
COSC 420/427/527: Biologically-Inspired Computation

Project 1: “Edge of Chaos” in 1D Cellular Automata
Due: Wednesday, February 6, 11:59 PM

Introduction
In this project you will explore “Edge of Chaos” phenomena (Wolfram class IV 
behavior) in 1D cellular automata.  You will do this by systematically modifying 
randomly generated transition tables and observing the lambda and entropy values 
associated with phase changes in the behavior of the automata.

Experimental Setup

Simulators
You can use an “off the shelf” simulator for this project. One is the NetLogo version on the 
class website: 
<http://web.eecs.utk.edu/~mclennan/Classes/420-527/NetLogo/CA 1D General Totalistic.html>. 
See the instructions on that page about running the simulator on your own computer.

Alternately, you can use the ca simulator provided with Flake’s Computational Beauty of
Nature.  There are several different versions that you can use; see 
<http://mitpress.mit.edu/sites/default/files/titles/content/cbnhtml/home.html>.

Perhaps the best solution is to use the java program hosted on Dr. Van Hornweder’s help 
page: <http://web.eecs.utk.edu/~mclennan/Classes/420-527/projects/project1/ca.html>.  
This page also contains submission instructions, additional tips, and classification 
examples and images. Make sure to look at it carefully before starting on your project!

Finally, if you want, you can implement your own CA simulator; it’s not very hard.  
Since programming the simulator is not part of the assignment, feel free to work together 
to implement a simulator, or share code or ideas.

As I said, it’s up to you which you use.  You will probably be doing some cutting and 
pasting of rule strings between the simulator and your λ-H calculator (see below), so you 
will have to find a way of doing the experiments that is not too tedious.  You might want 
to write a shell script to automate some of the procedure. The program on Van 
Hornweder’s webpage automates almost everything.

-1-

http://web.eecs.utk.edu/~mclennan/Classes/420-527/NetLogo/CA%201D%20General%20Totalistic.html
http://web.eecs.utk.edu/~mclennan/Classes/420-527/projects/project1/ca.html
http://mitpress.mit.edu/sites/default/files/titles/content/cbnhtml/home.html


Table-walk-through Procedure
As explained in class, we cannot simply allow the simulator to pick a random rule string 
with a certain λ value, since there is too much variability between unrelated rule strings.  
Therefore we will use Chris Langton’s table-walk-through method, which involves 
generating a series of rule strings differing only in the number of quiescent entries.  The 
following describes an operational procedure.

Pick a random seed and record it.  See the last page of this handout for a form that you 
can use for recording your experiments (or invent your own spreadsheet); for your 
convenience, a blank form is available online:
<http://web.eecs.utk.edu/~mclennan/Classes/420-527/handouts/Experiment-Record-1.doc>.

Each experiment is conducted on a random rule string.  The easiest way to get this is to 
have your simulator generate one (use the button in the NetLogo simulator, or set 
lambda=1.0 in the ca simulator).  (You can also generate one yourself by picking 12 
random integers in the range 1 to 4, since we exclude the quiescent state; the first number 
is always 0, giving 13 all together.)  Make sure to record your random rule string.

You will now decimate your rule string by zeroing one non-zero entry at a time.  For your
original rule string and for each of the decimated rule strings you will compute a λ, λT, H,
and HT value.  Whether you compute them as you go along or do them all at the end is up
to you; which is easier will probably depend on the cutting-and-pasting or other 
experimental procedure that you have selected.  Note that the NetLogo simulator 
computes them for you.  You will also observe and record the behavior (I, II, III, or IV) 
of the original string and each of its decimations.

For each decimation, randomly select one of the non-zero entries in the rule string and set
it to zero.  Observe the behavior of the resulting CA and record it.  Note: if you are using 
the Java version of the ca simulator, make sure you set lambda=-1 (or any negative 
value) before you enter your decimated string, or it will ignore your string and regenerate 
the undecimated string!  If you are using the NetLogo simulator, just press the Decimate 
button.

I think you should do at least 20 table walk-throughs to have meaningful statistics.  
However, you can do more, and better investigations will earn higher grades.

-2-

http://web.eecs.utk.edu/~mclennan/Classes/420-527/handouts/Experiment-Record-1.doc


Lambda and Entropy Calculations
You will be investigating lambda and entropy values computed in two different ways.  
(The NetLogo simulator computes these for you, but you still need to understand what 
they mean.)  The simplest way gives the totalistic parameters λT  and H T , which are 
based on how frequently each state appears in the totalistic rule table (that is, the rule 
string that you have recorded).  The minimum sum of the neighborhood states is 0 and 
the maximum is N  K−1  , where K is the number of states and N=2 r1  is the size 
of the neighborhood for radius r.  Therefore the size of the totalistic table is
S=N  K−11 .  In your case r = 1 and K = 5, so S = 13.  Let R be the rule table so 

that Rk gives the new state for the sum k of the neighborhood states.  We are interested 

in the distribution of new-state values, so let 

  

ms = Rk | Rk = s{ } , that is, m s  is the 

number of table entries that map into new state s.  The totalistic lambda value λT  is 
simply the fraction of totalistic rule table entries that do not map into the quiescent state 
s = 0: 

λT=
S−m0

S
=1−

m0

S

The entropy of the totalistic rule table is a function of its probability distribution.  
Therefore let p s=ms /S  so that the entropy H T  of the totalistic transition table is 
defined:

H T=−∑
s

ps lg ps ,

where lg x  is the logarithm of x to the base 2.  (Note that 0 lg 0=0 , which you will 
have to handle as a special case since lg 0=−∞ .)
To facilitate comparison with non-totalistic CAs, the λ and H values are usually defined 
over the complete (non-totalistic) transition table, which has T=K N  entries.  However, 
we have an abbreviated rule table, of length N  K−1 1 , which gives the new state
Rk for a sum k; in most cases there are multiple configurations having the same sum.

