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Read Flake chs. 16–17
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Part B
Ants (Natural and Artificial)
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Real Ants

(especially the black garden ant, 
Lasius niger)
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Adaptive Significance
• Selects most profitable from array of food 

sources
• Selects shortest route to it

– longer paths abandoned within 1–2 hours
• Adjusts amount of exploration to quality of 

identified sources
• Collective decision making can be as 

accurate and effective as some vertebrate 
individuals
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Observations on Trail Formation
• Two equal-length paths presented at same time: 

ants choose one at random
• Sometimes the longer path is initially chosen
• Ants may remain “trapped” on longer path, once 

established
• Or on path to lower quality source, if it’s 

discovered first
• But there may be advantages to sticking to paths

– easier to follow
– easier to protect trail & source
– safer
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Process of Trail Formation

1. Trail laying

2. Trail following
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Trail Laying

• On discovering food, forager lays chemical trail 
while returning to nest
– only ants who have found food deposit pheromone

• Others stimulated to leave nest by:
– the trail
– the recruitor exciting nestmates (sometimes)

• In addition to defining trail, pheromone:
– serves as general orientation signal for ants outside nest
– serves as arousal signal for ants inside
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Additional Complexities

• Some ants begin marking on return from 
discovering food

• Others on their first return trip to food
• Others not at all, or variable behavior
• Probability of trail laying decreases with 

number of trips
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Frequency of Trail Marking

• Ants modulate frequency of trail marking
• May reflect quality of source

– hence more exploration if source is poor
• May reflect orientation to nest

– ants keep track of general direction to nest
– and of general direction to food source
– trail laying is less intense if the angle to 

homeward direction is large
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Trail Following

• Ants preferentially follow stronger of two 
trails
– show no preference for path they used 

previously
• Ant may double back, because of:

– decrease of pheromone concentration
– unattractive orientation
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Probability of Choosing One of 
Two Branches

• Let CL and CR be units of pheromone deposited on 
left & right branches

• Let PL and PR be probabilities of choosing them
• Then:

€ 

PL =
CL + 6( )2

CL + 6( )2 + CR + 6( )2

• Nonlinearity amplifies probability
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Additional Adaptations

• If a source is crowded, ants may return to 
nest or explore for other sources

• New food sources are preferred if they are 
near to existing sources

• Foraging trails may rotate systematically 
around a nest
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Pheromone Evaporation

• Trails can persist from several hours to 
several months

• Pheromone has mean lifetime of 30–60 min.
• But remains detectable for many times this
• Long persistence of pheromone prevents 

switching to shorter trail
• Artificial ant colony systems rely more 

heavily on evaporation
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Resnick’s Ants
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Environment
• Nest emits nest-scent, which

– diffuses uniformly
– decays slowly
– provides general orientation signal
– by diffusing around barriers, shows possible paths 

around barriers
• Trail pheromone

– emitted by ants carrying food
– diffuses uniformly
– decays quickly

• Food detected only by contact
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Resnick Ant Behavior
1. Looking for food:

if trail pheromone weak then wander
else move toward increasing concentration

2. Acquiring food:
if at food then

pick it up, turn around, & begin depositing pheromone
3. Returning to nest:

deposit pheromone & decrease amount available
move toward increasing nest-scent

4. Depositing food:
if at nest then

deposit food, stop depositing pheromone, & turn around
5. Repeat forever
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Demonstration of Resnick Ants

Run Ants.nlogo
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Ant Colony Optimization
(ACO)

Developed in 1991 by Dorigo (PhD 
dissertation) in collaboration with 

Colorni & Maniezzo
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Basis of all Ant-Based 
Algorithms

• Positive feedback
• Negative feedback
• Cooperation
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Positive Feedback

• To reinforce portions of good solutions that 
contribute to their goodness

• To reinforce good solutions directly
• Accomplished by pheromone accumulation
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Reinforcement of
Solution Components

3

4 5

6

Parts of good solutions may produce better solutions
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Negative Reinforcement of
Non-solution Components

3

4 5

6

Parts not in good solutions tend to be forgotten

7
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Negative Feedback

• To avoid premature convergence 
(stagnation)

• Accomplished by pheromone evaporation
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Cooperation

• For simultaneous exploration of different 
solutions

• Accomplished by:
– multiple ants exploring solution space
– pheromone trail reflecting multiple 

perspectives on solution space
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Traveling Salesman Problem

• Given the travel distances between N cities
– may be symmetric or not

• Find the shortest route visiting each city 
exactly once and returning to the starting 
point

• NP-hard
• Typical combinatorial optimization problem
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Ant System for Traveling 
Salesman Problem (AS-TSP)

