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A. Cellular Automata
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Cellular Automata (CAs)

• Invented by von Neumann in 1940s to study 
reproduction

• He succeeded in constructing a self-reproducing 
CA

• Have been used as:
– massively parallel computer architecture
– model of physical phenomena (Fredkin, Wolfram)

• Currently being investigated as model of quantum 
computation (QCAs)
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Structure
• Discrete space (lattice) of regular cells

– 1D, 2D, 3D, …
– rectangular, hexagonal, …

• At each unit of time a cell changes state in 
response to:
– its own previous state 
– states of neighbors (within some “radius”)

• All cells obey same state update rule
– an FSA

• Synchronous updating
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Example:
Conway’s Game of Life

• Invented by Conway in late 1960s
• A simple CA capable of universal computation
• Structure:

– 2D space (periodic or unbounded)
– rectangular lattice of cells
– binary states (alive/dead)
– neighborhood of 8 surrounding cells (& self)
– simple population-oriented rule
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State Transition Rule

• Live cell has 2 or 3 live neighbors 
– stays as is (stasis)

• Live cell has < 2 live neighbors 
– dies (loneliness)

• Live cell has > 3 live neighbors 
– dies (overcrowding)

• Empty cell has 3 live neighbors 
– comes to life (birth)
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Demonstration of Life

Run NetLogo Life
or

<web.eecs.utk.edu/~mclennan/Classes/420-527/NetLogo/Life.html>



Breeder using Golly

2/1/18 8http://golly.sourceforge.net/
(videos: https://www.youtube.com/playlist?list=PLu9PfMOtQsVzSbY8zh0YLKnT4aLMY4rTh )



Banner
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Life Simulating Life
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Universal Turing Machine
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Some Observations About Life

1. Long, chaotic-looking initial transient
– unless initial density too low or high

2. Intermediate phase
– isolated islands of complex behavior
– matrix of static structures & “blinkers”
– gliders creating long-range interactions

3. Cyclic attractor
– typically short period
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From Life to CAs in General

• What gives Life this very rich behavior?

• Is there some simple, general way of 
characterizing CAs with rich behavior?

• It belongs to Wolfram’s Class IV
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Wolfram’s Classification

• Class I: evolve to fixed, homogeneous state
~ limit point

• Class II: evolve to simple separated periodic 
structures
~ limit cycle

• Class III: yield chaotic aperiodic patterns
~ strange attractor (chaotic behavior)

• Class IV: complex patterns of localized structure
~ long transients, no analog in dynamical systems
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Langton’s Investigation

Under what conditions can we expect a 
complex dynamics of information to emerge 

spontaneously and come to dominate the 
behavior of a CA?
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Approach

• Investigate 1D CAs with:
– random transition rules
– starting in random initial states

• Systematically vary a simple parameter 
characterizing the rule

• Evaluate qualitative behavior (Wolfram 
class)
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Why a Random Initial State?
• How can we characterize typical behavior 

of CA?
• Special initial conditions may lead to 

special (atypical) behavior
• Random initial condition effectively runs 

CA in parallel on a sample of initial states
• Addresses emergence of order from 

randomness
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Assumptions
• Periodic boundary conditions

– no special place
• Strong quiescence:

– if all the states in the neighborhood are the same, then 
the new state will be the same

– persistence of uniformity
• Spatial isotropy:

– all rotations of neighborhood state result in same new 
state

– no special direction
• Totalistic [not used by Langton]:

– depend only on sum of states in neighborhood
– implies spatial isotropy
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Langton’s Lambda
• Designate one state to be quiescent state
• Let K = number of states
• Let N = 2r + 1 = size of neighborhood
• Let T = KN = number of entries in table
• Let nq = number mapping to quiescent state
• Then

€ 

λ =
T − nq
T
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Range of Lambda Parameter

• If all configurations map to quiescent state:
λ = 0

• If no configurations map to quiescent state:
λ = 1

• If every state is represented equally:
λ = 1 – 1/K

• A sort of measure of “excitability”



2/1/18 22

Example

• States: K = 5

• Radius: r = 1

• Initial state: random

• Transition function: random (given λ)
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Demonstration of
1D Totalistic CA

Run NetLogo 1D CA General Totalistic
or

<web.eecs.utk.edu/~mclennan/Classes/420-527/NetLogo/
CA 1D General Totalistic.html>



2/1/18 24

Class I (λ = 0.3)

time



Class I (λ = 0.3) Closeup
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Class II (λ = 0.66)
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Class II (λ = 0.66) Closeup
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Class II (λ = 0.8)
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Class II (λ = 0.8) Closeup
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period = 20



