594 Homework 1

- For asychronous updating, let k be the cell that is updated
- Then:
- Note: for convenience cell k is not included in the R_{1} neighborhood
- For all other cells $i, s_{i}(t+1)=s_{i}(t)$

Energy Function

- The energy function is defined by a summation over all the cells, including the one that changed:

$$
\left.E\{\mathbf{s}(t)\}=\square \frac{1}{2} \square{ }_{i}^{\square} s_{i}(t) \operatorname{sign} \underset{\square}{\square}+J_{1} \square_{0<r_{i j} \backslash R_{1}}^{\square} s_{j}(t)+J_{2} \square_{R_{1} r_{i}<R_{2}}^{\square} s_{j}(t)\right]_{E}^{[}
$$

- You need to show that

$$
\square E=E\{\mathbf{s}(t+1)\} \square E\{\mathbf{s}(t)\} \square 0
$$

Ant Colony Optimization (ACO)

Developed in 1991 by Dorigo (PhD dissertation) in collaboration with

Colorni \& Maniezzo

Basis of all Ant-Based Algorithms

- Positive feedback
- Negative feedback
- Cooperation

Positive Feedback

- To reinforce portions of good solutions that contribute to their goodness
- To reinforce good solutions directly
- Accomplished by pheromone accumulation

Negative Feedback

- To avoid premature convergence (stagnation)
- Accomplished by pheromone evaporation

Cooperation

- For simultaneous exploration of different solutions
- Accomplished by:
- multiple ants exploring solution space
- pheromone trail reflecting multiple perspectives on solution space

Ant System for Traveling Salesman Problem (AS-TSP)

- During each iteration, each ant completes a tour
- During each tour, each ant maintains tabu list of cities already visited
- Each ant has access to
- distance of current city to other cities
- intensity of local pheromone trail
- Probability of next city depends on both

Transition Rule

- Let $\square_{i j}=1 / d_{i j}=$ "nearness" of city j to current city i
- Let $\square_{j}=$ strength of trail from i to j
- Let $J_{i}{ }^{k}=$ list of cities ant k still has to visit after city i in current tour
- Then transition probability for ant k going from i to $j \square J_{i}^{k}$ in tour t is:

$$
p_{i j}^{k}=\frac{\left[\square_{i j}(t)\right]^{\square}\left[\square_{i j}\right]^{\square}}{\square_{i \square J_{i}^{k}}\left[\square_{i l}(t)\right]^{\square}\left[\square_{i l}\right]^{\square}}
$$

Pheromone Deposition

- Let $T^{k}(t)$ be tour t of ant k
- Let $L^{k}(t)$ be the length of this tour
- After completion of a tour, each ant k contributes:

$$
\square \Delta_{i j}^{k}=\begin{array}{ll}
-Q / L^{k}(t) & \text { if }(i, j) \square T^{k}(t) \\
0 & \text { if }(i, j) \square T^{k}(t)
\end{array}
$$

Pheromone Decay

- Define total pheromone deposition for tour t :

$$
\square \square_{i j}(t)=\square_{k=1}^{m} \square \square_{i j}^{k}(t)
$$

- Let \square be decay coefficient
- Define trail intensity for next round of tours:

$$
\square_{i j}(t+1)=(1 \square \square) \square_{i j}(t)+\square \square_{i j}(t)
$$

Number of Ants is Critical

- Too many:
- suboptimal trails quickly reinforced
- \quad early convergence to suboptimal solution
- Too few:
- don't get cooperation before pheromone decays
- Good tradeoff: number of ants = number of cities ($m=n$)

Improvement: "Elitist" Ants

- Add a few ($e \approx 5$) "elitist" ants to population
- Let T^{+}be best tour so far
- Let L^{+}be its length
- Each "elitist" ant reinforces edges in T^{+}by Q / L^{+}
- Add e more "elitist" ants
- This applies accelerating positive feedback to best tour

Time Complexity

- Let t be number of tours
- Time is $\mathcal{O}\left(t n^{2} m\right)$
- If $m=n$ then $\mathcal{O}\left(t n^{3}\right)$
- that is, cubic in number of cities

Evaluation

- Both "very interesting and disappointing"
- For 30-cities:
- beat genetic algorithm
- matched or beat tabu search \& simulated annealing
- For 50 \& 75 cities and 3000 iterations
- did not achieve optimum
- but quickly found good solutions
- I.e., does not scale up well
- Like all general-purpose algorithms, it is outperformed by special purpose algorithms

