/= L -1)
ij

and working back to earlier layers (/=L -2,...,1)

31317

Delta Values

Convenient to break derivatives by chain rule :

JE* OE* Jh!

W, onl ow !

Let 8! = oH
" oh)
E‘? !
So i =Tl zl &hll—l
W W

31317

46

Output-Layer Neuron

31317

Output-Layer Derivatives (1)

L_
=

31317

d(s[L - lf)z
dnt

i

2st - 1)o'(n})

i

= 2(S.L -

i

JE! J
07hiL & WE/{(S’{ B

48

3/3/17

Part 4A:

Neural Network Learning

Output-Layer Derivatives (2)

oh; 4) gl i)
L = VYW, s =5
=] =] E ik Sk j
t9Wij 5W,./- =
JE*
T
ij

where 8/ = 2(5,." -t)G'(h(‘)

i

3/3/17 49

Hidden-Layer Neuron

31317 50

Hidden-Layer Derivatives (1)

JE‘ ah!
Recall —— =6/ —-
W, aw;;
JE? JE? oh*! oh*
6/ A o (2 ¥ 6[+1 k
L Z&h;*l ! 2 “ on!

z?/’l,i” .l (72”’ Wk'msfn o3 (9WkIIS: —w! do(h,’)
7

on. onl oH “dn!

s Wk’iol(h:)

w8 = oo (k)= o'(n!) Dol w,
k k

31317 51

Hidden-Layer Derivatives (2)

-1 -
Jh) J sz,ls,,l_dw,.j S5

T -1 I-1 j
W, IV 5 < dw;
RNOER [-1
e =0;s;
ij
where 8/ = 0'(hi’)z W
3
31317 52

Derivative of Sigmoid

1

Suppose s =0 (h) = m

(logistic sigmoid)

)

D,s=D,[1+ exp(—ah)]il = {1+ exp(-ah)] Dh(l + e’”")

—ah\2 —al
- {1+) (-ae h)=a(l+:_ah)z

m g L RN e 1
1+ 14e™™ [E e Yo

—as(l-5)

—ah

31317 53

Summary of Back-Propagation

Algorithm
Output layer: 8" = 2as” (1 —sF)(vl" - t;’)
v
ij

Hidden layers: &/ = as,'(l - s;)Eé,i*'Wk’,
k

GET

1 -1
-1 6:‘ B
W,

313117 54

3/3/17

Part 4A:

Neural Network Learning

Output-Layer Computation

3/3/17 55

Hidden-Layer Computation

AW, =no)s!!

31317 56

Training Procedures

* Batch Learning
— on each epoch (pass through all the training pairs),
— weight changes for all patterns accumulated
— weight matrices updated at end of epoch
— accurate computation of gradient
* Online Learning
— weight are updated after back-prop of each training pair
— usually randomize order for each epoch
— approximation of gradient
* Doesn’t make much difference

3/3/17 57

Summation of Error Surfaces

Gradient Computation
in Batch Learning

15

3/3/17 59

12
El
E2
313117 58
Gradient Computation
in Online Learning
12
El
E2

31317 60

3/3/17

10

Part 4A:

Neural Network Learning

Testing Generalization

3/3/17 61

Problem of Rote Learning

error

error on
test data

error on
training
data

epoch

stop training here

31317 62

Improving Generalization

3/3/17 63

A Few Random Tips

¢ Too few neurons and the ANN may not be able to
decrease the error enough

* Too many neurons can lead to rote learning

* Preprocess data to:
— standardize
— eliminate irrelevant information
— capture invariances
— keep relevant information

e If stuck in local min., restart with different random
weights

313117 64

Run Example BP Learning

3/3/17 65

Beyond Back-Propagation

* Adaptive Learning Rate
* Adaptive Architecture
— Add/delete hidden neurons
— Add/delete hidden layers
¢ Radial Basis Function Networks
¢ Recurrent BP
e Etc.,etc., etc....

313117 66

3/3/17

11

Part 4A: Neural Network Learning 3/3/17

Deep Belief Networks Restricted Boltzmann Machine

¢ Goal: hidden units
become model of ~ |Hiddenunits
il’lput domain Visible units

* Inspired by hierarchical representations in
mammalian sensory systems

e Use “deep” (multilayer) feed-forward nets « Should capture

» Layers self-organize to represent input at statistics of input

progressively more abstract, task-relevant levels « Evaluate by testing its

* Supervised training (e.g., BP) can be used to tune ability to reproduce
network performance. input statistics
 Each layer is a Restricted Boltzmann Machine Change weights to
decrease difference
33017 67 3317 (fig. from wikipedia) s
Unsupervised RBM Learning Training a DBN Network

* Stochastic binary units ¢ Sety/ with probability

« Assume bias units * Present inputs and do RBM learning with
Xy =Y, =1 U[Ewdxf] first hidden layer to develop model
L
* Set y; with probability * When converged, do RBM learning
= fetiseverdligyclestof between first and second hidden layers to
o EWffxf sampling, update PH o SO S, A del
i weights based on L e O
« Set.x/ with probability statistics: ¢ Continue until all weight layers trained
o Sy, AW, = 77(<yix,->—<)’fx,>) e May further train with BP or other

supervised learning algorithms

31317 69 31317 70

What is the Power of Can ANNs Exceed the “Turing Limit”?
Artificial Neural Networks? e There are many results, which depend sensitively on

assumptions; for example:
¢ Finite NNs with real-valued weights have super-Turing

 With respect to Turing machines? power (Siegelmann & Sontag *94)
¢ Recurrent nets with Gaussian noise have sub-Turing power
* As function approximators? (Maass & Sontag “99)

¢ Finite recurrent nets with real weights can recognize all
languages, and thus are super-Turing (Siegelmann ‘99)

 Stochastic nets with rational weights have super-Turing
power (but only P/POLY, BPP/log") (Siegelmann ‘99)

¢ But computing classes of functions is not a very relevant
way to evaluate the capabilities of neural computation

31317 71 31317 72

12

Part 4A:

Neural Network Learning

A Universal Approximation Theorem

Suppose fis a continuous function on [0,1]"

Suppose ois a nonconstant, bounded,
monotone increasing real function on .

For any € >0, there is an m such that

JaeR", beER", WE R™ such that if

2 (St) = ia,a(iwu.xj +bj]
[ie.. F(x)=a-o(Wx+b)]
then ‘F(x) - f(x)‘ <eforallx € [0,1]"

3317 . 73
(see, e.g., Haykin, N.Nets 2/e, 208-9)

One Hidden Layer is Sufficient

* Conclusion: One hidden layer is sufficient
to approximate any continuous function
arbitrarily closely

3317 74

The Golden Rule of Neural Nets

Neural Networks are the
second-best way

to do everything!

33117 75

3/3/17

13