Class II (λ = 0.5)
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Class II (λ = 0.5) Closeup
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Class II (λ = 0.72)
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Class II (λ = 0.31)
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Class II (λ = 0.31) Closeup
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Class III (λ = 0.5)
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Class III (λ = 0.5) Closeup



Class IV (λ = 0.6)
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Class IV (λ = 0.7)
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Class IV (λ = 0.7)
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Class IV (λ = 0.3)
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Class III–IV (λ = 0.9)
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Class IV (λ = 0.34)
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Class IV Shows Some of the 
Characteristics of Computation

• Persistent, but not perpetual storage

• Terminating cyclic activity

• Nonlocal transfer of control and 
information
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A Computational Medium

• Storage of Information

• Transfer of Information

• Modification of Information
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Class IV and Biology

• We expect biological material to exhibit 
Class IV behavior

• Stable
• But not too rigid
• Nonlocal coordination
• Solids, liquids, and “soft matter”
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λ of Life

• For Life, λ ≈ 0.273
• which is near the critical region for CAs 

with:
K = 2
N = 9
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Project 1

• Investigation of relation between Wolfram 
classes, Langton’s λ, and entropy in 1D CAs

• Due Feb. 9
• Information is on Canvas and course website 

(scroll down to “Projects / Assignments”)
• Read it over and email questions or ask in 

class
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Transient Length (I, II)
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Transient Length (III)
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Shannon Information
(very briefly!)

• Information varies directly with surprise
• Information varies inversely with 

probability
• Information is additive
• ∴The information content of a message is 

proportional to the negative log of its 
probability

€ 

I s{ } = −lgPr s{ }
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Entropy
• Suppose have source S of symbols from 

ensemble {s1, s2, …, sN}
• Average information per symbol:

• This is the entropy of the source:

€ 

Pr sk{ }I sk{ } =
k=1

N
∑ Pr sk{ } −lgPr sk{ }( )

k=1

N
∑

€ 

H S{ } = − Pr sk{ }lgPr sk{ }
k=1

N
∑
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Maximum and Minimum 
Entropy

• Maximum entropy is achieved when all 
signals are equally likely
No ability to guess; maximum surprise
Hmax = lg N

• Minimum entropy occurs when one symbol 
is certain and the others are impossible
No uncertainty; no surprise
Hmin = 0
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Entropy Examples
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Entropy of Transition Table
• Among other things, entropy is a way to 

measure the uniformity of a distribution

• Distinction of quiescent state is arbitrary
• Let nk = number mapping into state k
• Then pk = nk / T€ 

H = − pi lg pi
i
∑

€ 

H = lgT − 1
T

nk lgnk
k=1

K

∑
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Entropy Range
• Maximum entropy (λ = 1 – 1/K):

uniform as possible
all nk = T/K
Hmax = lg K

• Minimum entropy (λ = 0 or λ = 1):
non-uniform as possible
one ns = T
all other nr = 0 (r ≠ s)
Hmin = 0
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Further Investigations by 
Langton

• 2-D CAs
• K = 8
• N = 5
• 64 � 64 lattice
• periodic boundary conditions
• measure average cell entropy

– after 500 steps
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Avg. Cell Entropy vs. λ
(K=8, N=5)

• ! =
− ∑ %& lg %&)

&*+

• 1st order phase 
transition
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Avg. Cell Entropy vs. λ
(K=8, N=5)
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Avg. Cell Entropy vs. λ
(K=8, N=5)
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Avg. Cell Entropy vs. ∆ λ
(K=8, N=5)
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Avg. Cell Entropy vs. λ
(K=8, N=5)
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Avg. Cell Entropy vs. ∆ λ
(K=8, N=5)
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Entropy of Independent Systems
• Suppose sources A and B are independent
• Let pj = Pr{aj} and qk = Pr{bk}
• Then Pr{aj, bk} = Pr{aj} Pr{bk} = pjqk

H (A,B) = − Pr aj,bk( ) lgPr aj,bk( )
j,k
∑

= − pjqk lg pjqk( )
j,k
∑ = − pjqk lg pj + lgqk( )

j,k
∑

= − pj lg pj
j
∑ − qk lgqk

k
∑ = H (A)+H (B)
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Mutual Information
• Mutual information measures the degree to 

which two sources are not independent
• A measure of their correlation

€ 

I A,B( ) = H A( ) + H B( ) −H A,B( )
• I(A,B) = 0 for completely independent 

sources
• I(A,B) = H(A) = H(B) for completely 

correlated sources



2/1/18 69

Avg. Mutual Info vs. λ
(K=4, N=5)

I(A,B) =
H(A) + H(B)
– H(A,B)
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Avg. Mutual Info vs. ∆ λ
(K=4, N=5)
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Mutual Information vs. 
Normalized Cell Entropy
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Critical Entropy Range

