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Read Flake chs. 16-17
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Part B
Ants (Natural and Artificial)
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Real Ants

(especially the black garden ant,
Lasius niger)
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Adaptive Significance

* Selects most profitable from array of food
sources

* Selects shortest route to it
— longer paths abandoned within 1-2 hours

¢ Adjusts amount of exploration to quality of
identified sources

¢ Collective decision making can be as
accurate and effective as some vertebrate
individuals
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Observations on Trail Formation

* Two equal-length paths presented at same time:
ants choose one at random

* Sometimes the longer path is initially chosen

» Ants may remain “trapped” on longer path, once
established

* Or on path to lower quality source, if it’s
discovered first

* But there may be advantages to sticking to paths
— easier to follow
— easier to protect trail & source

— safer
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Process of Trail Formation

1. Trail laying

2. Trail following
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Trail Laying

* On discovering food, forager lays chemical trail
while returning to nest
— only ants who have found food deposit pheromone
¢ Others stimulated to leave nest by:
— the trail
— the recruitor exciting nestmates (sometimes)

* In addition to defining trail, pheromone:
— serves as general orientation signal for ants outside nest
— serves as arousal signal for ants inside
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Additional Complexities

* Some ants begin marking on return from
discovering food

» Others on their first return trip to food

e Others not at all, or variable behavior

* Probability of trail laying decreases with
number of trips
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Frequency of Trail Marking

¢ Ants modulate frequency of trail marking
* May reflect quality of source

— hence more exploration if source is poor
* May reflect orientation to nest

— ants keep track of general direction to nest

— and of general direction to food source

— trail laying is less intense if the angle to
homeward direction is large
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Trail Following

* Ants preferentially follow stronger of two
trails

— show no preference for path they used
previously

¢ Ant may double back, because of:
— decrease of pheromone concentration
— unattractive orientation
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Probability of Choosing One of
Two Branches

e Let C; and Cy be units of pheromone deposited on
left & right branches
e Let P; and Py be probabilities of choosing them
e Then: 5
(C.+6)

(C.+ 6)2 +(Cp + 6)2

L

* Nonlinearity amplifies probability

4/23/17 11

Additional Adaptations

e If a source is crowded, ants may return to
nest or explore for other sources

* New food sources are preferred if they are
near to existing sources

» Foraging trails may rotate systematically
around a nest
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Pheromone Evaporation

e Trails can persist from several hours to
several months

¢ Pheromone has mean lifetime of 30—60 min.
* But remains detectable for many times this

* Long persistence of pheromone prevents
switching to shorter trail

e Artificial ant colony systems rely more
heavily on evaporation
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Resnick’s Ants
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Environment

¢ Nest emits nest-scent, which
— diffuses uniformly
— decays slowly
— provides general orientation signal
— by diffusing around barriers, shows possible paths
around barriers

 Trail pheromone
— emitted by ants carrying food

— diffuses uniformly
— decays quickly
* Food detected only by contact
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Resnick Ant Behavior

1. Looking for food:
if trail pheromone weak then wander
else move toward increasing concentration
2. Acquiring food:
if at food then
pick it up, turn around, & begin depositing pheromone
3. Returning to nest:
deposit pheromone & decrease amount available
move toward increasing nest-scent
4. Depositing food:
if at nest then
deposit food, stop depositing pheromone, & turn around
5. Repeat forever
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Demonstration of Resnick Ants

Run Ants.nlogo
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Ant Colony Optimization
(ACO)

Developed in 1991 by Dorigo (PhD
dissertation) in collaboration with
Colorni & Maniezzo
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Basis of all Ant-Based
Algorithms

e Positive feedback
* Negative feedback

» Cooperation
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Positive Feedback

» To reinforce portions of good solutions that
contribute to their goodness

* To reinforce good solutions directly

e Accomplished by pheromone accumulation
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Reinforcement of
Solution Components

6

Parts of good solutions may produce better solutions
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Negative Reinforcement of
Non-solution Components

Parts not in good solutions tend to be forgotten
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Negative Feedback

* To avoid premature convergence

(stagnation)

* Accomplished by pheromone evaporation
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Cooperation

* For simultaneous exploration of different
solutions

¢ Accomplished by:
— multiple ants exploring solution space

— pheromone trail reflecting multiple
perspectives on solution space
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Traveling Salesman Problem

