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594 Homework 1

• For asychronous updating, let k be the cell that is
updated

• Then:

† 

sk t +1( ) = sign h + J1 s j t( ) + J2 s j t( )
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• Note: for convenience cell k is not included in the
R1 neighborhood

• For all other cells i, si(t+1) = si(t)
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Energy Function
• The energy function is defined by a summation

over all the cells, including the one that changed:

• You need to show that
† 

E s t( ){ } = - 1
2 si t( )sign h + J1 s j t( ) + J2 s j t( )
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DE = E s t +1( ){ } - E s t( ){ } £ 0
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Ant Colony Optimization
(ACO)

Developed in 1991 by Dorigo (PhD
dissertation) in collaboration with

Colorni & Maniezzo
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Basis of all Ant-Based
Algorithms

• Positive feedback
• Negative feedback
• Cooperation
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Positive Feedback

• To reinforce portions of good solutions that
contribute to their goodness

• To reinforce good solutions directly
• Accomplished by pheromone accumulation
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Negative Feedback

• To avoid premature convergence
(stagnation)

• Accomplished by pheromone evaporation
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Cooperation

• For simultaneous exploration of different
solutions

• Accomplished by:
– multiple ants exploring solution space
– pheromone trail reflecting multiple

perspectives on solution space
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Ant System for Traveling
Salesman Problem (AS-TSP)

• During each iteration, each ant completes a
tour

• During each tour, each ant maintains tabu
list of cities already visited

• Each ant has access to
– distance of current city to other cities
– intensity of local pheromone trail

• Probability of next city depends on both
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Transition Rule
• Let hij = 1/dij = “nearness” of city j to current city i
• Let tij = strength of trail from i to j
• Let Ji

k = list of cities ant k still has to visit after city
i in current tour

• Then transition probability for ant k going from i to
j Œ Ji

k in tour t is:

† 

pij
k =

t ij t( )[ ]
a

hij[ ]
b

t il t( )[ ]a
hil[ ]b

l ŒJi
k

Â
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Pheromone Deposition
• Let Tk(t) be tour t of ant k
• Let Lk(t) be the length of this tour
• After completion of a tour, each ant k

contributes:

† 

Dt ij
k =

Q
Lk t( )

if i, j( ) Œ T k t( )

0 if i, j( ) œ T k t( )
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Pheromone Decay
• Define total pheromone deposition for tour t:

• Let r be decay coefficient
• Define trail intensity for next round of tours:† 

Dt ij t( ) = Dt ij
k t( )

k=1

m
Â

† 

t ij t +1( ) = 1- r( )t ij t( ) + Dt ij t( )
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Number of Ants is Critical
• Too many:

– suboptimal trails quickly reinforced
– \ early convergence to suboptimal solution

• Too few:
– don’t get cooperation before pheromone decays

• Good tradeoff:
number of ants = number of cities
(m = n)
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Improvement: “Elitist” Ants
• Add a few (e≈5) “elitist” ants to population
• Let T+ be best tour so far
• Let L+ be its length
• Each “elitist” ant reinforces edges in T+ by

Q/L+

• Add e more “elitist” ants
• This applies accelerating positive feedback

to best tour
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Time Complexity

• Let t be number of tours
• Time is O (tn2m)
• If m = n then O (tn3)

– that is, cubic in number of cities
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Evaluation
• Both “very interesting and disappointing”
• For 30-cities:

– beat genetic algorithm
– matched or beat tabu search & simulated annealing

• For 50 & 75 cities and 3000 iterations
– did not achieve optimum
– but quickly found good solutions

• I.e., does not scale up well
• Like all general-purpose algorithms, it is out-

performed by special purpose algorithms