• Information storage involves lowering
entropy

• Information transmission involves raising
entropy

• Information processing requires a tradeoff 
between low and high entropy
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Avg. Transient Length vs. λ
(K=4, N=5)
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Complexity vs. λ



Phase Transitions
• First-order phase transitions

– Change (first derivative) is discontinuous
• Second-order (continuous) phase transitions

– Change (first derivative) is continuous, but 
second derivative is discontinuous

– Infinite correlation lengths
– Critical slowing (long transients)
– Statistical measure converge poorly (wide 

distributions)
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Computation and Second-order 
Phase Transitions

• Long transients and long correlation lengths
• Difficulty predicting ultimate state (halting 

problem)
• Computation requires information storage and 

transmission
– correlation too weak ⇒ independent sites
⇒ little transmission

– correlation too strong ⇒ distant sites mimic each other
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Schematic of
CA Rule Space vs. λ

Fig. from Langton, “Life at Edge of Chaos”

1st order phase transition

2nd order phase transition



Compression-based Techniques

• Idea: lossless compression (e.g., Lempel-Ziv) 
approximates program-size complexity of a string

• Compare compressed and uncompressed histories
ü comp ≪ uncomp ⇒ classes I or II
ü comp ≈ uncomp ⇒ classes III or IV

• Hector Zenil, “Compression-Based Investigation of the Dynamical 
Properties of Cellular Automata and Other Systems,” Complexity, 19
(2010).
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Difference Patterns
• Sensitivity to initial conditions is characteristic of 

chaotic systems
• Difference patterns show the difference between 

evolutions from slightly different initial states
• Difference pattern spreading rate !:

– Little spread for small λ
– Jumps at "#
– Roughly constant rate for large λ
– Complex behavior associated 

with intermediate values
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80 IV. L i  et al. // Transit ion phenomena in CA 

ized by long t ransients  and complex space- t ime 
patterns,  including both  oscillating and propagat-  
ing structures.  This class is also characterized by 
a lack of statistical convergence, for it is not clear 
that  the assumptions needed for computa t ion  Of 
statistics hold for this class of rules. When compu- 
tat ion of statistics is a t tempted ,  entropy is mod- 
erate, the spreading rate is roughly zero, and the 
mutual  information is large. 

This classification scheme refines Wolfram's  
four classes. Roughly, class 1 above corresponds 
to Wolfram's  class I, classes 2, 3, and 4 consti tute 
Wolfram's  class II, class 5 is equivalent to Wol- 
f ram's  class III ,  and class 6 is Wolfram's  class IV. 

3. T h e  transition using difference patterns 

1( 

• 8 .  

6" 

4. 

2. 

0" 

-2" 
.2 

Fig. 2. Difference pa t te rn  spreading rate averaged over 200 
r ---- 7 rules, with each pa th  into chaos aligned to the point  
on the pa th  where 7 is larger than  a threshold  value of 2. 

One statistical quanti ty that  distinguishes 
chaotic behavior from ordered behavior is ob- 
tained from the average asymptot ic  motion of the 
difference pat tern  (see appendix A.1 for a defi- 
nition). This motion generally describes how two 
configurations tha t  are different on part  of the lat- 
tice and the same on another  part ,  become either 
increasingly different or increasingly the same un- 
der the action of the cellular au tomaton  rule. 

We compute  the difference pa t te rn  spreading 
rate, ~,, along a pa th  in the space of rules, where 
each successive rule on the path  has a higher value 
of )~ (more l ' s  in the rule table) than the previous 
one. We may choose an arbi t rary  threshold for q,, 
above which we will say the rule is chaotic. The 
first rule on the pa th  having "y above the threshold 
is the "transit ion point" for that  path.  

As discussed below, not all paths undergo a 
transit ion at the same value of A. Fig. 2 shows 
the transit ion to chaos averaged over many  paths,  
where these paths are aligned by their transit ion 
points. Most paths exhibit a sharp j ump  in ~, at 
the transit ion point. However, a few paths exhibit 
intermediate values of ~,; these are class 6 rules 
(complex rules), which exhibit the most irregular 
statistics. 

For small ~, per turbat ions  hardly ever spread, 
for large ~ per turbat ions  always spread at roughly 
the same rate. Thus,  away from the transit ion re- 
gion, any part icular  value of ~ is associated with 
a very narrow range of spreading rates. However, 

at the transition, one sees a wide range of possible 
spreading rates. 

