Classification of Dilemmas

General Payoff Matrix

			Bob		
		cooperate	defect		
Ann	cooperate	CC (R)	CD (S)		
	defect	DC (T)	DD (<i>P</i>)		

General Conditions for a Dilemma

- You always benefit if the other cooperates:
 - CC > CD and DC > DD
- You sometimes benefit from defecting:
 - DC > CC or DD > CD
- Mutual coop. is preferable to mut. def.
 - CC > DD
- Consider relative size of CC, CD, DC, DD
 - think of as permutations of R, S, T, P
 - only three result in dilemmas

Three Possible Orders

The three dilemmas: TRSP, RTPS, TRPS

The Three Dilemmas

- Chicken (TRSP)
 - DC > CC > CD > DD
 - characterized by mutual defection being worst
- Stag Hunt (*RTPS*)
 - CC > DC > DD > CD
 - better to cooperate with cooperator
- Prisoners' Dilemma (TRPS)
 - DC > CC > DD > CD
 - better to defect on cooperator

The Iterated Prisoners' Dilemma

and Robert Axelrod's Experiments

Assumptions

- No mechanism for enforceable threats or commitments
- No way to foresee a player's move
- No way to eliminate other player or avoid interaction
- No way to change other player's payoffs
- Communication only through direct interaction

Axelrod's Experiments

- Intuitively, expectation of future encounters may affect rationality of defection
- Various programs compete for 200 rounds
 - encounters each other and self
- Each program can remember:
 - its own past actions
 - its competitors' past actions
- 14 programs submitted for first experiment

IPD Payoff Matrix

		В		
		cooperate	defect	
A	cooperate	3, 3	0, 5	
	defect	5, 0	1, 1	

N.B. Unless DC + CD < 2 CC (i.e. T + S < 2 R), can win by alternating defection/cooperation

Indefinite Number of Future Encounters

- Cooperation depends on expectation of indefinite number of future encounters
- Suppose a known finite number of encounters:
 - No reason to C on last encounter
 - Since expect D on last, no reason to C on next to last
 - And so forth: there is no reason to C at all

Analysis of Some Simple Strategies

- Three simple strategies:
 - ALL-D: always defect
 - ALL-C: always cooperate
 - RAND: randomly cooperate/defect
- Effectiveness depends on environment
 - ALL-D optimizes local (individual) fitness
 - ALL-C optimizes global (population) fitness
 - RAND compromises

Expected Scores

playing [ALL-C	RAND	ALL-D	Average
ALL-C	3.0	1.5	0.0	1.5
RAND	4.0	2.0	0.5	2.166
ALL-D	5.0	3.0	1.0	3.0

Result of Axelrod's Experiments

- Winner is Rapoport's **TFT** (Tit-for-Tat)
 - cooperate on first encounter
 - reply in kind on succeeding encounters
- Second experiment:
 - 62 programs
 - all know TFT was previous winner
 - TFT wins again

Characteristics of Successful Strategies

- Don't be envious
 - at best TFT ties other strategies
- Be nice
 - i.e. don't be first to defect
- Reciprocate
 - reward cooperation, punish defection
- Don't be too clever
 - sophisticated strategies may be unpredictable & look random