Reading

o CS 420/594: Flake, chs. 19 (“Postscript:
Complex Systems™) & 20 (“Genetic and
Evolution™)

e CS 594: Bar-Yam, ch. 6 (“Life I: Evolution
— Ori1gin of Complex Organisms™)
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Pseudo-Temperature

e Temperature = measure of thermal energy (heat)
e Thermal energy = vibrational energy of molecules
* A source of random motion

* Pseudo-temperature = a measure of nondirected
(random) change

e Logistic sigmoid gives same equilibrium
probabilities as Boltzmann-Gibbs distribution

11/10/03



Transition Probability

Recall, change in energy AE = —-As h,
=2s.h,

Pr{s,'( = il‘Sk = 11} = ()'(ihk) = O’(—Skhk)

1
1+exp(2s,h, /T)
N 1

1+ exp(AE/T)

Pr{sk ) _Sk} -
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Stability

* Are stochastic Hopfield nets stable?
 Thermal noise prevents absolute stability

 But with symmetric weights:

average values (s;) become time - invariant
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Does “Thermal Noise” Improve
memory Performance?

 Experiments by Bar-Yam (pp. 316-20):
= n =100
= p=38

e Random initial state

* To allow convergence, after 20 cycles
set T=0

 How often does it converge to an imprinted
pattern’

11/10/03



Probability of Random State Converging
on Imprinted State (n=100, p=8)
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Probability of Random State Converging
on Imprinted State (n=100, p=8)
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Analysis of Stochastic Hoptield
Network

 Complete analysis by Daniel J. Amit &
colleagues 1n mid-80s

e See D. J. Amit, Modeling Brain Function:
The World of Attractor Neural Networks,
Cambridge Univ. Press, 1989.

* The analysis 1s beyond the scope of this
course
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Phase Diagram

(D) all states melt -

1.0
(C) spin-glass states

e
(B) imprinted,

but s.g. = min.

(A) imprinted
= minima
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Conceptual Diagrams
of Energy Landscape

VaVaV VAWV,
\AAL N N
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Phase Diagram Detail
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Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma

* In the early stages of search, we want a high
temperature, so that we will explore the
space and find the basins of the global
minimum

e In the later stages we want a low
temperature, so that we will relax into the
global minimum and not wander away from
it

* Solution: decrease the temperature
gradually during search
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Quenching vs. Annealing

* (Quenching:
— rapid cooling of a hot material
— may result in defects & brittleness
— local order but global disorder

— locally low-energy, globally frustrated

e Annealing:
— slow cooling (or alternate heating & cooling)
— reaches equilibrium at each temperature

— allows global order to emerge
— achieves global low-energy state
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Multiple Domains
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Moving Domain Boundaries
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Eftect of Moderate Temperature

Energy
A

11/10/03 (fig. from Anderson Intr. Neur. Comp.)
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Effect of High Temperature

(fig. from Anderson Intr. Neur. Comp.)
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Eftect of Low Temperature

AE/T high

(fig. from Anderson Intr. Neur. Comp.)
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Annealing Schedule

* Controlled decrease of temperature

e Should be sufficiently slow to allow
equilibrium to be reached at each
temperature

* With sufficiently slow annealing, the global
minimum will be found with probability 1

e Design of schedules 1s a topic of research
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Typical Practical
Annealing Schedule

 Initial temperature T, sufficiently high so all
transitions allowed

* Exponential cooling: 7)., = aT,
" typical 0.8 < a < 0.99
= at least 10 accepted transitions at each temp.

e Final temperature: three successive
temperatures without required number of
accepted transitions
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Demonstration of Boltzmann
Machine

& Necker Cube Example

Run ~mclennan/pub/cube/cubedemo
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Necker Cube
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Biased Necker Cube
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Summary

* Non-directed change (random motion)
permits escape from local optima and
spurious states

e Pseudo-temperature can be controlled to
adjust relative degree of exploration and
exploitation
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