Capacity of Hopfield Memory

- Depends on the patterns imprinted
- If orthogonal, p_{max} = n
 but every state is stable ⇒ trivial basins
- So $p_{\max} < n$
- Let load parameter $\alpha = p / n$

Single Bit Stability Analysis

- For simplicity, suppose \mathbf{x}^k are random
- Then $\mathbf{x}^k \cdot \mathbf{x}^m$ are sums of *n* random ± 1
 - binomial distribution ≈ Gaussian
 - in range *-n*, ..., +*n*
 - with mean $\mu = 0$
 - and variance $\sigma^2 = n$
- Probability sum > *t*:

$$\frac{1}{2} \left[1 - \operatorname{erf}\left(\frac{t}{\sqrt{2n}}\right) \right]$$

[See "Review of Gaussian (Normal) Distributions" on course website] 11/5/03

Approximation of Probability

Let crosstalk
$$C_i^m = \frac{1}{n} \sum_{k \neq m} x_i^k (\mathbf{x}^k \cdot \mathbf{x}^m)$$

We want $\Pr\{C_i^m > 1\} = \Pr\{nC_i^m > n\}$
Note : $nC_i^m = \sum_{\substack{k=1 \ k \neq m}}^p \sum_{j=1}^n x_i^k x_j^k x_j^m$
A sum of $n(n-1) \approx np$ random ± 1

Variance $\sigma^2 = np$

11/5/03

11/5/03 (fig. from Hertz & al. Intr. Theory Neur. Comp.)

4

Tabulated Probability of Single-Bit Instability

P _{error}	α
0.1%	0.105
0.36%	0.138
1%	0.185
5%	0.37
10%	0.61

(table from Hertz & al. Intr. Theory Neur. Comp.)

Spurious Attractors

- Mixture states:
 - sums or differences of odd numbers of retrieval states
 - number increases combinatorially with p
 - shallower, smaller <u>basins</u>
 - basins of mixtures swamp basins of retrieval states ⇒
 overload
 - useful as combinatorial generalizations?
 - self-coupling generates spurious attractors
- Spin-glass states:
 - not correlated with any finite number of imprinted patterns
 - occur beyond overload because weights effectively random

D

Fraction of Unstable Imprints (n = 100)

(fig from Bar-Yam)

Number of Stable Imprints (n = 100)

(fig from Bar-Yam)

Number of Imprints with Basins of Indicated Size (n = 100)

(fig from Bar-Yam)

Summary of Capacity Results

- Absolute limit: $p_{\text{max}} < \alpha_c n = 0.138 n$
- If a small number of errors in each pattern permitted: $p_{\text{max}} \propto n$
- If all or most patterns must be recalled perfectly: $p_{\text{max}} \propto n / \log n$
- Recall: all this analysis is based on *random* patterns
- Unrealistic, but sometimes can be arranged

Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

Trapping in Local Minimum

Escape from Local Minimum

Escape from Local Minimum

Motivation

- Idea: with low probability, go against the local field
 - move up the energy surface
 - make the "wrong" microdecision
- Potential value for optimization: escape from local optima
- Potential value for associative memory: escape from spurious states
 - because they have higher energy than imprinted states

The Stochastic Neuron

Deterministic neuron: $s'_i = \text{sgn}(h_i)$

$$\Pr\{s'_{i} = +1\} = \Theta(h_{i})$$

$$\Pr\{s'_{i} = -1\} = 1 - \Theta(h_{i})$$

Stochastic neuron:

$$\Pr\{s'_i = +1\} = \sigma(h_i)$$
$$\Pr\{s'_i = -1\} = 1 - \sigma(h_i)$$

Logistic sigmoid: $\sigma(h) = \frac{1}{1 + \exp(-2h/T)}$

11/5/03

Properties of Logistic Sigmoid

- As $h \to +\infty$, $\sigma(h) \to 1$
- As $h \to -\infty$, $\sigma(h) \to 0$
- $\sigma(0) = 1/2$

Logistic Sigmoid With Varying T

Logistic Sigmoid T = 0.5

Slope at origin = 1 / 2T

Logistic Sigmoid T = 0.01

Logistic Sigmoid T = 0.1

Logistic Sigmoid T = 1

Logistic Sigmoid T = 10

Logistic Sigmoid T = 100

