

- CS 420/594: Read Flake, ch. 22 (Neural Networks and Learning)
- CS 594: Read Bar-Yam, sec. 2.3 (Feedforward Networks)

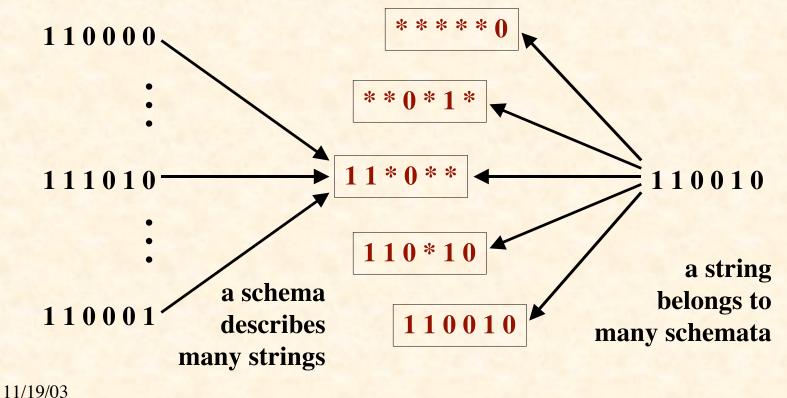
Why Does the GA Work?

The Schema Theorem

11/19/03

Schemata

A schema is a description of certain patterns of bits in a genetic string



The Fitness of Schemata

- The schemata are the building blocks of solutions
- We would like to know the average fitness of all possible strings belonging to a schema
- We cannot, but the strings in a population that belong to a schema give an estimate of the fitness of that schema
- Each string in a population is giving information about all the schemata to which it belongs (implicit parallelism)

Effect of Selection

Let n = size of population

Let m(S,t) = number of instances of schema S at time t

String *i* gets picked with probability $\frac{f_i}{\sum_i f_j}$

Let f(S) = avg fitness of instances of S at time t

So expected
$$m(S,t+1) = m(S,t) \cdot n \cdot \frac{f(S)}{\sum_{j} f_{j}}$$

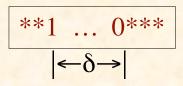
Since
$$f_{av} = \frac{\sum_{j} f_{j}}{n}$$
, $m(S,t+1) = m(S,t) \frac{f(S)}{f_{av}}$

11/19/03

Exponential Growth

- We have discovered: $m(S, t+1) = m(S, t) \cdot f(S) / f_{av}$
- Suppose $f(S) = f_{av} (1 + c)$
- Then $m(S, t) = m(S, 0) (1 + c)^t$
- That is, exponential growth in aboveaverage schemata

Effect of Crossover



- Let $\lambda =$ length of genetic strings
- Let $\delta(S)$ = defining length of schema *S*
- Probability {crossover destroys S}: $p_d = \delta(S) / (\lambda - 1)$
- Let p_c = probability of crossover
- Probability schema survives:

$$p_{s} \ge 1 - p_{c} \frac{\delta(S)}{\lambda - 1}$$

Selection & Crossover Together

$$m(S,t+1) \ge m(S,t) \frac{f(S)}{f_{av}} \left[1 - p_c \frac{\delta(S)}{\lambda - 1}\right]$$

Effect of Mutation

- Let $p_{\rm m}$ = probability of mutation
- So $1 p_m$ = probability an allele survives
- Let o(S) = number of fixed positions in S
- The probability they all survive is $(1 p_m)^{o(S)}$
- If $p_{\rm m} << 1$, $(1 p_{\rm m})^{o(S)} \approx 1 o(S) p_{\rm m}$

Schema Theorem: "Fundamental Theorem of GAs"

$$m(S,t+1) \ge m(S,t) \frac{f(S)}{f_{\text{av}}} \left[1 - p_{\text{c}} \frac{\delta(S)}{\lambda - 1} - o(S) p_{\text{m}} \right]$$

The Bandit Problem

- Two-armed bandit:
 - random payoffs with (unknown) means m_1, m_2 and variances σ_1, σ_2
 - optimal strategy: allocate exponentially greater number of trials to apparently better lever
- *k*-armed bandit: similar analysis applies
- Analogous to allocation of population to schemata
- Suggests GA may allocate trials optimally

Goldberg's Analysis of Competent & Efficient GAs

Paradox of GAs

- Individually uninteresting operators:
 selection, recombination, mutation
- Selection + mutation ⇒ continual improvement
- Selection + recombination \Rightarrow innovation

- generation vs.evaluation

• Fundamental intuition of GAs: the three work well together

Race Between Selection & Innovation: Takeover Time

- Takeover time t^{*} = average time for most fit to take over population
- Transaction selection: top 1/s replaced by s copies
 - s quantifies selective pressure
- Estimate $t^* \approx \ln n / \ln s$

Innovation Time

- Innovation time t_i = average time to get a better individual through crossover & mutation
- Let p_i = probability a single crossover produces a better individual
- Number of individuals undergoing crossover = $p_c n$
- Probability of improvement = $p_i p_c n$
- Estimate: $t_i \approx 1 / (p_c p_i n)$

Steady State Innovation

- Bad: $t^* < t_i$
 - because once you have takeover, crossover does no good
- Good: $t_i < t^*$
 - because each time a better individual is produced, the t* clock resets
 - steady state innovation
- Innovation number:

$$Iv = \frac{t^{*}}{t_{i}} = p_{c}p_{i}\frac{n\ln n}{\ln s} > 1$$

Feasible Region



Other Algorithms Inspired by Genetics and Evolution

- Evolutionary Programming
 - natural representation, no crossover, time-varying continuous mutation
- Evolutionary Strategies
 - similar, but with a kind of recombination
- Genetic Programming
 - like GA, but program trees instead of strings
- Classifier Systems
 - GA + rules + bids/payments
- and many variants & combinations...

Additional Bibliography

- 1. Goldberg, D.E. *The Design of Innovation: Lessons from and for Competent Genetic Algorithms.* Kluwer, 2002.
- 2. Milner, R. *The Encyclopedia of Evolution*. Facts on File, 1990.