Diodes

Diode V-I Relationship

Diode V-I Relationship

If $v_D(t) > 0$ the diode is **forward biased**.

If $v_D(t) < 0$ the diode is **reverse biased**.

If $v_D(t) = 0$ the diode is **zero biased**.

Graphical Diode Circuit Analysis

Forward Bias

The Ideal Diode

In some designs we can ignore the small forward bias voltage of 0.6-0.7 volts and approximate the diode as **ideal**. Then the diode is always in one of two possible states; the voltage $v_D(t)$ is zero (forward bias), or the current $i_D(t)$ is zero (reverse bias).

The Half-Wave Rectifier

Zener Diodes

Zener diodes are designed to "break down" at a specific reverse bias voltage (4 V in this illustration).

Graphical Diode Circuit Analysis

