V. Evolutionary Computing

A. Genetic Algorithms

4/10/17

Read Flake, ch. 20

4/10/17

Genetic Algorithms

- Developed by John Holland in '60s
- Did not become popular until late '80s
- A simplified model of genetics and evolution by natural selection
- Most widely applied to optimization problems (maximize "fitness")

4/10/17

Assumptions

- Existence of fitness function to quantify merit of potential solutions
 - This "fitness" is what the GA will maximize
- A mapping from bit-strings to potential solutions
 - best if each possible string generates a legal potential solution
 - choice of mapping is important
 - can use strings over other finite alphabets

4/10/17

Outline of Simplified GA

- 1. Random initial population P(0)
- 2. Repeat for $t = 0, ..., t_{max}$ or until converges:
 - a) create empty population P(t + 1)
 - b) repeat until P(t + 1) is full:
 - 1) select two individuals from P(t) based on fitness
 - 2) optionally mate & replace with offspring
 - 3) optionally mutate offspring
 - 4) add two individuals to P(t + 1)

4/10/17

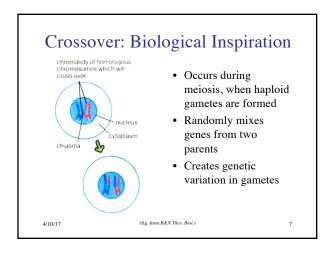
5

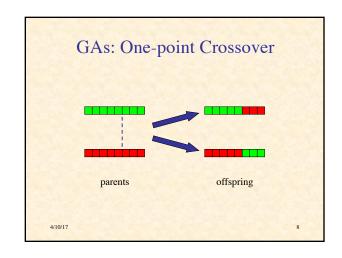
Fitness-Biased Selection

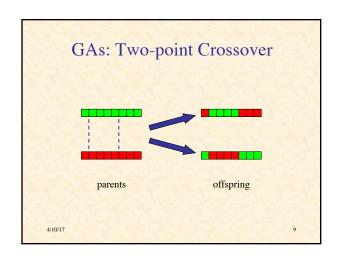
- Want the more "fit" to be more likely to reproduce
 - always selecting the best
 - ⇒ premature convergence
 - probabilistic selection ⇒ better exploration
- Roulette-wheel selection: probability ∝ relative fitness:

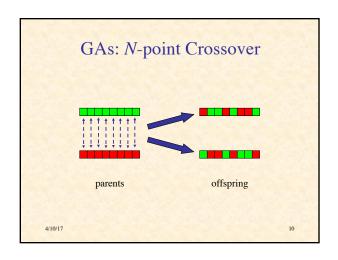
$$\Pr\{i \text{ mates}\} = \frac{f_i}{\sum_{j=1}^n f_j}$$

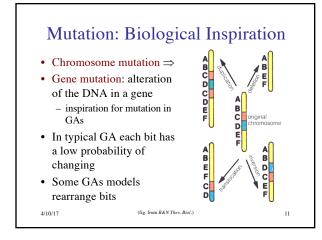
4/10/17

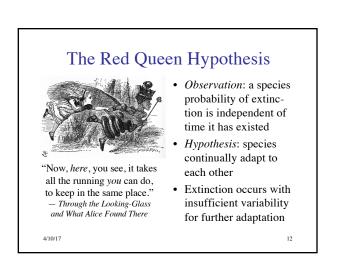












Demonstration of GA: Finding Maximum of Fitness Landscape

Run Genetic Algorithms — An Intuitive

Introduction
by Pascal Glauser

<www.glauserweb.ch/gentore.htm>

4/10/17

Demonstration of GA: Evolving to Generate a Pre-specified Shape (Phenotype)

Run Genetic Algorithm Viewer www.rennard.org/alife/english/gavgb.html

4/10/17

Demonstration of GA: Eaters Seeking Food

http://math.hws.edu/eck/js/genetic-algorithm/GA.html

4/10/17

Morphology Project by Michael "Flux" Chang

- Senior Independent Study project at UCLA
 - users.design.ucla.edu/~mflux/morphology
- Researched and programmed in 10 weeks
- Programmed in Processing language
 - www.processing.org

4/10/17

Genotype ⇒ Phenotype

- · Cells are "grown," not specified individually
- Each gene specifies information such as:
 - angle
 - distance
 - type of cell
 - how many times to replicate
 - following gene
- · Cells connected by "springs"
- Run phenome:

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/phenome>

4/10/17

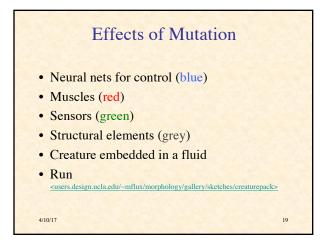
17

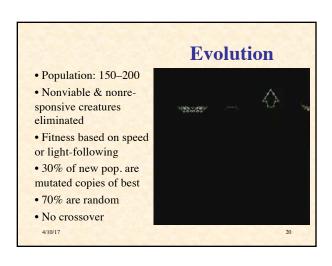
15

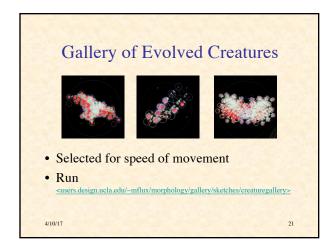
Complete Creature

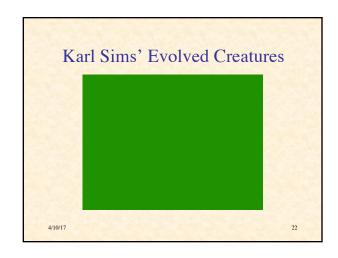
- Neural nets for control (blue)
 - integrate-and-fire neurons
- Muscles (red)
 - Decrease "spring length" when fire
- Sensors (green)
 - fire when exposed to "light"
- Structural elements (grey)
 - anchor other cells together
- Creature embedded in a fluid
- Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creature>
 4/10/17

