II. Cellular Automata

Cellular Automata (CAs)

- Invented by von Neumann in 1940s to study reproduction
- He succeeded in constructing a self-reproducing CA
- Have been used as:
 - massively parallel computer architecture
 - model of physical phenomena (Wolfram)
- Currently being investigated as model of quantum computation (QCAs)

Structure

- Discrete space (lattice) of regular cells
 - 1D, 2D, 3D, ...
 - rectangular, hexagonal, ...
- At each unit of time a cell changes state in response to:
 - its own previous state
 - states of neighbors (within some "radius")
- All cells obey same state update rule
 - an FSA
- Synchronous updating

Example: Conway's Game of Life

- Invented by Conway in late 1960s
- A simple CA capable of universal computation
- Structure:
 - 2D space
 - rectangular lattice of cells
 - binary states (alive/dead)
 - neighborhood of 8 surrounding cells (& self)
 - simple population-oriented rule

State Transition Rule

- Live cell has 2 or 3 live neighbors
 ⇒ stays as is (stasis)
- Live cell has <2 live neighbors
 ⇒ dies (loneliness)
- Live cell has >3 live neighbors
 ⇒ dies (overcrowding)
- Empty cell has 3 live neighbors
 ⇒ comes to life (reproduction)

Demonstration of Life

<u>Go to CBN</u> Online Experimentation Center

Some Observations About Life

- 1. Long, chaotic-looking initial transient
 - unless initial density too low or high
- 2. Intermediate phase
 - isolated islands of complex behavior
 - matrix of static structures & "blinkers"
 - gliders creating long-range interactions
- 3. Cyclic attractor
 - typically short period

From Life to CAs in General

- What gives Life this very rich behavior?
- Is there some simple, general way of characterizing CAs with rich behavior?
- It belongs to Wolfram's Class IV

The four classes of feedback behaviour

(a) Fixed points

(b) Simple periodic orbits

(c) Period-n orbit

(d) Chaos

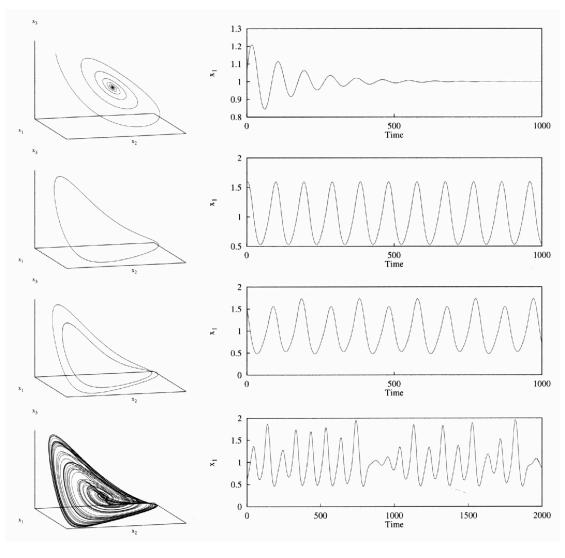


fig. from Flake via EVALife

Wolfram's Classification

- Class I: evolve to fixed, homogeneous state
 ~ limit point
- Class II: evolve to simple separated periodic structures
 - ~ limit cycle
- Class III: yield chaotic aperiodic patterns
 ~ strange attractor (chaotic behavior)
- Class IV: complex patterns of localized structure
 ~ long transients, no analog in dynamical systems

Langton's Investigation

Under what conditions can we expect a complex dynamics of information to emerge spontaneously and come to dominate the behavior of a CA?