4. T r a n s i t i o n  to  c h a o s  using entropy 

The most commonly used quanti ty for measur- 
ing randomness is entropy (see appendix A.2 for 
the definition). For spatially homogeneous fixed 
point rules, the entropy calculated from the spa- 
tial tempora l  pat tern  is zero. For periodic rules, 
the entropy value is non-zero but low. For random 
rules, all possible configurations can occur and the 
entropy reaches its maximum.  

Fig. 3a shows the single site entropy as a func- 
tion of)~ for 50 different paths through the space of 
possible 2D, 8-state, 5-neighbor cellular au tomata .  
The square lattice has 64 cells on a side, the first 
500 transients are discarded, and the next 500 pat- 
terns are used to accumulate single site probabili- 
ties. There are some restrictions on the rules being 
chosen: the all-zero neighborhood maps  to zero, 
and the rules are symmetr ic  with respect to pla- 
nar rotat ions [6]. As expected, the entropy gener- 
ally increases with increasing )~, and one usually 
observes a sharp j ump  in the entropy at the tran- 
sition from regular to chaotic dynamics.  

The entropy reaches its maximum value Smax = 
log2(8 ) = 3.0 at ~ = 7 /8 ,  when the rule tables are 
filled randomly and uniformly with respect to all 
8 states. (For 2-state cellular au tomata ,  Sm~x = 
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Demonstration of
1D Totalistic CA

Difference Patterns

Run CA 1D General Totalistic Dif



Wolfram Classes in Terms of 
Compressibility and Sensitivity

• Class I
– Highly compressible
– Insensitive to initial 

conditions
• Class II

– Highly compressible
– Sensitive to initial 

conditions

• Class III
– Minimally compressible
– Insensitive to initial 

conditions
• Class IV

– Minimally compressible
– Sensitive to initial 

conditions
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Mean Field Approximations
• Assume states are uncorrelated
• Let q = density of quiescent states and ! = 1 − %

be density of non-quiescent states
• Density of quiescent at next step is 

%& = %' + (1 − %')(1 − +)
• Stationary value of q given by:

% = %' + 1 − %' 1 − +
• Can solve easily for λ in terms of q (but not vice 

versa):

+ = 1 − %
1 − %'2/1/18 82



Mean Field Estimates of
Non-quiescence

• Estimated ! = 1 − % as 
function of λ

• N = 3, 5, 7, 9
(r = 1, 2, 3, 4 for 1D)

• Note complete quiescence 
below a critical λ value

• With larger neighborhoods 
expect non-quiescence
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Mean Field Entropy 
Approximation

• Recall ! = ∑ $% lg $%%
• Probability of quiescent state $( = )
• Assumed equal probability on non-quiescent 

states: $% = *+,
-+*

• Estimated entropy:

! = − ) lg ) + 0 − 1 1 − )
0 − 1 lg

1 − )
0 − 1

= − ) lg ) + 1 − ) lg 1 − )0 − 1
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MF Estimate of Entropy vs. λ

• Estimated entropy for N = 
3, 5, 7, 9 (K = 4)

• Estimated entropy for K = 2, 
4, 8 (N = 5)

• Note that with strong 
quiescence ! ≤ ($ − 1) $⁄
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Empirical Entropy vs. λ
• 2D CAs, 64�64
• K = 8
• N = 5 (von Neumann nbd)
• For each λ, 100 rule tables were 

constructed at random (rotation 
invariant)

• Each CA was run for 500 time 
steps before measuring entropy

• Entropy measured over 1000 
steps

• Wooters & Langton (1990)

98 W.K. Wootters and C.G. Langton / Deterministic cellular automata 

dicted density o f  nonzero symbols, 1 - u, is plotted 
as a function o f  2 in fig. 2. To estimate the entropy, 
we simply assume that all seven nonzero symbols ap- 
pear equally often, so that the entropy is related to u 
by the equation 

. 

This estimate o f  the average entropy is plotted against 
2 in fig. 3. Notice that the curve does go roughly 
through the middle o f  the actual data. But to account 
for the spread in the data, we clearly need to be more 
sophisticated. 

4. More sophisticated mean-field theory 
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In the above calculation, the rule table was char- 
acterized by the value o f  a single parameter, 2. Fol- 
lowing Wolfram [ 9 ] and Gutowitz et al. [ 10 ], we now 
make a more refined characterization o f  the rule ta- 
ble. Let bj be defined as follows: For a given rule ta- 
ble, consider all the neighborhood configurations 
containing exactly j zeros; bj is the fraction o f  these 

O 
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Fig. 2. Density of  nonzero symbols as a function of  2, as pre- 
dicted by simple mean-field theory. 