¢ Given the travel distances between N cities

— may be symmetric or not

¢ Find the shortest route visiting each city
exactly once and returning to the starting
point

e NP-hard

» Typical combinatorial optimization problem
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Ant System for Traveling
Salesman Problem (AS-TSP)

* During each iteration, each ant completes a
tour

¢ During each tour, each ant maintains fabu
list of cities already visited

¢ Each ant has access to

— distance of current city to other cities
— intensity of local pheromone trail

* Probability of next city depends on both
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Transition Rule

* Letn; = 1/d; = “nearness” of city j to current city i
¢ Let t; = strength of trail from i to j

o Let J* =list of cities ant  still has to visit after city
i in current tour

* Then transition probability for ant k going from i to

Jj € Jkintour ¢ is:
(7] [’

Ek[ril (t)]a [77,-1 ]ﬁ
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Pheromone Deposition

e Let 7%() be tour ¢ of ant k
¢ Let LX) be the length of this tour

» After completion of a tour, each ant k
contributes:
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Pheromone Decay

* Define total pheromone deposition for tour #:

e, ()= 37 A1)

* Let p be decay coefficient

* Define trail intensity for next round of tours:

,(+1)= (1 p)7,(1)+ AT, 1)
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Number of Ants is Critical

¢ Too many:
— suboptimal trails quickly reinforced

— ... early convergence to suboptimal solution

e Too few:

— don’t get cooperation before pheromone decays
¢ Good tradeoft:

number of ants = number of cities

(m=n)
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Improvement: “Elitist” Ants

Add a few (ex=5) “elitist” ants to population

Let T* be best tour so far
Let L* be its length

Each “elitist” ant reinforces edges in T+ by

o/L*
Add e more “elitist” ants

This applies accelerating positive feedback

to best tour
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Time Complexity

¢ Let t be number of tours
e Time is O (tn?m)
e If m = n then O (n?)

— that is, cubic in number of cities
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Convergence

Best tour longth

Cycles

o 500 1008 1500 2000 2500

3000

30 cities (“Oliver30”)
Best tour length
Converged to optimum in 300 cycles
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fig. < Dorigo et al. (1996)
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Evaluation

* Both “very interesting and disappointing”
* For 30-cities:
— beat genetic algorithm
— matched or beat tabu search & simulated annealing
* For 50 & 75 cities and 3000 iterations
— did not achieve optimum
— but quickly found good solutions
¢ I.e., does not scale up well
e Like all general-purpose algorithms, it is out-
performed by special purpose algorithms
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Improving Network Routing

1. Nodes periodically send forward ants to
some recently recorded destinations

2. Collect information on way
Die if reach already visited node

& v

When reaches destination, estimates time
and turns into backward ant

5. Returns by same route, updating routing
tables
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Some Applications of ACO

* Routing in telephone networks

* Vehicle routing

* Job-shop scheduling

* Constructing evolutionary trees from
nucleotide sequences

* Various classic NP-hard problems

— shortest common supersequence, graph
coloring, quadratic assignment, ...
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Improvements as Optimizer

¢ Can be improved in many ways

* E.g., combine local search with ant-based
methods

* As method of stochastic combinatorial
optimization, performance is promising,
comparable with best heuristic methods

* Much ongoing research in ACO

* But optimization is not a principal topic of
this course
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Average Node Branching Number

Average node branching

Cycles

0 506 2000 1500 2000 2500 300

¢ Branching number = number of edges leaving a node with
pheromone > threshold

¢ Branching number = 2 for fully converged solution
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The Nonconvergence Issue

* AS often does not converge to single
solution

¢ Population maintains high diversity

¢ A bug or a feature?

* Potential advantages of nonconvergence:
— avoids getting trapped in local optima
— promising for dynamic applications

¢ Flexibility & robustness are more important
than optimality in natural computation
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Natural Computation

Natural computation is computation that
occurs in nature or is inspired by

computation occurring in nature
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Optimization
in Natural Computation

¢ Good, but suboptimal solutions may be
preferable to optima if:
— suboptima can be obtained more quickly
— suboptima can be adapted more quickly
— suboptima are more robust
— an ill-defined suboptimum may be better than a
sharp optimum
» “The best is the enemy of the good”

(Le mieux est 1" ennemi du bien. — Voltaire)
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Robust Optima
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Effect of Error/Noise
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