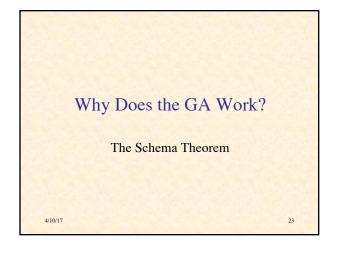
3

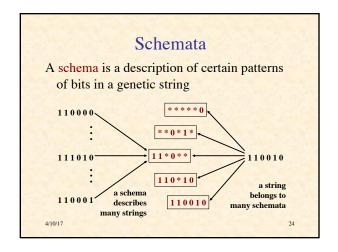












The Fitness of Schemata

- The schemata are the building blocks of solutions
- We would like to know the average fitness of all possible strings belonging to a schema
- We cannot, but the strings in a population that belong to a schema give an estimate of the fitness of that schema
- Each string in a population is giving information about all the schemata to which it belongs (implicit parallelism)

4/10/17 25

Effect of Selection

Let n =size of population

Let m(S,t) = number of instances of schema S at time t

String *i* gets picked with probability $\frac{f_i}{\sum_i f_i}$

Let f(S) = avg fitness of instances of S at time t

So expected $m(S,t+1) = m(S,t) \cdot n \cdot \frac{f(S)}{\sum_{i} f_{i}}$

Since $f_{av} = \frac{\sum_{j} f_{j}}{n}$, $m(S,t+1) = m(S,t) \frac{f(S)}{f_{av}}$

26

Exponential Growth

- We have discovered: $m(S, t+1) = m(S, t) \cdot f(S) / f_{av}$
- Suppose $f(S) = f_{av} (1 + c)$
- Then $m(S, t) = m(S, 0) (1 + c)^t$
- That is, exponential growth in aboveaverage schemata

4/10/17

Effect of Crossover

- Let $\lambda = \text{length of genetic strings}$
- Let $\delta(S)$ = defining length of schema S
- Probability {crossover destroys *S*}: $p_d \le \delta(S) / (\lambda 1)$
- Let p_c = probability of crossover
- Probability schema survives:

$$p_{\rm s} \ge 1 - p_{\rm c} \frac{\delta(S)}{\lambda - 1}$$

4/10/17

28

Selection & Crossover Together

$$m(S,t+1) \ge m(S,t) \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} \right]$$

4/10/17

29

27

Effect of Mutation

- Let $p_{\rm m}$ = probability of mutation
- So $1 p_m =$ probability an allele survives
- Let o(S) = number of fixed positions in S
- The probability they all survive is $(1 p_m)^{o(S)}$
- If $p_{\rm m} << 1$, $(1 p_{\rm m})^{o(S)} \approx 1 o(S) p_{\rm m}$

4/10/17

30

Schema Theorem: "Fundamental Theorem of GAs"

$$m(S,t+1) \ge m(S,t) \frac{f(S)}{f_{\text{av}}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1} - o(S) p_m \right]$$

4/10/17

ATT

The Bandit Problem

- · Two-armed bandit:
 - random payoffs with (unknown) means m_1, m_2 and variances σ_1^2, σ_2^2
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever
- k-armed bandit: similar analysis applies
- Analogous to allocation of population to schemata
- Suggests GA may allocate trials optimally

4/10/17

32

Goldberg's Analysis of Competent & Efficient GAs

4/10/17

33

Paradox of GAs

- Individually uninteresting operators:
 - selection, recombination, mutation
- Selection + mutation ⇒ continual improvement
- Selection + recombination ⇒ innovation
 - fundamental to invention: generation vs. evaluation
- Fundamental intuition of GAs: the three work well together

4/10

34

Race Between Selection & Innovation: Takeover Time

- Takeover time t^* = average time for most fit to take over population
- Transaction selection: population replaced by s copies of top 1/s
- s quantifies selective pressure
- Estimate $t^* \approx \ln n / \ln s$

4/10/17

35

Innovation Time

- Innovation time t_i = average time to get a better individual through crossover & mutation
- Let p_i = probability a single crossover produces a better individual
- Number of individuals undergoing crossover = $p_c n$
- Number of probable improvements = $p_i p_c n$
- Estimate: $t_i \approx 1 / (p_c p_i n)$

4/10/17

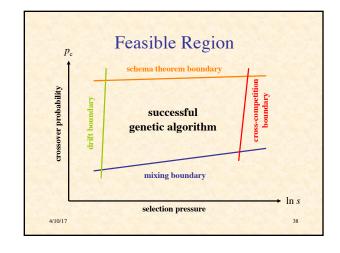
36

Steady State Innovation

- Bad: $t^* < t_i$
 - because once you have takeover, crossover does no good
- Good: $t_i < t^*$
 - because each time a better individual is produced, the t* clock resets
 - steady state innovation
- Innovation number:

$$Iv = \frac{t^*}{t_i} = p_c p_i \frac{n \ln n}{\ln s} > 1$$

4/10/17



Other Algorithms Inspired by Genetics and Evolution

- Evolutionary Programming
 - natural representation, no crossover, time-varying continuous mutation
- Evolutionary Strategies
 - similar, but with a kind of recombination
- Genetic Programming
 - like GA, but program trees instead of strings
- Classifier Systems
 - GA + rules + bids/payments
- and many variants & combinations...

4/10/17

39

Additional Bibliography

1. Goldberg, D.E. The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer, 2002.

VB 🖒

2. Milner, R. *The Encyclopedia of Evolution*. Facts on File, 1990.

4/10/17