Fig. 3. The solid curve is the single-site entropy as predicted by 
simple mean-field theory. The dots  are the observed values, just  
as in fig. I. 

which are mapped to zero. In effect we are breaking 
up the rule table into six sections ( j = 0  to 5), such 
that in each section all the neighborhood configura- 
tions have the same number  of  zeros. The quantity 
1 - b j  is like a "local" 2 for the j th  section. Once one 
knows the set {bj}, one can easily compute  the value 
of  2 for the whole rule table, but the converse is not 
true. A given value o f  2 is consistent with many pos- 
sible sets {bj}. 

Our  strategy now is simple. Knowing that for each 
value o f  2 the rules were chosen at random, we can 
find the distribution o f  the bfs for each 2. For each 
set {b~} we can compute the mean-field-predicted 
value o f  the entropy. Because there are many sets {bj} 
for each value of  2, there will be a range of  entropy 
values for each 2. Our  question is whether this range 
agrees with the observed range of  values. 

First let us write down the mean-field equation for 
the density u o f  zeros, using the more refined esti- 
mates o f  probabilities provided by the bj's. We write 
the equation in terms of  arbitrary values of  n and k, 
since we are ultimately interested in knowing how 
things depend on these quantities. For a given site, 
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Mean Field Estimate of Spreading Rate
• Max possible rate is !"#$ = 2'
• For binary CA, probability two block map to same state: 

( = )* + (1 − ))*
• Probability they map to different:

1 − ( = 2)(1 − ))
• Can show that average spread rate is:

! = 2 ' − (
1 − ( = 2 ' + 1 ) − 2 ' + 1 )* − 1

)(1 − ))
• Set ! = 0 and to find when becomes positive:

)12 =
1
2 −

1
2 1 − 2

' + 1
2/1/18 87
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MF Estimates of !"
MF estimated entropy for 
N = 3, 5, 7, 9 (K = 4)

Critical lambda from MF 
estimated spread rate (K = 2)

• For # = 3, ' = 1, )	 = 	0.5
• For # = 5, ' = 2, )	 = 	0.211
• For # = 7, ' = 3, )	 = 	0.146
• For # = 9, ' = 4, )	 = 	0.113
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Reversible CAs (RCAs)

• Most CAs are irreversible
– By approaching an attractor they lose information about the initial

state
– They mix information from remote sites

• The fundamental laws of nature are time-reversible
– Newtonian mechanics
– Quantum mechanics

• Reversible computation is required by:
– Ultralow power computation (below Landauer limit)
– Quantum computation
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Some Definitions and Results
• Global state vs. local (or neighborhood) state/configuration
• Global transition function F vs. local transition function f (or rule)
• A CA is injective if F is 1-1

– Every global state has exactly one predecessor
• A CA is reversible (or invertible) if there is a CA with the global

function !"#
• Thm: A CA is reversible iff it is injective
• If a reversible CA has the same rule as its inverse, then we call it a 

reversible rule
– The rule is time-reversal invariant like the laws of physics

• Thm: Reversibility of 1D CAs is decidable
• Thm: Reversibility for 2 or higher dimensional CAs is undecidable
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Second-order RCAs
• Idea: Let the neighborhood determine a reversible change

from the preceding cell state:
!" # + 1 = ' ( " # ⊖ !" # − 1

where !" is the state of cell i
and (["] is the state of the nbd of cell i
and ⊖ is mod K subtraction

• Note time-reversal invariance:
!" # − 1 = ' ( " # ⊖ !" # + 1

• First-order CAs determine new state from previous state
• Second-order CAs determine new state from previous two

states
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Demonstration of
Second-order RCA

Run CA 1D Reversible H



Generalization of 2nd-order RCA

• The formula !" # + 1 = ' ( " # ⊖ !" # − 1 uses 

' ( " # to select a rotation of the state space 
[0, 1, … , / − 1]

• A rotation is a special case of a permutation

• Idea: Since permutations are invertible, use ' ( " # to
choose a permutation on the state space.

• The inverse rule  applies the inverse permutation 

' ( " #
12
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Reducing 2nd-order to 1st-order
• A second order RCA can be reduced to a first 

order RCA
• Just expand the state space from K to !" to 

include a record of the previous state:
#$ % + 1 = #$) % + 1 , #$))(% + 1)
= #$) % + 1 , #$)(%)

• First-order update equation:
#$ % + 1 = -(.[$]) % ) ⊖ #$)) % , #$)(%)

• To reverse RCA, exchange components
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Partitioned CA (PCA)
• Each cell divided into several compartments
• Extra compartments save info needed for reversibility
• 1D case: next state determined by center part and nearest 

parts of neighbors: 
!", $", %" = '(%, $, !)

