II. Cellular Automata
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Cellular Automata (CASs)

* Invented by von Neumann in 1940s to study
reproduction

* He succeeded in constructing a self-reproducing
CA

 Have been used as:
— massively parallel computer architecture
— model of physical phenomena (Wolfram)

e Currently being investigated as model of quantum
computation (QCAs)
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Structure

* Discrete space (lattice) of regular cells
— 1D, 2D, 3D, ...
— rectangular, hexagonal, ...
e At each unit of time a cell changes state in
response to:
— 1ts own previous state
— states of neighbors (within some “radius”™)
* All cells obey same state update rule
— an FSA

e Synchronous updating
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Example:
Conway’s Game of Life

* Invented by Conway in late 1960s
* A simple CA capable of universal computation

e Structure:
— 2D space
— rectangular lattice of cells
— binary states (alive/dead)
— neighborhood of 8 surrounding cells (& self)

— simple population-oriented rule
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State Transition Rule

e Live cell has 2 or 3 live neighbors
=> stays as 1s (stasis)

e Live cell has <2 live neighbors
=> d1es (loneliness)

e Live cell has >3 live neighbors
= dies (overcrowding)

 Empty cell has 3 live neighbors
= comes to life (reproduction)
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Demonstration of Life

Go to CBN
Online Experimentation Center
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Some Observations About Life

1. Long, chaotic-looking initial transient
— unless initial density too low or high

2. Intermediate phase
— 1solated 1slands of complex behavior

— matrix of static structures & “blinkers”
— gliders creating long-range interactions

3. Cyclic attractor
— typically short period
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From Life to CAs in General

 What gives Life this very rich behavior?

e Is there some simple, general way of

characterizing CAs with rich behavior?

e It belongs to Wolfram’s Class IV
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The four classes of feedback behaviour
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Wolfram’s Classification

e (Class I: evolve to fixed, homogeneous state
~ limit point

e (Class II: evolve to simple separated periodic
structures

~ limit cycle
e (Class III: yield chaotic aperiodic patterns
~ strange attractor (chaotic behavior)

e Class IV: complex patterns of localized structure
~ long transients, no analog in dynamical systems
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Langton’s Investigation

Under what conditions can we expect a
complex dynamics of information to emerge

spontaneously and come to dominate the
behavior of a CA?
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Approach

e Investigate 1D CAs with:

— random transition rules

— starting in random 1nitial states

e Systematically vary a simple parameter
characterizing the rule

e Evaluate qualitative behavior (Wolfram
class)
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Assumptions

e Periodic boundary conditions
— no special place

e Strong quiescence:

— 1f all the states in the neighborhood are the same, then
the new state will be the same

— persistence of uniformity
e Spatial 1sotropy:

— all rotations of neighborhood state result in same new
state

— no special direction

e Totalistic [not used by Langton]:
— depend only on sum of states in neighborhood
— 1mplies spatial 1sotropy
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Langton’s Lambda

* Designate one state to be quiescent state
e Let K =number of states

e Let N=2r + 1 = area of neighborhood

e Let 7= K" = number of entries in table

* Let n, = number mapping to quiescent state

e Then T —n
P q

T

A
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Range of Lambda Parameter

e If all configurations map to quiescent state:
A=0

e If no configurations map to quiescent state:
o=l

o If every state 1s represented equally:
A=1-1/K

* A sort of measure of “excitability”
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Entropy

 Among other things, a way to measure the
uniformity of a distribution

H = _Epilgpi

* Let n, = number mapping into state k

1 K
H=1gT'-— » n lgn,
Tk=1
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Entropy Range

e Maximum entropy:
uniform as possible
all n, =T/K
H_ . =1gkK

e Minimum entropy:
nonuniform as possible
onen,=1T
all othern, =0 (r = s)
H . =0
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Example

e States: K=5
e Radius: r=1
e Initial state: random

e Transition function: random (given A)

8/27/03 18



8/27/03

ClassI (A =0.2)
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Class I (A =0.2) Closeup
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Class II (A =0.4)
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Class II (A = 0.4) Closeup
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Class I (AL =0.31)
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Class II (AL =0.31) Closeup
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Class II (A
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Class II (A = 0.37) Closeup
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Class III (A = 0.5) Closeup
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Class IV (A =0.35)
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Class IV (A =0.35) Closeup
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Class IV Shows Some of the
Characteristics of Computation

e Persistent, but not perpetual storage
 Terminating cyclic activity

e (Global transfer of control/information
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A of Life

e For Life, A =0.273

e which 1s near the critical region for CAs
with:
=2
N=9

8/27/03

37