Approach

- Investigate 1D CAs with:
 - random transition rules
 - starting in random initial states
- Systematically vary a simple parameter characterizing the rule
- Evaluate qualitative behavior (Wolfram class)

Assumptions

- Periodic boundary conditions
 - no special place
- Strong quiescence:
 - if all the states in the neighborhood are the same, then the new state will be the same
 - persistence of uniformity
- Spatial isotropy:
 - all rotations of neighborhood state result in same new state
 - no special direction
- Totalistic [not used by Langton]:
 - depend only on sum of states in neighborhood
 - implies spatial isotropy

Langton's Lambda

- Designate one state to be quiescent state
- Let *K* = number of states
- Let N = 2r + 1 = area of neighborhood
- Let $T = K^N$ = number of entries in table
- Let n_q = number mapping to quiescent state
- Then

$$\lambda = \frac{T - n_q}{T}$$

Range of Lambda Parameter

- If *all* configurations map to quiescent state: $\lambda = 0$
- If *no* configurations map to quiescent state: $\lambda = 1$
 - If every state is represented *equally*: $\lambda = 1 - 1/K$
 - A sort of measure of "excitability"

Entropy

• Among other things, a way to measure the uniformity of a distribution

$$H = -\sum_{i} p_{i} \lg p_{i}$$

• Let n_k = number mapping into state k

$$H = \lg T - \frac{1}{T} \sum_{k=1}^{K} n_k \lg n_k$$

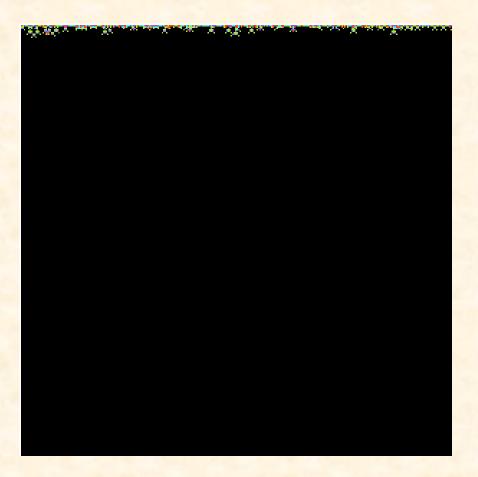
Entropy Range

- Maximum entropy: uniform as possible all $n_k = T/K$ $H_{max} = \lg K$
- Minimum entropy: nonuniform as possible one $n_s = T$ all other $n_r = 0$ ($r \neq s$) $H_{\min} = 0$

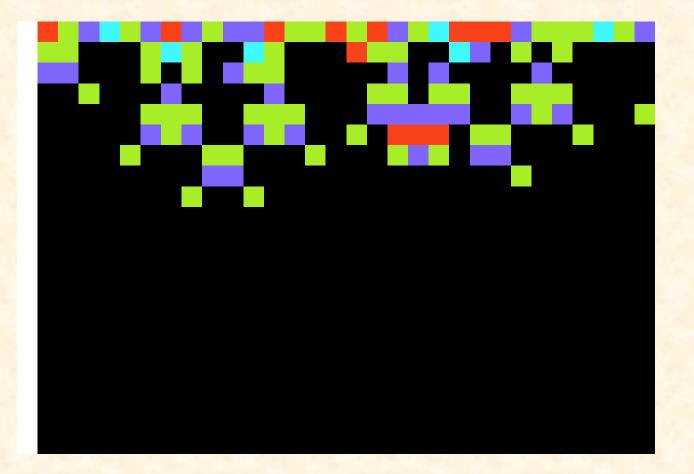
Example

- States: K = 5
- Radius: r = 1
- Initial state: random
- Transition function: random (given λ)

Class I ($\lambda = 0.2$)