• Global function is injective iff local function is injective
• Can be simulated by ordinary CA on extended state space
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The notion of a finite (or infinite) configura-
tion is defined similarly as in CA. Let

pi : Q ! Qi be the projection function such that

pi q1, . . . ,qmð Þ ¼ qi for all q1, . . . ,qmð Þ�Q. The
global function F : Conf Qð Þ ! Conf Qð Þ of P is

defined as the one that satisfies the following

formula:

8a�Conf Qð Þ, x�ℤk : F að Þ xð Þ ¼
f p1 a xþ n1ð Þð Þ, . . . ,pm a xþ nmð Þð Þð Þ

By the above definition, a one-dimensional radius

1 (three-neighbor) PCA P1d can be defined as

follows:

P1d ¼ ℤ, L,C,Rð Þ, 1, 0, % 1ð Þ, f , #, #, #ð Þð Þ

Each cell is divided into three parts, i.e., left,
center, and right parts, and their state sets are L,
C, and R. The next state of a cell is determined by

the present states of the left part of the right-
neighbor cell, the center part of this cell, and the

right part of the left-neighbor cell (not depending

on the whole three parts of the three cells).
Figure 3 shows its cellular space and how the

local function f works.

Let l, c, rð Þ, l0, c0, r0ð Þ� L& C& R . If

f l, c, rð Þ ¼ l0, c0, r0ð Þ; then this equation is called

a local rule (or simply a rule) of the PCA P1d, and
it is sometimes written in a pictorial form as

shown in Fig. 4. Note that, in the pictorial repre-

sentation, the arguments of the left-hand side of

f l, c, rð Þ ¼ l0, c0, r0ð Þ appear in a reverse order.

Similarly, a two-dimensional PCA P2d with
Neumann-like neighborhood is defined as

follows.

P2d ¼ ℤ2, C,U,R,D, Lð Þ
!

,
0, 0ð Þ, 0, % 1ð Þ, %1, 0ð Þ, 0, 1ð Þ, 1, 0ð Þð Þ,

f , #, #, #, #, #ð ÞÞ

Figure 5 shows the cellular space of P2d and a

pictorial representation of a rule

f c, u , r, d , lð Þ ¼ c0, u0, r0, d0, l0ð Þ:
Let P ¼ ℤk Q1, . . . ,Qmð Þ n1, . . . ,nmð Þ,

!

f ; #1, . . . , #mð ÞÞ be a k-dimensional PCA and

F be its global function. It is easy to show the

following proposition (a proof for the
one-dimensional case given in (Morita and

Harao 1989) can be extended to higher

dimensions).

Proposition 7 The local function f is one-to-one
iff the global function F is one-to-one.

It is also easy to see that the class of PCAs is a

subclass of CAs. More precisely, the following

proposition is derived by extending the domain of
the local function of P.
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2-dimensional PCA

Proposition 8 For any k-dimensional

m-neighbor PCA P, we can obtain a
k-dimensional m-neighbor CA A whose global

function is identical with that of P.
By the above proposition, if we want to con-

struct an RCA, it is sufficient to give a PCA

whose local function f is one-to-one. This makes

a design of an RCA feasible.

Simulating Irreversible Cellular Automata by
Reversible Ones
Toffoli (1977) first showed that for every irre-

versible CA, there exists a reversible one that
simulates the former by increasing the dimension

by one. From this result, computational univer-

sality of two-dimensional RCA is derived, since
it is easy to embed a Turing machine in a

(irreversible) one-dimensional CA.

Theorem 9 For any k-dimensional (irreversible)
CA A, we can construct a k + 1-dimensional RCA

A0 that simulates A in real time (Toffoli 1977).

Although Toffoli’s proof is rather complex,
the idea of the proof is easily implemented by

using a PCA. Here we explain it informally. Con-

sider a one-dimensional three-neighbor irrevers-
ible CA A that evolves as in Fig. 6. Then, we can

construct a two-dimensional reversible PCA

P that simulates A as shown in Fig. 7. The con-
figuration of A is kept in some row of P. A state of

each cell of A is stored in left, center, and right

parts of a cell in P in triplicate. By this, each cell
of P can compute the next state of the

corresponding cell of A correctly. At the same

time, the previous states of the cell and the left-
and right-neighbor cells (which were used to

compute the next state) are put downward as a

“garbage” signal to keep P reversible. In other
words, the additional dimension is used to record

all the past history of the evolution of A. In this

way, P can simulate A reversibly.
As for one-dimensional CA with finite config-

uration, reversible simulation is possible without
increasing the dimension.

