C.
 Slime Mold

(Dictyostelium discoideum) "Dicty"

Complete Life Cycle

Self-organization in Bio-inspired Robotics

R. Pfeifer et al., Science 318, 1088-1093 (2007)

Self-copying Robot (2005)

- Hod Lipson, Cornell
- Programmable blocks
- 2 swiveling pyramidal halves
- Magnetic connections
- 10 cm across
- One stack can assemble another

Dicty Videos

- Bonner's videos
- Aggregation
- Life cycle

Amoeba Stage

- Single cell
- Lives in soil
- Free moving
- Engulfs food (bacteria)
- Divides asexually

Amoebas

Aggregation Stage

- Triggered by exhaustion of food
- Aggregate by chemotaxis
- Example: 180 cells
- Time lapse: about 14 hours

Aggregation Stage

- Triggered by exhaustion of food
- Aggregate by chemotaxis
- Form expanding concentric rings and spirals
- Up to 125000 individuals

Spiral Waves

- Spiral accelerate cell aggregation (18 vs. $3 \mu \mathrm{~m} / \mathrm{min}$.)
- Waves propagate $120-60 \mu \mathrm{~m} / \mathrm{min}$.
- 1 frame $=36 \mathrm{sec}$.

Center of Spiral

- Mechanisms of spiral formation are still unclear
- Involves symmetry breaking
- 1 frame $=10 \mathrm{sec}$.

Stream Formation Stage

- Streams result from dependence of wave propagation velocity on cell density
- Breaks symmetry
- As density increases, begin to adhere
- Begin to form mound

Mound Stage

- Cells differentiate
- Some form an elongated finger

Concentric Waves in Mounds

- Concentric or spiral waves
- Mound comprises 10^{3} to 10^{5} cells
- Cells begin to differentiate
- 1 frame $=20 \mathrm{sec}$.

Multiple Centers

- Multiple pacemakers
- Wave fronts mutually extinguish (typical of excitable media)
- One center eventually dominates

Multi-armed Spirals

- This mound has 5 spiral arms
- Up to 10 have been observed

Formation of Acellular Sheath

- Composed of cellulose \& a large glycoprotein
- Covers mound and is left behind slug as trail
- Function not entirely understood:
- protection from nematodes (worms)
- control of diffusion of signaling molecules

Slug Stage

- Prestalk elongates, topples, to form slug
- Behaves as single organism with 10^{5} cells
- Migrates; seeks light; seeks or avoids heat
- No brain or nervous system

Movement of Young Slug

- Time-lapse (1 frame $=10 \mathrm{sec}$.)
- Note periodic up-and-down movement of tip

Movement of Older Slug

- Note rotating prestalk cells in tip
- Pile of anterior-like cells on prestalk/prespore boundary
- Scale bar $=50 \mu \mathrm{~m}, 1$ frame $=5 \mathrm{sec}$.

Migration of Older Slug

- Scale bar $=100 \mu \mathrm{~m}, 1$ frame $=20 \mathrm{sec}$.

Culmination Stage

- Cells differentiate into base, stalk, and spores
- Prestalk cells form rigid bundles of cellulose \& die
- Prespore cells (at end) cover selves with cellulose \& become dormant

Stages of Culmination

Cell Differentiation at Culmination

Early Culmination

- During early culmination all cell in prestalk rotate
- Scale bar $=50 \mu \mathrm{~m}, 1$ frame $=25 \mathrm{sec}$.

Late Culmination

- Vigorous rotation at prestalk/prespore boundary
- Scale bar $=100 \mu \mathrm{~m}, 1$ frame $=10 \mathrm{sec}$.

Fruiting Body Stage

- Spores are dispersed
- Wind or animals carry spores to new territory
- If sufficient moisture, spores germinate, release amoebas
- Cycle begins again

Cooperation and Altruism in Dicty

- Cooperation is essential to Dicty signaling and aggregation
- "Altruism" is essential in stalk formation
- How is cooperation encouraged and cheating discouraged?
- In one case the same gene prevents cheating and allows cohesion
- Green-beard genes?

Microbial Cooperation and Altruism

Emergent Patterns During Aggregation

- a-c. As aggregate, wave lengths shorten
- d. Population divides into disjoint domains
- e-f. Domains contract into "fingers"
(streaming stage)

Belousov-Zhabotinski Reaction

Hodgepodge Machine

Demonstration of Hodgepodge Machine

Run NetLogo B-Z Reaction Simulator

or
Run Hodgepodge simulator at CBN Online Experimentation Center
<mitpress.mit.edu/books/FLAOH/cbnhtml/java.html>

Universal Properties

- What leads to these expanding rings and spirals in very different systems?
- Under what conditions do these structures form?
- What causes the rotation?
- These are all examples of excitable media

Slime Mold Solving Maze

a

$\mathbf{N o n e}$	$\beta 1$	$\beta 2$	$\beta 1$ $\beta 2$	
None	2	0	0	0
$\alpha 1$	0	0	0	0
$\alpha 2$	0	5	6	3
$\alpha 1_{1}$ $\alpha 2$	0	0	0	3

- Different slime mold:

Physarum polycephalum

- Lengths: $\alpha 1$ (41mm), $\alpha 2$ (33), $\beta 1$ (44), $\beta 2$ (45)
- $A G=$ food sources
- (a) initial, (b) exploring possible connections (4 hrs), (c) shortest (4 more)

Slime MoldControlled Robot

- Robot sensors relayed to remote computer
- Light image shines on slime mold
- Slime mold retracts
- Motion tracked and used to control robot
- Physarum polycephalum

Slime Mold Computation of Roman Road Network