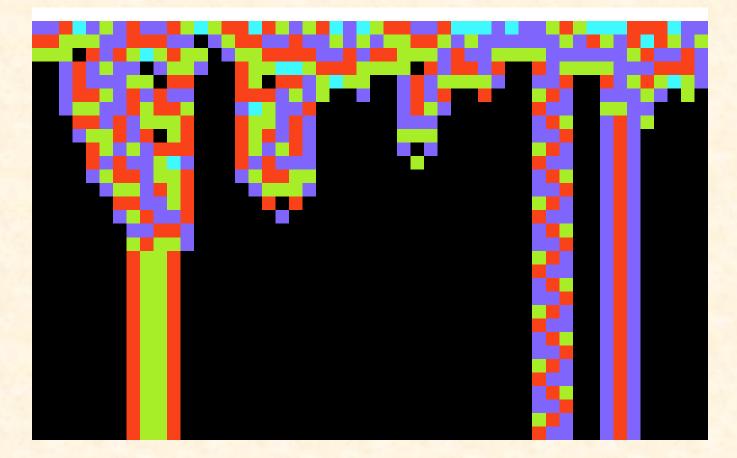
Class I ($\lambda = 0.2$) Closeup



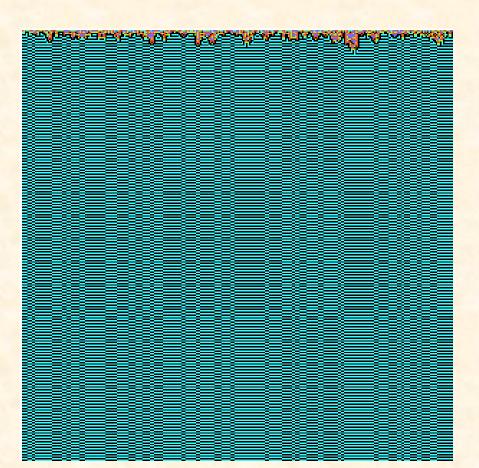
Class II ($\lambda = 0.4$)



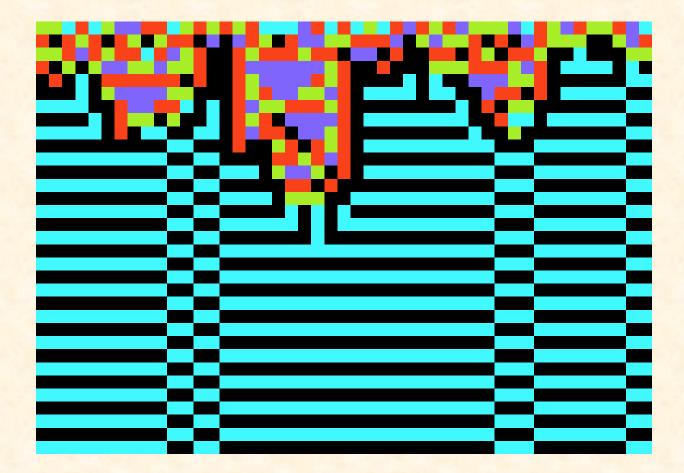
Class II ($\lambda = 0.4$) Closeup



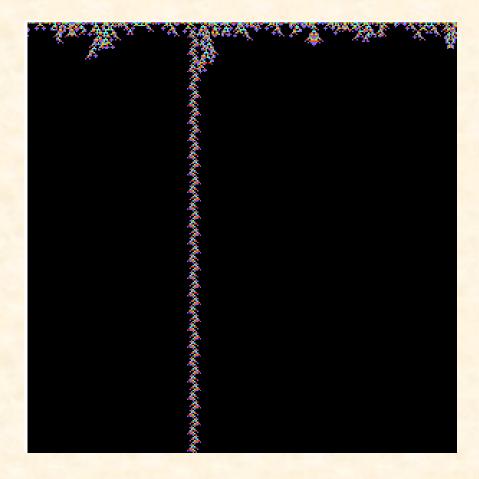
Class II ($\lambda = 0.31$)



