
Transfer Function and Frequency Response 
 
Consider the general form of a differential equation for a continuous-time system 
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where 

1. The a’s and b’s are constants,  
 
2. N ≥ M ,  
 
3. aN ≠ 0  
 

and  4. The notation x k( ) t( )  means the kth derivative of x t( )with respect to time  
and, if k is negative, that indicates integration instead of differentiation.   

 
If x t( ) = Xest , y t( )  has the form y t( ) = Yest  where X and Y are complex constants.  Then, 
in the differential equation, the kth derivatives take the forms 
x k( ) t( ) = skXest  and y k( ) t( ) = skYest .  Then (0.1) can be written in the form 
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The Xest  and Yest  can be factored out leading to 
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This ratio Y/X is a ratio of polynomials in s.  It is called the transfer function and is 
conventionally given the symbol H. 
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The transfer function can then be written directly from the differential equation and, if the 
differential equation describes the system, so does the transfer function.  Functions like 
(0.2) in the form of a ratio of polynomials are called rational functions. 
 



 We can specialize the complex exponential input signal to a complex sinusoid by 
letting s = jω = j2π f , with ω  and f real.  The input signal is then x t( ) = Xejω t .  The 
response signal is y t( ) = Ye jω t = H jω( )Xejω t .  X and Y are of the forms 
 

 
X = X ejX = X cos X( ) + j sin X( )⎡⎣ ⎤⎦  

and 

 
Y = Y e jY = Y cos Y( ) + j sin Y( )⎡⎣ ⎤⎦ . 

 
H is of the form 

 
H jω( ) = H jω( ) e jH jω( ) . 

Therefore 

 
Y e jY = H jω( ) e jH jω( ) X ejX = H jω( ) X ej H jω( )+X( )  

and 

 
Y = H jω( ) X     and    Y = H jω( ) +X . 

The real part of x t( )  is  

 
Re x t( )( ) = Re X ej ω t+X( )( ) = X cos ωt +X( )  

and the real part of y t( )  is  
 

 
Re y t( )( ) = Re X H jω( ) e j ω t+H jω( )+X( )( ) = X H jω( ) cos ωt +H jω( ) +X( )  

 
We showed in Chapter 4 that the real part of the complex input signal produces the real 
part of the response signal.  Therefore a real sinusoidal input signal at a radian frequency 
ω  produces a real sinusoidal response also at the radian frequency ω .  The magnitude of 
the response is X H jω( )  and the phase of the response is 

 
H jω( ) +X .  H jω( )  is 

known as the frequency response of the system. 
________________________________________________________________________ 
Example Frequency response of a continuous-time system 

  
 A continuous-time system is described by the differential equation  
 

′′y t( ) + 5 ′y t( ) + 2y t( ) = 3 ′′x t( ) . 
 

Find and graph the magnitude and phase of its frequency response. 
 
 The differential equation is in the general form 
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where,  in this case, N = M = 2 , a2 = 1 , a1 = 5 , a0 = 2 , b2 = 3 , b1 = 0  and b0 = 0 .  The 
transfer function is  
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The frequency response is  

H jω( ) = 3 jω( )2
jω( )2 + j5ω + 2

 

 
 

Magnitude and phase of frequency response 
 
These graphs were generated by the following MATLAB code. 
 
wmax = 20 ;    % Maximum radian frequency magnitude for graph 
dw = 0.1 ;    % Spacing between frequencies in graph 
w = [-wmax:dw:wmax]' ; % Vector of frequencies for graph 
 
% Compute the frequency response 
 
H = 3*(j*w).^2./((j*w).^2 + j*5*w + 2) ; 
 
% Graph and annotate the frequency response 
 
subplot(2,1,1) ; p = plot(w,abs(H),'k') ; set(p,'LineWidth',2) ; 
grid on ;  
xlabel('Radian frequency, {\omega}','FontSize',18,'FontName','Times') ; 
ylabel('|H({\itj}{\omega})|','FontSize',18,'FontName','Times') ; 
subplot(2,1,2) ; p = plot(w,angle(H),'k') ; set(p,'LineWidth',2) ; 
grid on ;  
xlabel('Radian frequency, {\omega}','FontSize',18,'FontName','Times') ; 
ylabel('Phase of H({\itj}{\omega})','FontSize',18,'FontName','Times') ; 
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MATLAB also has some handy functions for doing frequency-response analysis 
in the control toolbox.  The command 
 

H = freqs(num,den,w) ; 
 
accepts the two vectors num and den and interprets them as the coefficients of the powers 
of s in the numerator and denominator of the transfer function H s( )  starting with the 
highest power and going all the way to the zero power, not skipping any.  It returns in H 
the complex frequency response at the radian frequencies in the vector w.  This command 
is demonstrated below for a vector of 9 frequencies. 
 
>> num = [3 0 0] ; den = [1 5 2] ; 
>> w = [-20:5:20]' ; H = freqs(num,den,w) ; 
>> [w,abs(H),angle(H)] 
ans = 
  -20.0000    2.9242   -0.2462 
  -15.0000    2.8690   -0.3244 
  -10.0000    2.7268   -0.4718 
   -5.0000    2.2078   -0.8270 
         0         0         0 
    5.0000    2.2078    0.8270 
   10.0000    2.7268    0.4718 
   15.0000    2.8690    0.3244 
   20.0000    2.9242    0.2462 
>>  
 
________________________________________________________________________ 
 


