Artificial Neural Networks

(in particular, the Hopfield Network)
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Typical Artificial Neuron
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Typical Artificial Neuron

linear activation
combmatlon function

e

k ! "

T net input
§)

(local field)

10/29/03



Equations

Net input: h, = Ewijs ;
\ j=1
h=Ws-60
New neural state: S£ = a(hl.)
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Hoptield Network

* Symmetric weights: w,; =w
e No selt-action: w,, =0

e Zero threshold: 6 =0

e Bipolar states: s, € {—1, +1}

e Discontinuous bipolar activation function:

-1, h<O

U O e O e
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What to do about /7 =07

e There are several options:
" 0(0) =+1
" 0(0) =-1
" 0(0) =—1 or +1 with equal probability

= h, =0 = no state change (s, = s,)
e Not much difference, but be consistent

e Last option is slightly preferable, since
symmetric
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Positive Coupling

e Positive sense (sign)

o Large strength
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Negative Coupling

* Negative sense (sign)

o Large strength
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Weak Coupling

e Either sense (sign)
o Little strength
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State = —1 & Local Field < 0O



State = —1 & Local Field >0



State Reverses



State = +1 & Local Field >0



State = +1 & Local Field <0



State Reverses



Hoptield Net as Soft Constraint
Satistaction System

e States of neurons as yes/no decisions
 Weights represent soft constraints between
decisions
— hard constraints must be respected
— soft constraints have degrees of importance

* Decisions change to better respect
constraints

 [s there an optimal set of decisions that best
respects all constraints?
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Convergence

* Does such a system converge to a stable
state?

 Under what conditions does it converge?

* There 1s a sense in which each step relaxes
the “tension” in the system

e But could a relaxation of one neuron lead to
greater tension in other places?
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Quantifying “Tension”

It w;; >0, then s; and s; want to have the same sign

(s;8;,=+1)

If w.. <0, then s. and s. want to have opposite siens
(Si Sjl]: _1) l ] PP g
It w;; =0, their signs are independent

Strength of interaction varies with lw,l

Detine disharmony (“tension”) D,; between
neurons i and j:

Dij =—8; W; S;

D; <0 = they are happy

D;>0 = they are unhappy
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Total Energy of System

The “energy” of the system i1s the total
“tension” (disharmony) 1n it:

E{s} ED ESZWUS]
= ——EESZWUS]

e i
— e SW..S .
™ 2 L Wiy
e

=-1s'Ws
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Review of Some Vector Notation

(x,)

x=[:|=(x - xn)T

\ X/

X'y =Y xy,=x"y

i e

XYy

\xmyl xmyn)

x' My = EzlzllxiMijyj
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(column vectors)

(inner product)

(outer product)

(quadratic form)
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Another View of Energy

The energy measures the number of neurons
whose states are in disharmony with their
local fields (1.e. of opposite sign):

. E E
E{S} T S
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S E E
i J

= _%Esihi
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Do State Changes Decrease Energy?

e Suppose that neuron k changes state
e Change of energy:

AE = E{s'} - E{s}

! !
S A

(§j) ()

!

j=k j=k
- /
j=k
=-As h,

<0
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Energy Does Not Increase

* In each step in which a neuron 1s considered

for update:
E{s(t+ 1)} —E{s(t)} =0

* Energy cannot increase
* Energy decreases if any neuron changes

 Must 1t stop?
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Proot of Convergence
in Finite Time

* There 1s a minimum possible energy:
— The number of possible states s € {—1, +1}"1s
finite
— Hence E_._ =min {E(s) | s € {x1}} exists
 Must show it i1s reached 1n a finite number
of steps
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Steps are of a Certain Minimum Size

If i, > 0, then (let &, = min of possible positive h)

hzminihh =Y ws ASE {1} Ah>0f =, h

j=k

AE =-As h, =-2h, <-2h_.

If i, <O, then (let & ,, = max of possible negative h)

h, = max; hh=2wkjsj ASE{x1} Ah<0p =y h
I j=k
AE =-As,h, =2h, <2h_
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Conclusion

e If we do asynchronous updating, the
Hopftield net must reach a stable, minimum
energy state 1n a finite number of updates

e This does not imply that it is a global
minimum
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Example Limit Cycle with
Synchronous Updating
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The Hopfield Energy Function 1s
Even

e A function f1s odd if f (—x) = — f (x),
for all x

A function f1s even if f (—x) = f (x),
for all x

e Observe:

E{-s}=-1(-s)' W(-s) =-1s' Ws = E{s}
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