• During each iteration, each ant completes a 
tour

• During each tour, each ant maintains tabu 
list of cities already visited

• Each ant has access to
– distance of current city to other cities
– intensity of local pheromone trail

• Probability of next city depends on both
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Transition Rule
• Let hij = 1/dij = “nearness” of city j to current city i
• Let tij = strength of trail from i to j
• Let Ji

k = list of cities ant k still has to visit after city 
i in current tour

• Then transition probability for ant k going from i to 
j Î Ji

k in tour t is:

€ 

pij
k =

τ ij t( )[ ]
α
ηij[ ]

β

τ il t( )[ ]α ηil[ ]β
l∈Ji

k

∑
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Pheromone Deposition
• Let Tk(t) be tour t of ant k
• Let Lk(t) be the length of this tour
• After completion of a tour, each ant k

contributes:

€ 

Δτ ij
k =

Q
Lk t( )

if i, j( )∈ Tk t( )

0 if i, j( )∉ Tk t( )

& 
' 
( 

) ( 
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Pheromone Decay
• Define total pheromone deposition for tour t:

• Let r be decay coefficient
• Define trail intensity for next round of tours:€ 

Δτ ij t( ) = Δτ ij
k t( )

k=1

m
∑

€ 

τ ij t +1( ) = 1− ρ( )τ ij t( ) + Δτ ij t( )
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Number of Ants is Critical
• Too many:

– suboptimal trails quickly reinforced
– \ early convergence to suboptimal solution

• Too few:
– don’t get cooperation before pheromone decays

• Good tradeoff:
number of ants = number of cities
(m = n)
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Improvement: “Elitist” Ants
• Add a few (e≈5) “elitist” ants to population
• Let T+ be best tour so far
• Let L+ be its length
• Each “elitist” ant reinforces edges in T+ by 

Q/L+

• Add e more “elitist” ants
• This applies accelerating positive feedback 

to best tour
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Time Complexity

• Let t be number of tours
• Time is O (tn2m)
• If m = n then O (tn3)

– that is, cubic in number of cities
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Convergence

• 30 cities (“Oliver30”)
• Best tour length
• Converged to optimum in 300 cycles

fig. < Dorigo et al. (1996)
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Evaluation
• Both “very interesting and disappointing”
• For 30-cities:

– beat genetic algorithm
– matched or beat tabu search & simulated annealing

• For 50 & 75 cities and 3000 iterations
– did not achieve optimum
– but quickly found good solutions

• I.e., does not scale up well
• Like all general-purpose algorithms, it is out-

performed by special purpose algorithms
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Improving Network Routing

1. Nodes periodically send forward ants to 
some recently recorded destinations

2. Collect information on way
3. Die if reach already visited node
4. When reaches destination, estimates time 

and turns into backward ant
5. Returns by same route, updating routing 

tables
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Some Applications of ACO

• Routing in telephone networks
• Vehicle routing
• Job-shop scheduling
• Constructing evolutionary trees from 

nucleotide sequences
• Various classic NP-hard problems

– shortest common supersequence, graph 
coloring, quadratic assignment, …
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Improvements as Optimizer
• Can be improved in many ways
• E.g., combine local search with ant-based 

methods
• As method of stochastic combinatorial 

optimization, performance is promising, 
comparable with best heuristic methods

• Much ongoing research in ACO
• But optimization is not a principal topic of 

this course
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Nonconvergence

• Standard deviation of tour lengths
• Optimum = 420

fig. < Dorigo et al. (1996)
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Average Node Branching Number

• Branching number = number of edges leaving a node with 
pheromone > threshold

• Branching number = 2 for fully converged solution

fig. < Dorigo et al. (1996)
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The Nonconvergence Issue
• AS often does not converge to single 

solution
• Population maintains high diversity
• A bug or a feature?
• Potential advantages of nonconvergence:

– avoids getting trapped in local optima
– promising for dynamic applications

• Flexibility & robustness are more important 
than optimality in natural computation
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Natural Computation

Natural computation is computation that 
occurs in nature or is inspired by 
computation occurring in nature
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Optimization
in Natural Computation

• Good, but suboptimal solutions may be 
preferable to optima if:
– suboptima can be obtained more quickly
– suboptima can be adapted more quickly
– suboptima are more robust
– an ill-defined suboptimum may be better than a 

sharp optimum
• “The best is the enemy of the good”

(Le mieux est l’ennemi du bien. – Voltaire)



Part 6B: Ants 4/23/17

15

4/23/17 43

Robust Optima
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Effect of Error/Noise

6C