Theorem 10 For any one-dimensional
(irreversible) CA A with finite configurations, we

can construct a one-dimensional RCA A0 that sim-

ulates A (but not in real time) (Morita 1995).
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an evolution in an irreversible one-dimensional CA A
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Simulation of CAs by RCAs

• It’s easy to construct RCAs
• Every RCA can be simulated by an ordinary 

CA (on bigger state space)
• Any d dimensional CA can be simulated in 

real time by a d+1 dimensional RCA
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Example: Simulation of 1D CA by 2D PCA

1-D Universal Reversible Cellular
Automata

Simulating Reversible Turing Machines by
1-D RCAs
It is possible to prove computational universality
of one-dimensional RCAs by constructing RCAs

that can simulate reversible Turing machines

directly. Here, we first give definitions on revers-
ible Turingmachines and then show how they can

be simulated by RCAs.

Bennett (1973) showed a nice construction
method of a reversible Turing machine that sim-

ulates a given irreversible Turing machine and

never leaves garbage signals on its tape at the end
of computation. We now give a definition of a

one-tape Turing machine and its reversible

version (a multi-tape reversible Turing machine

can be also defined similarly). It is convenient
to use quadruple formalism (Bennett 1973) of a

Turing machine to define a reversible one.

Definition 11 A one-tape Turing machine
(TM) is defined by

T ¼ Q,S, q0, qa, qr, s0, dð Þ;

where Q is a nonempty finite set of states, Sis a

nonempty finite set of symbols, q0 is an
initial state q0 �Qð Þ , qa is an accepting state

qa �Qð Þ , qr is a rejecting state qr �Qð Þ , s0
is a special blank symbol s0 �Sð Þ , and d is a

move relation which is a subset of

Reversible Cellular Automata, Fig. 7 Simulating the irreversible CA A in Fig. 6 by a two-dimensional reversible
PCA P
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Proposition 8 For any k-dimensional

m-neighbor PCA P, we can obtain a
k-dimensional m-neighbor CA A whose global

function is identical with that of P.
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struct an RCA, it is sufficient to give a PCA

whose local function f is one-to-one. This makes

a design of an RCA feasible.
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Toffoli (1977) first showed that for every irre-

versible CA, there exists a reversible one that
simulates the former by increasing the dimension

by one. From this result, computational univer-

sality of two-dimensional RCA is derived, since
it is easy to embed a Turing machine in a

(irreversible) one-dimensional CA.

Theorem 9 For any k-dimensional (irreversible)
CA A, we can construct a k + 1-dimensional RCA

A0 that simulates A in real time (Toffoli 1977).

Although Toffoli’s proof is rather complex,
the idea of the proof is easily implemented by

using a PCA. Here we explain it informally. Con-

sider a one-dimensional three-neighbor irrevers-
ible CA A that evolves as in Fig. 6. Then, we can

construct a two-dimensional reversible PCA

P that simulates A as shown in Fig. 7. The con-
figuration of A is kept in some row of P. A state of

each cell of A is stored in left, center, and right

parts of a cell in P in triplicate. By this, each cell
of P can compute the next state of the

corresponding cell of A correctly. At the same

time, the previous states of the cell and the left-
and right-neighbor cells (which were used to

compute the next state) are put downward as a

“garbage” signal to keep P reversible. In other
words, the additional dimension is used to record

all the past history of the evolution of A. In this

way, P can simulate A reversibly.
As for one-dimensional CA with finite config-

uration, reversible simulation is possible without
increasing the dimension.

Theorem 10 For any one-dimensional
(irreversible) CA A with finite configurations, we

can construct a one-dimensional RCA A0 that sim-

ulates A (but not in real time) (Morita 1995).
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• Extra dimension 
holds history

• One row simulates
CA and pushes
nbd state down

• History rows keep
shifting it down



Reversible Universal Computation

• Any TM can be simulated by a CA
– In particular, by a 1D CA

• Any CA can be simulated by an RCA
– In particular, a 1D CA can be simulated in real-time by 

a 2D RCA
• Therefore, any TM can be simulated by a 2D RCA
• Therefore, RCAs are capable of universal 

computation
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Example of 2D RCA Capable of 
Universal Computation

• Two-state block CA
– 1-1 rules apply in

overlapping blocks
• Rotation symmetry 

assumed
• Can simulate:

– reversible logic gates
– billiard ball model

• For more, take COSC 494/594
Unconventional Computation

applied to every solid line block, then at time 1 to
every dotted line block, and so on, alternately.

Since this local transformation is one-to-one, the
global function of the CA is also one-to-one.

Such a neighborhood is called Margolus

neighborhood.
One can obtain reversible CAs by giving

one-to-one block rules. However, CAs with

Margolus neighborhood are not conventional
CAs, because each cell should know the relative

position in a block and the parity of time besides

its own state.
Related to this topic, Kari (1996) showed that

every one- and two-dimensional RCA can be

represented by block permutations and
translations.

