## Mound Building

by Macrotermes Termites


## Structure of Mound




## Construction of Mound

(1) First chamber made by royal couple
$(2,3)$ Intermediate stages of development
(4) Fully developed nest

## Alternatives to Self-Organization

- Leader
- directs building activity of group
- Blueprint (image of completion)
- compact representation of spatial/temporal relationships of parts
- Recipe (program)
- sequential instructions specify spatial/temporal actions of individual
- Template
- full-sized guide or mold that specifies final pattern



## Construction of Arch (1)



## Construction of Arch (2)



## Construction of Arch (3)



## Basic Principles

- Continuous (quantitative) stigmergy
- Positive feedback:
via pheromones
- Negative feedback: depletion of soil granules and competition between pillars


## Deneubourg Model

- $H(r, t)=$ concentration of cement pheromone in air at location $r \&$ time $t$
- $P(r, t)=$ amount of deposited cement with still active pheromone at $r, t$
- $C(r, t)=$ density of laden termites at $r, t$
- $\quad \square=$ constant flow of laden termites into system


## Equation for $P$

(Deposited Cement with Pheromone)
$\partial_{t} P($ rate of change of active cement $)=$
$k_{1} C$ (rate of cement deposition by termites)
$-k_{2} P$ (rate of pheromone loss to air)

$$
\partial_{t} P=k_{1} C \square k_{2} P
$$

## Equation for $H$ (Concentration of Pheromone)

$\partial_{t} H$ (rate of change of concentration $)=$
$k_{2} P$ (pheromone from deposited material)

- $k_{4} H$ (pheromone decay)
$+D_{H} \square^{2} H$ (pheromone diffusion)

$$
\partial_{t} H=k_{2} P \square k_{4} H+D_{H} \square^{2} H
$$

## Equation for $C$ (Density of Laden Termites)

$\partial_{t} C($ rate of change of concentration $)=$
$\square$ (flux of laden termites)
$-k_{1} C$ (unloading of termites)
$+D_{C} \square^{2} C$ (random walk)
$-\square \cdot(C \square H)$ (chemotaxis: response to pheromone gradient)
$\partial_{t} C=\square \square k_{1} C+D_{C} \square^{2} C \square \square \cdot(C \square H)$

## Additional Explanation of Chemotaxis Term

- The termite flow into a region is the negative divergence of the flux through it

$$
-\square \cdot \mathbf{J}
$$

- The flux is proportional to the pheromone gradient

J $\quad$ H

- The flux is proportional to the number of moving termites

- Hence, $-\square \cdot \mathbf{J}=-\square \cdot(C \square H)$


## Simulation ( $T=0$ )



9/17/0.
fig. from Solé \& Goodwin

## Simulation ( $T=100$ )


fig. from Solé \& Goodwin

## Simulation ( $T=1000$ )



9/17/0
fig. from Solé \& Goodwin

## Conditions for Self-Organized Pillars

- Will not produce regularly spaced pillars if:
- density of termites is too low
- rate of deposition is too low
- A homogeneous stable state results

$$
C_{0}=\frac{\square}{k_{1}}, \quad H_{0}=\frac{\square}{k_{4}}, \quad P_{0}=\frac{\square}{k_{2}}
$$



# Wasp Nest Building 

 and Discrete Stigmergy
# Structure of Some Wasp Nests 



Fig. from Self-Org. Biol. Sys.

## Adaptive Function of Nests



Figs. from Self-Org. Biol. Sys,

## Lattice Swarms

## (developed by Theraulaz \& Bonabeau)

## Discrete vs. Continuous

 Stigmergy- Recall: stigmergy is the coordination of activities through the environment
- Continuous or quantitative stigmergy
- quantitatively different stimuli trigger quantitatively different behaviors
- Discrete or qualitative stigmergy
- stimuli are classified into distinct classes, which trigger distinct behaviors



# Discrete Stigmergy in Comb Construction 

- Initially all sites are equivalent
- After addition of cell, qualitatively different sites created


## Numbers and Kinds of Building Sites



## Lattice Swarm Model

- Random movement by wasps in a 3D lattice
- cubic or hexagonal
- Wasps obey a 3D CA-like rule set
- Depending on configuration, wasp deposits one of several types of "bricks"
- Once deposited, it cannot be removed
- May be deterministic or probabilistic
- Start with a single brick


## Cubic Neighborhood



- Deposited brick depends on states of 26 surrounding cells
- Configuration of surrounding cells may be represented by matrices:



## Hexagonal Neighborhood



