594 Homework 1

- For asychronous updating, let *k* be the cell that is updated
- Then:

$$s_{k}(t+1) = \operatorname{sign}\left[h + J_{1} \sum_{0 < r_{kj} \leq R_{1}} s_{j}(t) + J_{2} \sum_{R_{1} < r_{kj} < R_{2}} s_{j}(t)\right]$$

- Note: for convenience cell k is not included in the R₁ neighborhood
- For all other cells i, $s_i(t+1) = s_i(t)$

Energy Function

• The energy function is defined by a summation over all the cells, including the one that changed:

$$E\{\mathbf{s}(t)\} = -\frac{1}{2}\sum_{i} s_{i}(t) \operatorname{sign}\left[h + J_{1}\sum_{0 < r_{ij} \leq R_{1}} s_{j}(t) + J_{2}\sum_{R_{1} < r_{ij} < R_{2}} s_{j}(t)\right]$$

• You need to show that

$$\Delta E = E\left\{\mathbf{s}(t+1)\right\} - E\left\{\mathbf{s}(t)\right\} \le 0$$

Ant Colony Optimization (ACO)

Developed in 1991 by Dorigo (PhD dissertation) in collaboration with Colorni & Maniezzo

Basis of all Ant-Based Algorithms

- Positive feedback
- Negative feedback
- Cooperation

Positive Feedback

- To reinforce portions of good solutions that contribute to their goodness
- To reinforce good solutions directly
- Accomplished by pheromone accumulation

Negative Feedback

- To avoid premature convergence (*stagnation*)
- Accomplished by pheromone evaporation

Cooperation

- For simultaneous exploration of different solutions
- Accomplished by:
 - multiple ants exploring solution space
 - *pheromone trail* reflecting multiple perspectives on solution space

Ant System for Traveling Salesman Problem (AS-TSP)

- During each iteration, each ant completes a tour
- During each tour, each ant maintains *tabu list* of cities already visited
- Each ant has access to
 - distance of current city to other cities
 - intensity of local pheromone trail
- Probability of next city depends on both

Transition Rule

- Let $\eta_{ij} = 1/d_{ij} =$ "nearness" of city *j* to current city *i*
- Let τ_{ii} = strength of trail from *i* to *j*
- Let J_i^k = list of cities ant k still has to visit after city
 i in current tour
- Then transition probability for ant k going from i to $j \in J_i^k$ in tour t is:

$$p_{ij}^{k} = \frac{\left[\tau_{ij}(t)\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in J_{i}^{k}} \left[\tau_{il}(t)\right]^{\alpha} \left[\eta_{il}\right]^{\beta}}$$

Pheromone Deposition

- Let $T^k(t)$ be tour t of ant k
- Let $L^k(t)$ be the length of this tour
- After completion of a tour, each ant k contributes:

$$\Delta \tau_{ij}^{k} = \begin{cases} Q \\ L^{k}(t) \\ 0 \end{cases}$$

if
$$(i, j) \in T^k(t)$$

if $(i, j) \notin T^k(t)$

Pheromone Decay

• Define total pheromone deposition for tour *t*:

$$\Delta \tau_{ij}(t) = \sum_{k=1}^{m} \Delta \tau_{ij}^{k}(t)$$

- Let ρ be decay coefficient
- Define trail intensity for next round of tours:

$$\tau_{ij}(t+1) = (1-\rho)\tau_{ij}(t) + \Delta\tau_{ij}(t)$$

Number of Ants is Critical

- Too many:
 - suboptimal trails quickly reinforced
 - ∴ early convergence to suboptimal solution
- Too few:
 - don't get cooperation before pheromone decays
- Good tradeoff:

number of ants = number of cities

(m = n)

Improvement: "Elitist" Ants

- Add a few $(e \approx 5)$ "elitist" ants to population
- Let *T*⁺ be best tour so far
- Let L⁺ be its length
- Each "elitist" ant reinforces edges in T^+ by Q/L^+
- Add e more "elitist" ants
- This applies accelerating positive feedback to best tour

Time Complexity

- Let t be number of tours
- Time is $\mathcal{O}(tn^2m)$
- If m = n then $\mathcal{O}(tn^3)$
 - that is, cubic in number of cities

Evaluation

- Both "very interesting and disappointing"
- For 30-cities:
 - beat genetic algorithm
 - matched or beat tabu search & simulated annealing
- For 50 & 75 cities and 3000 iterations
 - did not achieve optimum
 - but quickly found good solutions
- I.e., does not scale up well
- Like all general-purpose algorithms, it is outperformed by special purpose algorithms