Partitioned Cellular Automata
The method of using partitioned cellular autom-

ata (PCA) has some similarity to the one that uses

block rules. However, resulting reversible CAs
are in the framework of conventional CA

(in other words, a PCA is a special case of a

CA). In addition, flexibility of neighborhood is
rather high. The shortcoming of PCA is that, in

general, the number of states per cell becomes

large.

Definition 6 A deterministic k-dimensional m-
neighbor partitioned cellular automaton (PCA) is
a system defined by

P¼ ℤk, Q1, . . . ,Qmð Þ, n1, . . . ,nmð Þ, f , #1, . . . ,#mð Þ
! "

;

where ℤ is the set of all integers,Qi (i = 1,. . .,m)
is a nonempty finite set of states of the i-th part of
each cell (thus the state set of each cell is

Q¼Q1$ %% %$QmÞ; n1, . . . ,nmð Þ� ℤk
! "m

is a

neighborhood, f :Q!Q is a local function, and
#1, . . . ,#mð Þ�Q is a quiescent state satisfying

f #1, . . . ,#mð Þ ¼ #1, . . . ,#mð Þ. (In general, the states
#1,. . ., #mmay be different from each other. How-
ever, by renaming the states in each part appro-

priately, we can identify the states #1,. . .,#m as

representing the same state #. In what follows, we
often assume so and write the quiescent state by

(#, . . ., #).)

Reversible Cellular
Automata, Fig. 2 Block
rules for the Margolus RCA
(Margolus 1984) (Rotation
symmetry is assumed here.
Hence, rules obtained by
rotating both sides of a rule
are also included)

Reversible Cellular Automata, Fig. 1 A cellular space
with the Margolus neighborhood

Reversible Cellular Automata 5
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Suitable Media for Computation
• How can we identify/synthesize novel 

computational media?
– especially nanostructured materials for 

massively parallel computation
• Seek materials/systems exhibiting Class IV 

behavior
– may be identifiable via entropy, mut. info., etc.

• Find physical properties (such as λ) that can 
be controlled to put into Class IV
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Some of the Work in this Area

• Wolfram: A New Kind of Science
– www.wolframscience.com/nksonline/toc.html

• Langton: Computation/life at the edge of 
chaos

• Crutchfield: Computational mechanics
• Mitchell: Evolving CAs
• and many others…
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Some Other Simple Computational 
Systems Exhibiting the Same Behavioral 

Classes
• CAs (1D, 2D, 3D, 

totalistic, etc.)
• Mobile Automata
• Turing Machines
• Substitution Systems
• Tag Systems
• Cyclic Tag Systems

• Symbolic Systems 
(combinatory logic, 
lambda calculus)

• Continuous CAs 
(coupled map lattices)

• PDEs
• Probabilistic CAs
• Multiway Systems
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Universality
• A system is computationally universal if it 

can compute anything a Turing machine (or 
digital computer) can compute

• The Game of Life is universal
• Several 1D CAs have been proved to be 

universal
• Are all complex (Class IV) systems 

universal?
• Is universality rare or common?
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Rule 110: A Universal 1D CA

• K = 2, N = 3
• New state = ¬(p∧q∧r) ∧(q∨r)

where p, q, r are neighborhood states
• Proved by Wolfram
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Fundamental Universality 
Classes of Dynamical Behavior

Classes I, II

“solid”
halt

Class III

“fluid”
Don’t halt

Class IV

“phase transition”
halting problem

space

tim
e
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Wolfram’s Principle of 
Computational Equivalence

• “a fundamental unity exists across a vast range of 
processes in nature and elsewhere: despite all their 
detailed differences every process can be viewed 
as corresponding to a computation that is 
ultimately equivalent in its sophistication” (NKS
719)

• Conjecture: “among all possible systems with 
behavior that is not obviously simple an 
overwhelming fraction are universal” (NKS 721)
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Computational Irreducibility
• “systems one uses to make predictions cannot be 

expected to do computations that are any more 
sophisticated than the computations that occur in 
all sorts of systems whose behavior we might try 
to predict” (NKS 741)

• “even if in principle one has all the information 
one needs to work out how some particular system 
will behave, it can still take an irreducible amount 
of computational work to do this” (NKS 739)

• That is: for Class IV systems, you can’t (in 
general) do better than simulation.



What do CAs have to do with 
bio-inspired computation?

• Cellular automata were motivated by biological cells and 
reproduction

• Living systems display complex, organized behavior
• Yet we have seen that simple, abstract systems such as

CAs display similar complexity
• Thus some of this complex behavior is not unique to living 

things and can appear in non-living systems as well
• CAs help us to see the essence of complex, organized 

behavior, so we are better able to use it in our artificial 
systems
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