Capacity of Hopfield Memory

- Depends on the patterns imprinted
- If orthogonal, $p_{\max }=n$
- but every state is stable \square trivial basins
- So $p_{\text {max }}<n$
- Let load parameter $\square=p / n$

Single Bit Stability Analysis

- For simplicity, suppose \mathbf{x}^{k} are random
- Then $\mathbf{x}^{k} \cdot \mathbf{x}^{m}$ are sums of n random ± 1
- binomial distribution \approx Gaussian
- in range $-n, \ldots,+n$
- with mean $\square=0$
- and variance $\square^{2}=n$

- Probability sum $>t$:

[See "Review of Gaussian (Normal) Distributions" on course website]

Approximation of Probability

Let crosstalk $C_{i}^{m}=\frac{1}{n} \square_{k \neq m} x_{i}^{k}\left(\mathbf{x}^{k} \cdot \mathbf{x}^{m}\right)$
We want $\operatorname{Pr}\left\{C_{i}^{m}>1\right\}=\operatorname{Pr}\left\{n C_{i}^{m}>n\right\}$
Note : $n C_{i}^{m}=\square_{\substack{k=1 \\ k \neq m}}^{p} \square_{j=1}^{n} x_{i}^{k} x_{j}^{k} x_{j}^{m}$
A sum of $n(p \square 1) \square n p$ random ± 1
Variance $\square^{2}=n p$

Probability of Bit Instability

Tabulated Probability of Single-Bit Instability

$P_{\text {error }}$	\square
0.1\%	0.105
0.36\%	0.138
1\%	0.185
5\%	0.37
10\%	0.61

Spurious Attractors

- Mixture states:
- sums or differences of odd numbers of retrieval states
- number increases combinatorially with p
- shallower, smaller basins
- basins of mixtures swamp basins of retrieval states \square overload
- useful as combinatorial generalizations?
- self-coupling generates spurious attractors
- Spin-glass states:
- not correlated with any finite number of imprinted patterns
- occur beyond overload because weights effectively random

Basins of Mixture States

$$
7 \$
$$

Fraction of Unstable Imprints ($n=100$)

Number of Stable Imprints ($n=100$)

Number of Imprints with Basins of Indicated Size $(n=100)$

Summary of Capacity Results

- Absolute limit: $p_{\max }<\square_{\mathrm{c}} n=0.138 n$
- If a small number of errors in each pattern permitted: $p_{\text {max }} \mu n$
- If all or most patterns must be recalled perfectly: $p_{\max } \mu n / \log n$
- Recall: all this analysis is based on random patterns
- Unrealistic, but sometimes can be arranged

Stochastic Neural Networks

(in particular, the stochastic Hopfield network)

Trapping in Local Minimum

Escape from Local Minimum

Escape from Local Minimum

Motivation

- Idea: with low probability, go against the local field
- move up the energy surface
- make the "wrong" microdecision
- Potential value for optimization: escape from local optima
- Potential value for associative memory: escape from spurious states
- because they have higher energy than imprinted states

The Stochastic Neuron

Deterministic neuron: $s \rrbracket=\operatorname{sgn}\left(h_{i}\right)$

$$
\begin{aligned}
& \operatorname{Pr}\{s \square=+1\}=\square\left(h_{i}\right) \\
& \operatorname{Pr}\{s \square=\square 1\}=1 \square \square\left(h_{i}\right)
\end{aligned}
$$

Stochastic neuron:

$$
\begin{aligned}
& \operatorname{Pr}\{s \square=+1\}=\square\left(h_{i}\right) \\
& \operatorname{Pr}\{s \square=\square 1\}=1 \square \square\left(h_{i}\right)
\end{aligned}
$$

Logistic sigmoid: $\square(h)=\frac{1}{1+\exp (\square 2 h / T)}$

Properties of Logistic Sigmoid

$$
\square(h)=\frac{1}{1+e^{\square 2 h / T}}
$$

- As $h \square+, \square(h) \square 1$
- As $h \square-, \square(h) \square 0$
- $\square(0)=1 / 2$

Logistic Sigmoid With Varying T

Logistic Sigmoid $T=0.5$

Slope at origin $=1 / 2 T$

Logistic Sigmoid $T=0.01$

Logistic Sigmoid $T=0.1$

Logistic Sigmoid
 $T=1$

Logistic Sigmoid $T=10$

Logistic Sigmoid $T=100$