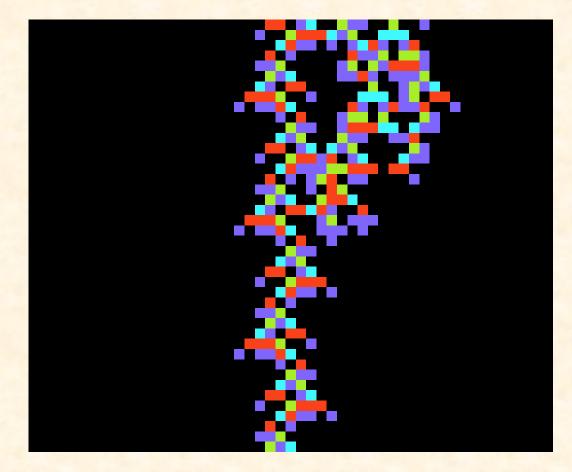
Class II ($\lambda = 0.31$) Closeup



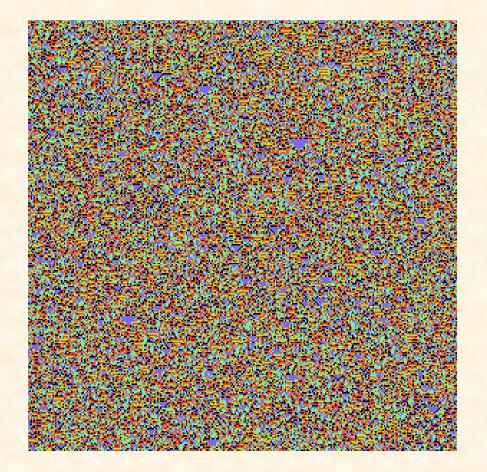
Class II ($\lambda = 0.37$)



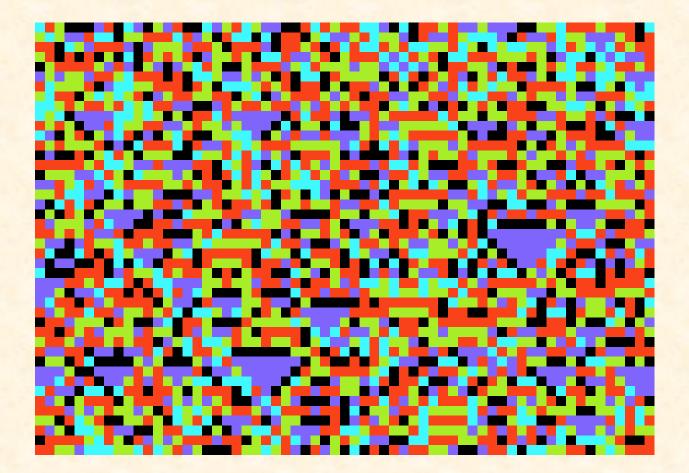
Class II ($\lambda = 0.37$) Closeup



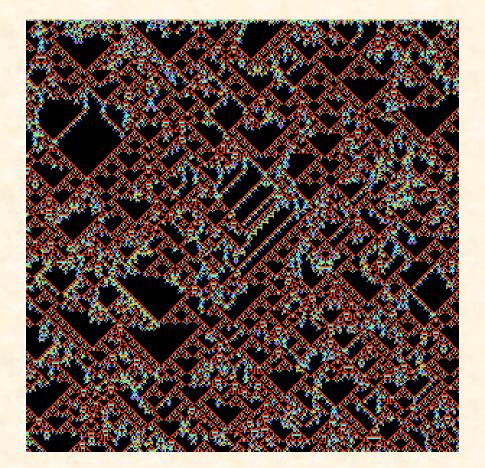
Class III ($\lambda = 0.5$)



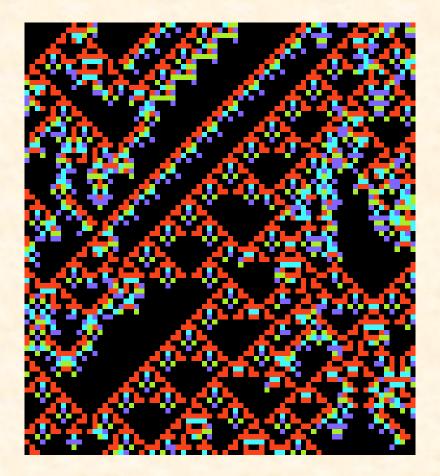
Class III ($\lambda = 0.5$) Closeup



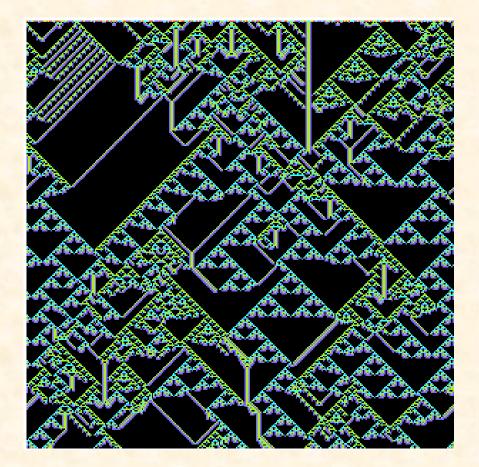
Class IV ($\lambda = 0.35$)