Therefore, let Ck be the number of neighborhood configurations having the sum k.  For K =
5 and r = 1, Ck is given by the following table:

k 0 1 2 3 4 5 6 7 8 9 10 11 12
Ck 1 3 6 10 15 18 19 18 15 10 6 3 1

Define ns  to be the number of configurations leading to state s:

ns= ∑
{ k∣Rk= s }

C k .

That is, ns  is the total number of configurations that are mapped into state s by the 
corresponding non-totalistic rule table.  The probability of a new state in the complete 
transition table is given by p s=ns/T .  (Note: these p s  are different from the p s  
defined above for H T .)  Then Langton’s λ is defined:

-3-



λ=
T−n0

T
=1−

n0
T
=1−p0 .

The entropy H of the complete transition table is defined:

H =−∑
s

ps lg ps .

Since you will be computing the λ, λT, H, and HT values for each rule table, you will have
to use a program to do it.  This is not an important part of the project, so you can do it in 
any way convenient.  You can implement your own program, or several (or all) of you 
can get together and share a program.  Also, some versions of the ca program will 
compute λ (but not λT, H, and HT) for you.

Additional Work for COSC 427 and 527 Students
If you are taking this course for honors or graduate credit (COSC 427/527), in addition to
the foregoing four parameters, you will need to compute a fifth parameter for the rules 
you test.  But you get to pick or design the parameter.  So think about what property of 
the transition tables might be correlated with the behavior class of a CA and figure out a 
way to compute it.  Your writeup (see below) should include a short (one paragraph) 
motivation for your parameter (i.e., what makes you think that it might be correlated with
behavior) and a description of its computation.  Your parameter might not turn out to be 
very good, but that doesn’t matter; the point is to make a reasonable conjecture and to test
it.  In your writeup, evaluate your new parameter in the same ways you do the others (λ, 
λT, H, HT).

Students taking this course for undergraduate credit (COSC 420) can also do this part, 
which will earn you extra credit.

Writeup

Calculations
Compute the average and standard deviation of the λ, λT, H, and HT values for all 
simulation instances that exhibit class IV behavior.  Which (λ, λT, H, or HT) seems to be a
more reliable indicator of class IV behavior?

Graphs
Make four graphs of behavior vs. λ, λT, H, and HT.  That is, use λ, λT, H, and HT for the 
abscissas (x-axes) of the four graphs.  (COSC 427/527 students should, in addition, make 
graphs of their fifth parameter.)  For the ordinates (y-axes) of the graphs, use the 
following numerical values to indicate qualitative behavior: 0 for classes I and II, 1 for 
class IV, and 2 for class III.  Each of your graphs should show all of your experiments as 
separate curves; try to use colors or other ways of making the curves distinguishable.

Discussion
Draw some conclusions about the range of values of λ, λT, H, and HT that lead to class IV
behavior.  Note any anomalies.  Did you ever observe class I or II behavior at high λ, λT, 
H, and HT values?  Did you ever observe complex (IV) or chaotic (III) behavior at λ, λT, 

-4-



H, and HT values that were otherwise in the simple (I, II) region?  How do you explain 
these anomalies?

Extra Credit
The table above for the number of configurations is given by Ck =D k ,3  , where
D k ,N   is the number of states, each in the range 0 to K−1 , arranged in a 

neighborhood of size N, so that the states add up to k.  (In other words, the number of 

solutions to ∑i=1

N
X i=k , where 0≤X i≤K −1 .)  It can be computed by the following 

equations:

D k ,1 ={1, kK
0, k≥K

   ,

For n1 :

D  k , n =nk−1
k  , kK .

D  k , n =∑
j=0

K −1

D  k− j , n−1  , k≥K .

I will give extra credit to anyone who can find a significantly simpler formula for D and 
prove it is correct.

Submission
Tar or zip your files together and submit them via Canvas. The directory should include 
your report (in .pdf format) and the .csv or Excel experiment sheet.

-5-



Experiment Record: 1D CA “Edge of Chaos”

Your Name:   Bruce MacLennan  .

simulator: [] NetLogo,  NetLogo applet,
       CBN:  java,  unix,  mac,  windows,  other: ______________
K (states) = 5.          r (radius) = 1
wrap:  []          quiescence: []

random seed =   1234567  .          Experiment Number:    1  . 

Random Rule Table:

0 2 1 2 1 4 2 4 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12

Table Walk-through:

Step
Entry

Zeroed
Class λ λT H HT Observations

0 — III 0.992 0.923 1.595 1.669 Complex pattern , near IV
1 1 III 0.968 0.846 1.684 1.727 Same 
2 4 IV 0.848 0.769 1.947 1.834 near III
3 8 I 0.728 0.692 1.988 1.884 Very long IV transient 
4 9 I 0.648 0.615 1.916 1.884 ditto
5 3 I 0.568 0.538 1.833 1.738
6 5 I 0.424 0.462 1.654 1.573
7 10 I 0.376 0.385 1.532 1.489
8 2 I 0.328 0.308 1.360 1.352 dies very quickly from here on down
9 11 I 0.304 0.231 1.235 1.145

10 6 I 0.152 0.154 0.660 0.773
11 12 I 0.144 0.077 0.595 0.391
12 7 I 0 0 0 0

-6-


	Introduction
	Experimental Setup
	Simulators
	Table-walk-through Procedure

	Lambda and Entropy Calculations
	Additional Work for COSC 427 and 527 Students
	Writeup
	Calculations
	Graphs
	Discussion
	Extra Credit

	Submission