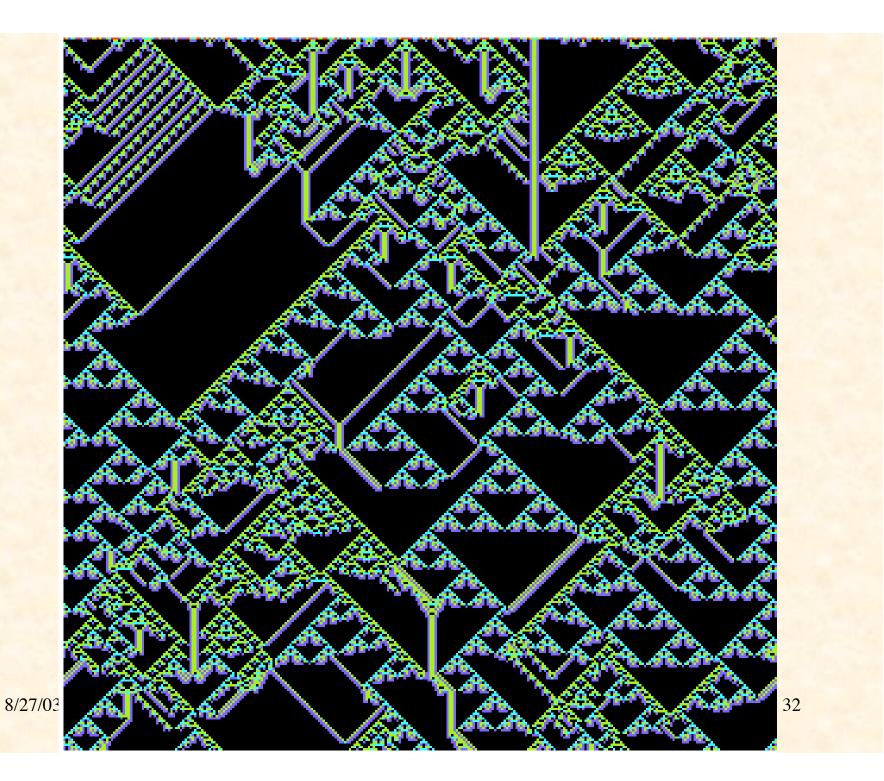


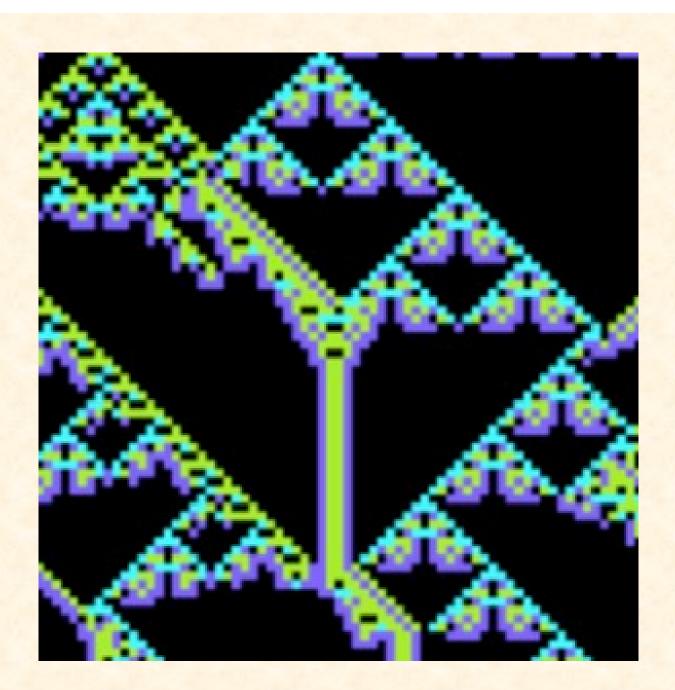
Class IV ($\lambda = 0.35$) Closeup

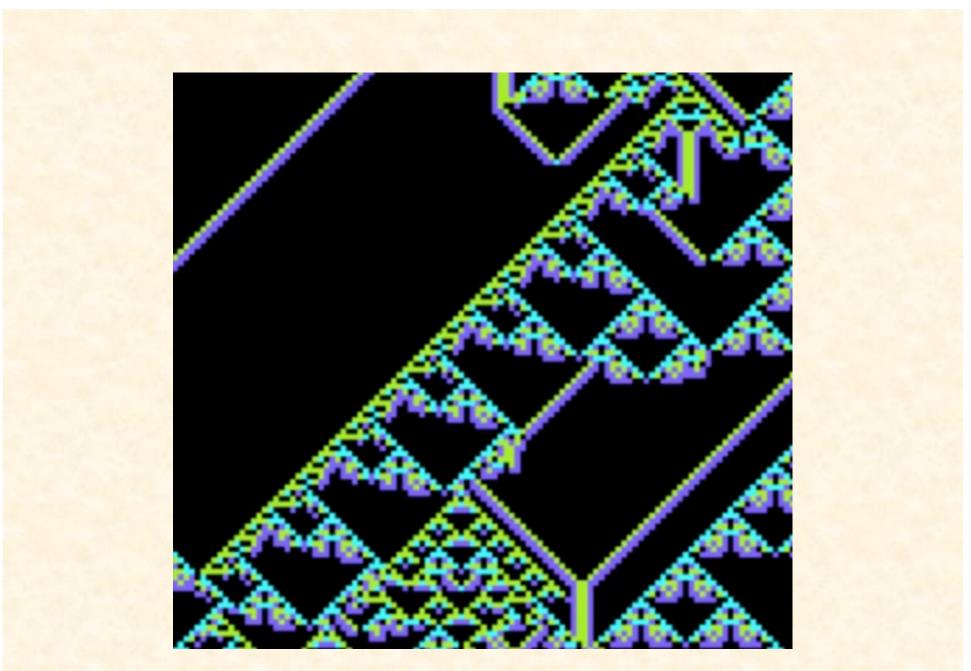


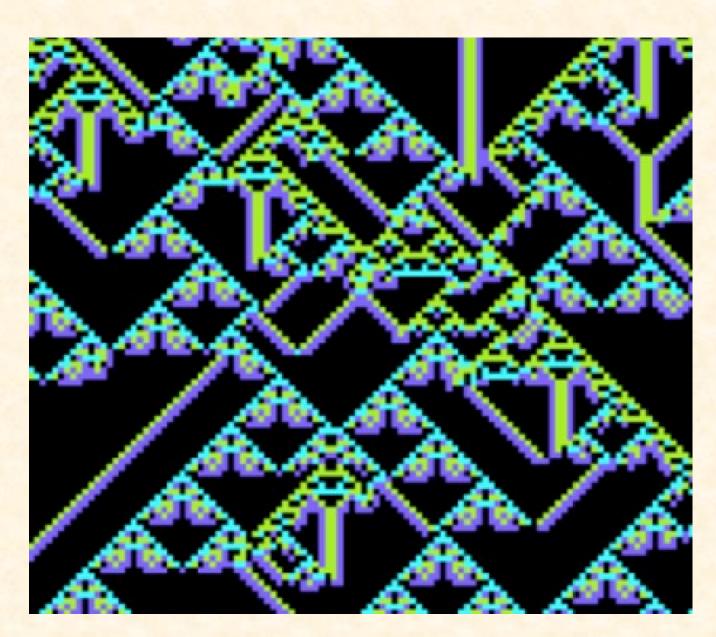
Class IV ($\lambda = 0.34$)











Class IV Shows Some of the Characteristics of Computation

- Persistent, but not perpetual storage
- Terminating cyclic activity
- Global transfer of control/information

λ of Life

- For Life, $\lambda \approx 0.273$
- which is near the critical region for CAs with:
 - K = 2N = 9